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Abstract— Min-Max MPC (MMMPC) controllers [5] suffer
from a great computational burden that is often circumvented
by using upper bounds of the worst possible case of a per-
formance index. These upper bounds are usually computed by
means of linear matrix inequalities (LMI) techniques. In this
paper a more efficient approach is shown. This paper proposes
a computationally efficient MMMPC control strategy in which
a close approximation of the solution of the min-max problem is
computed using a quadratic programming problem. The overall
computational burden is much lower than that of the min-max
problem and the resulting control is shown to have guaranteed
stability. Simulation examples are given in the paper.
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I. INTRODUCTION

In min-max model predictive control (MMMPC) con-

trollers, the value of the control signal to be applied is

found by minimizing the worst case of a performance index

(usually quadratic) which is in turn computed by maxi-

mizing over the possible expected values of disturbances

and uncertainty. Solving these problems can be very time

consuming as they are of the NP-hard kind [18], [8], [17].

Thus, the implementation of this type of control is severely

compromised leading to a lack of experimental results. For

moderate fast dynamics the min-max problem can be solved

numerically only when the number of extreme realizations

of the uncertainty is relatively low. This is the case when the

prediction horizon is small or when a complexity reduction

strategy like that of [3] is used. When fast dynamics are

to be controlled the min-max problem cannot be solved

numerically, and approximate solutions have to be used [15],

[16]. However, these techniques impose great rigidity in

the controller parameters, as well as a certain degree of

approximation error.

Often the computational burden issue is solved by using

a bound of the worst case cost instead of computing it

explicitly [1]. The upper bound can be efficiently computed

by using linear matrix inequalities (LMI) techniques such as

in [7], [6], [9], [19]. The LMI problems have a computational

burden that cannot be neglected in certain applications, like

those in which the sampling rates are measured in seconds.
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This paper proposes a different strategy in which the min-

max problem is replaced by a quadratic programming (QP)

problem that provides a close approximation to the solution

of the original min-max problem. The computational burden

is much lower than that of the min-max problem. Moreover,

it can be easily implemented in almost any platform in which

a constrained MPC can be implemented. On the other hand

stability is guaranteed as it is shown in the paper.

The paper is organized as follows: section II presents the

MMMPC controller and some of its properties. Section III

presents the efficient approximation of the solution of the

min-max problem based on a pair of QP problems. Robust

stability of the proposed controller is shown in section IV.

The strategy is illustrated by means of a simulation example

in section V. Finally, section VI presents the conclusions.

II. MIN-MAX MPC WITH BOUNDED ADDITIVE

UNCERTAINTIES

Consider the following state space model with bounded

additive uncertainties [4]:

x(t +1) = Ax(t)+Bu(t)+Dθ(t +1) (1)

with x(t) ∈ R
dimx the state vector, u(t) ∈ R

dimu the input

vector and θ(t) ∈ {θ ∈ R
dimθ : ‖θ‖∞ ≤ ε} the uncertainty,

that is supposed to be bounded.

The system is subject to state and input time invariant

constraints.

Fuu(t)+Fxx(t) ≤ g.

The cost function is a quadratic performance index of the

form:

V (x,v,θθθ) =
N−1
∑
j=0

x(t + j|t)T Qx(t + j|t)

+
N−1
∑
j=0

u(t + j|t)T Ru(t + j|t)
+x(t +N|t)T Px(t +N|t)

(2)

where x(t + j|t) is the prediction of the state for t + j made

at t. Note that this value depends on the future values of

the uncertainty. Matrices Q ∈ R
dimx×dimx and R ∈ R

dimu×dimu

are symmetric positive definite matrices used as weighting

parameters.

Although the results presented in this paper are not valid

in general for closed-loop MMMPC with a quadratic cost

(see [10] and references therein), they are valid when using

a semi-feedback approach in which the control input is given

by

u(t) = −Kx(t)+ v(t), (3)
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where the feedback matrix K is chosen to achieve some

desired property such as nominal stability or LQR optimality

without constraints. The MMMPC controller will compute

the optimal sequence of correction control inputs v(t). The

state equation of system (1) can be rewritten as

x(t +1) = ACLx(t)+Bv(t)+Dθ(t +1), (4)

with ACL = (A−BK). In the following we will assume that

the semi-feedback approach is used.

Min-Max MPC [5] is based on finding the control correc-

tion sequence v = [v(t|t) · · ·v(t +N −1|t)]T that minimizes

the cost function for the worst possible case of the predicted

future evolution of the process state or output signal, while

guaranteeing robust constraint satisfaction. This is accom-

plished through the solution of a min-max problem like:

v∗(x) = argmin
v

max
θθθ∈Θ

V (x,v,θθθ)

s.t. Fuu(t + j|t)+Fxx(t + j|t) ≤ g,
j = 0, . . . ,N, ∀θθθ ∈ Θ,

x(t +N|t) ∈ Ω,
∀θθθ ∈ Θ,

(5)

with x(t|t) = x, where θθθ = [θ(t +1) · · ·θ(t +N)]T is a se-

quence of future values of θ(t) over a prediction horizon

N, and ΘΘΘ = {θθθ ∈ R
N·dimθ : ‖θθθ‖∞ ≤ ε} is the set of possible

uncertainty trajectories. A terminal region constraint x(t +
N|t) ∈ Ω, where Ω is a polyhedron, is included to assure

stability of the control law.

As usual in all predictive control schemes, the solution of

problem (5) is applied in a feedback manner using a receding

horizon strategy.

The predictions x(t + j|t) and u(t + j|t) depend linearly on

x, v and θθθ . This means that it is possible to find a vector

d ∈ R
p and matrices Gx, Gv and Gθ such that all the robust

linear constraints of problem (5) can be rewritten as:

Gi
xx+Gi

vv+Gi
θ θθθ ≤ di, i = 1 . . . , p, ∀θθθ ∈ Θ,

where Gi
x, Gi

v, Gi
θ denote the i-th rows of Gx, Gv and Gθ

respectively and di is the i-th component of d ∈ R
p. Denote

now ‖Gi
θ‖1 the sum of the absolute values of row Gi

θ .

Taking into account that maxθθθ∈Θ Gi
θ θθθ = max‖θθθ‖∞≤ε Gi

θ θθθ =
ε‖Gi

θ‖1, the robust fulfillment of the constraints is satisfied

if and only if: Gi
xx + Gi

vv + ε‖Gi
θ‖1 ≤ di, i = 1 . . . , p.

Therefore, to guarantee robust constraint satisfaction, the

following set of linear constraint must be satisfied:

Gxx+Gvv ≤ dε .

where dε ∈ R
p is a vector whose i-th component is equal to

di − ε‖Gi
θ‖1.

Taking into account (4),(3) and the quadratic nature of the

performance index, the cost function can be evaluated as a

quadratic function on the initial state, the control correction

vector and the uncertainty trajectory.

V (x,v,θθθ) = vT Mvvv+θθθ T Mθθ θθθ +2θθθ T Mθvv
+2xT MT

v f v+2xT MT
θ f θθθ + xT M f f x (6)

where the matrices can be obtained from the system and the

control parameters, see for example [4].

It can be seen that Mθθ is a Gram matrix and therefore at

least positive semidefinite. On the other hand, Mvv is positive

definite as R > 0. Note that as Mθθ ≥ 0, V (x,u,θθθ) is convex

on θθθ , and because Mvv > 0 strictly convex on v. Therefore

the solution of (5) will be unique [4]. Moreover, due to the

convexity on θθθ the maximum is attained at least at one of

the vertices of the hypercube described by Θ.

Taking this into account, problem (5) is equivalent to

v∗(x) = arg min
v

max
θθθ∈vert(Θ)

V (x,v,θθθ)

s.t. Gxx+Gvv ≤ dε
(7)

The terminal region Ω is assumed to satisfy the following

conditions:

• C1: If x ∈ Ω then ACLx+Dθ ∈ Ω, for every θ ∈ Θ.

• C2: If x ∈ Ω then −Kx ∈ U , where U ⊆ R
dimu is a

compact set that contains all admissible inputs.

Moreover, matrix P that characterizes the terminal cost is

assumed to satisfy

• C3: P−AT
CLPACL > Q+KT RK.

The stability of ACL guarantees the existence of a positive

definite matrix P satisfying C3. Note that these conditions

are standard in the literature and are also easy to met (see

[2]).

The maximum cost for a given x and v is denoted as

V ∗(x,v) = V (x,v,0)+ max
θθθ∈vert(Θ)

θθθ T Hθθθ +2θθθ T q(x,v)

(8)

where H = Mθθ , q(x,v) = Mθvv + Mθ f x and V (x,v,0) =
vT Mvvv+2xT MT

v f v+xT M f f x is the part of the cost that does

not depend on the uncertainty.

With this definition, problem (7) can be rewritten as

v∗(x) = argmin
v

V ∗(x,v)

s.t. Gxx+Gvv ≤ dε ,
(9)

Note that the minimum of (9), i.e., V ∗(x,v∗(x)), is convex as

both V ∗(x,v) and the constraints are convex. and the system

is controlled by KMPC(x) = −Kx+ v∗(t|t).
In order to evaluate V ∗(x,v) it is necessary to evaluate the

function for all the vertices of Θ. Taking into account that

the number of vertices is 2N∗dimθ it is clear that the problem

cannot be solved in real time beyond a certain dimension of

θθθ (because this is a well known NP-hard problem).

III. A QP APPROACH TO MIN-MAX MPC

In this section it is shown how the min-max problem (9)

can be replaced by a tractable QP problem which provides a

close approximation of the solution of the original problem.

The strategy can be summarized in the following steps:

1) Obtain an initial guess of the solution of (9), denoted

by ṽ∗. As seen later, this can be achieved solving a QP

problem.

2) Using ṽ∗, obtain a quadratic function of v that bounds

the worst case cost.
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3) Compute the control law. This involves the solution of

a QP problem.

In the following all these steps will be detailed.

A. Computing ṽ∗

Let T be a diagonal matrix computed as T =
diag(T1, . . . ,Tn) where

Ti =
n

∑
j=1

|Hi j|

Note that Hi j denotes the (i, j)-th component of matrix H
(recall that matrix H is defined in equation (8)). Because of

how matrix T is defined: T ≥ H. Let Ṽ (x,v,θθθ) be defined

as:

Ṽ (x,v,θθθ) = V (x,v,0)+θθθ T T θθθ +2qT (x,v)θθθ (10)

From the inequality T ≥ H it is inferred that Ṽ (x,v,θθθ) ≥
V (x,v,θθθ). The maximum of Ṽ (x,v,θθθ) can be computed as

Ṽ ∗(x,v) = max
θθθ∈Θ

Ṽ (x,v,θθθ)

= V (x, ṽ,0)+ trace(T )ε2 +2ε ‖q(x,v)‖1(11)

Then an initial guess of the solution of (9) can be obtained

as
ṽ∗(x) = argmin

ṽ
Ṽ ∗(x, ṽ)

s.t. Gxx+Gvv ≤ dε ,
(12)

It is clear that this problem can be recast as a QP problem.

B. Obtaining an upper bound of the maximum

The upper-bound of the maximum will be obtained in two

steps. In the first one we compute a set of parameters from

ṽ∗ that allows us later, in the second step, to compute the

bound as a quadratic function of v.

1) Computing the parameters: Note that for v = ṽ∗ the

maximum is obtained from:

V ∗(x, ṽ∗) = max
θθθ∈vert(Θ)

[
θθθ
1

]T

M

[
θθθ
1

]
= max

‖z‖∞≤1
zT Mz (13)

with z =
[

θθθ 1
]T

and

M =
[

ε2H εq(x, ṽ∗)
εqT (x, ṽ∗) V (x, ṽ∗,0)

]

Now suppose Γ a diagonal matrix such that Γ ≥ M, then:

zT Mz ≤ zT Γz = ∑Γiiz
2
i ≤ trace(Γ)‖z‖2

∞ ≤ trace(Γ)

thus V ∗(x, ṽ∗) ≤ trace(Γ). Therefore, a conservative upper

bound of V ∗(x, ṽ∗) can be found solving the following

problem:

ξ ∗ = min trace(Γ) (14)

s.t.

Γ ≥ M

Γ diagonal

This upper bound satisfies [11]:

V ∗(x, ṽ∗) ≤ ξ ∗ ≤ π
2

V ∗(x, ṽ∗) (15)

provided that M ≥ 01. The main purpose of this section is

to obtain a quadratic function of v that bounds the worst

case cost. As in the bound obtained in (14) using LMIs, the

approach presented here relies in a diagonalization of matrix

M.

The goal here is to find a diagonal matrix Γ such that

Γ > M, while trying to keep its trace small. The strategy

is to obtain a diagonal matrix adding to M n− 1 positive

definite matrices of the form cicT
i :

M + c1cT
1 + c2cT

2 + c3cT
3 + · · ·+ cn−1cT

n−1 = M f

where M f is a diagonal matrix. Thus the problem is to

find ci, i = 1, · · · ,n − 1 such that M f is diagonal and the

conservativeness of the bound is kept as low as possible.

Suppose that M =
[

a bT

b Mr

]
, a ∈ R and that we want to

add c1cT
1 in such a way that:[
a bT

b Mr

]
+ c1cT

1 =
[

d 0

0 M̂r

]
, d ∈ R (16)

Once c1 is found, the process continues by choosing c2 such

that M̂r is also partially diagonalized and so on. If c1 is

chosen to be
[

α1 eT ]T
then c1cT

1 becomes:[
α1
e

][
α1 eT ]

=
[

α2
1 α1eT

α1e eeT

]

with α1 > 0. This implies that α1e =−b thus e = −b
α1

, d = a+

α2
1 and M̂r = Mr + bbT

α2
1

. Such α1 is the first of the parameters

that will allow us later to express the bound as a function of

v.

The parameter α1 should be chosen to minimize the error

introduced by the diagonalization in the original augmented

maximization problem. This error is:

zT c1cT
1 z = zT

[
α1
− b

α1

][
α1 − bT

α1

]
z

The error is maximum when z turns out to be:

z∗ = sign

[
α1
− b

α1

]

(and also when it is of opposite sign). Taking into account

that [
α1 − bT

α1

]
z∗ =

∥∥∥∥ α1
− b

α1

∥∥∥∥
1

(where ‖x‖1 is the 1-norm equal to the sum of the absolute

values of the components of x), the maximum error is∥∥∥∥ α1
− b

α1

∥∥∥∥
2

1

The value of α1 that minimizes the maximum error can easily

be computed by finding the value that makes the derivative

of ∥∥∥∥ α1
− b

α1

∥∥∥∥
1
= α1 +

1

α1
‖b‖1

1Due to the fact that H ≥ 0 and V (x,v,θ)≥ 0, ∀θ it is easy to show that
M ≥ 0.
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equal to zero. Such value is:

α1 =
√

‖b‖1 (17)

The following procedure summarizes the steps to compute

the sequence αk, k = 1 . . .n−1.

Procedure 1: Computation of αk for a given M.

1) Let Γ = M ∈ R
n×n.

2) for k = 1 to n−1

3) Let Msub = [Γi j] for i, j = k · · ·n.

4) Compute αk for Msub =
[

a b
bT Mr

]
from (17).

5) Make cT
k =

[
αk

−bT

αk

]
.

6) Make cT
e =

[
0 · · · 0 cT

k

] ∈ R
n

7) Update Γ by making Γ = Γ+ cecT
e .

8) endfor

Note that, although not necessary, the bound of the maximum

for v = ṽ∗ would be computed as
n
∑

i=1
Γii. On the other hand,

this upper bound results to be a good approximation to the

maximum as shown in [13], [14].

2) Obtaining the bound as a function of v: Once the

sequence α1, . . . ,αn−1 has been computed for v = ṽ∗ the

diagonalization process shown in III-B.1 can be repeated

using such α1, . . . ,αn−1 to obtain a bound of the maximum

that can be computed as a quadratic function of v. Consider

problem (13) in which M is expressed as a matrix in which

some of its elements depend on v, i.e.

M(x,v) =

⎡
⎣ ε2H11 ε2HT

1r εq1(x,v)
ε2H1r ε2Hrr εqr(x,v)

εq1(x,v) εqT
r (x,v) V (x,v,0)

⎤
⎦

where H11, q1(x,v) and V (x,v,0) ∈R, qr(x,v)∈R
(N·dimθ)−1

and Hrr ∈ R
{(N·dimθ)−1}×{(N·dimθ)−1}. Note that q1(x,v) and

qr(x,v) have an affine dependence on v whereas V (x,v,0)
is a quadratic function. Using the parameter α1, M can be

partially diagonalizated as in (16) adding a term of the form

ccT such as⎡
⎣ ε2H11 ε2HT

1r εq1(x,v)
ε2H1r ε2Hrr εqr(x,v)

εq1(x,v) εqT
r (x,v) V (x,v,0)

⎤
⎦

+

⎡
⎢⎣

α1

− ε2H1r
α1

− εq1(x,v)
α1

⎤
⎥⎦

⎡
⎢⎣

α1

− ε2H1r
α1

− εq1(x,v)
α1

⎤
⎥⎦

T

which yields
⎡
⎢⎢⎣

ε2H11 +α2
1 0 0

0 ε2Hrr + ε4H1rHT
1r

α2
1

εqr(x,v)+ ε3H1rq1(x,v)
α2

1

0 εqT
r (x,v)+ ε3HT

1rq1(x,v)
α2

1
V (x,v,0)+ ε2q2

1(x,v)
α2

1

⎤
⎥⎥⎦

Note that the sub-matrix

Mr(x,v) =

⎡
⎣ ε2Hrr + ε4H1rHT

1r
α2

1
εqr(x,v)+ ε3H1rq1(x,v)

α2
1

εqT
r (x,v)+ ε3HT

1rq1(x,v)
α2

1
V (x,v,0)+ ε2q2

1(x,v)
α2

1

⎤
⎦

has the same structure as M(x,v), that is, the last element is

a quadratic function of v, the remaining elements of the first

row and column are affine functions of v and all the other

elements are constants. Thus the diagonalization process can

continue adding terms as in (III-B.2) in a procedure which

is almost the same as procedure 1 but without having to

compute the sequence α1, . . . ,αn−1 (which were computed

previously). At the end of this process a diagonal matrix Γ̂
is obtained in which all the elements are constants (i.e., they

do not depend on v) except the last which has the form

Γ̂nn(v) = V (x,v,0)+
ε2q2

1(x,v)
α2

1
+ · · · (18)

Once Γ̂ has been obtained, the bound of the maximum can

be computed as

V̂ ∗(x,v) = Γ̂nn(v)+
n−1

∑
i=1

Γ̂ii ≥V ∗(x,v) (19)

which taking into account (18) is clearly a quadratic function

of v.

C. Computing the control law

The value of the control signal is obtained solving the

following QP optimization problem

v̂∗(x) = argmin
v̂

V̂ ∗(x, v̂)

s.t. Gxx+Gvv ≤ dε ,
(20)

and the system is controlled by K̂MPC(x(t)) = −Kx(t) +
v̂∗(t|t). Note that the constant terms which are added to ob-

tain the bound are not needed when solving the optimization

problem (20) as we are only interested in the minimizer, not

the minimum itself. As found by the authors in many sim-

ulation examples, the performance of the proposed strategy

is very close to that of the original min-max problem (see

section V).

IV. STABILITY OF THE PROPOSED CONTROL LAW

In this section the stability properties of the control

K̂MPC(x(t)) are shown. First some properties are presented

and then stability is proved. Recall that v∗, ṽ∗ and v̂∗ are

the solutions of (9), (12) and (20) respectively. Denote also

J(x) =V ∗(x,v∗), J̃(x) = Ṽ ∗(x, ṽ∗) and Ĵ(x) = V̂ ∗(x, v̂∗). Note

that the optimization problems (9), (12) and (20) have the

same feasibility region as the constraints are the same. Also,

recall that J(x) is convex. The following property will be

used to proof the stability of the control law.

Property 1:

Ĵ(x) ≤ J̃(x)
Proof:
Taking into account the definition of Ĵ(x) and that v̂∗ is the

minimizer of V̂ ∗(x,v) it is evident that

V̂ ∗(x, ṽ∗) ≥ Ĵ(x) (21)

Thus, in order to prove that Ĵ(x) ≤ J̃(x) it suffices to show

that Ṽ ∗(x, ṽ∗)≥ V̂ ∗(x, ṽ∗). First, note that taking into account
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that V (x,v,0) ≥ 0:

Ṽ ∗(x, ṽ∗) = ‖M‖1 =
∥∥∥∥
[

ε2H εq(x, ṽ∗)
εqT (x, ṽ∗) V (x, ṽ∗,0)

]∥∥∥∥
1
(22)

=
∥∥∥∥
[

a bT

b Mr

]∥∥∥∥
1

= |a|+2‖b‖1 +‖Mr‖1

On the other hand V̂ ∗(x, ṽ∗) is equal to ∑n
i=1 Γ̂ii, that is the

sum of the elements of the diagonal matrix computed in

procedure 1 which also is equal to ‖Γ̂‖1 as Γ̂ ≥ 0. The

initial value of Γ̂ is Γ̂ = M, thus its 1-norm is equal to

Ṽ ∗(x, ṽ∗). Taking into account (17) the 1-norm of Γ̂ after

the first diagonalization step is∥∥∥∥∥
a+‖b‖1 0

0 Mr + bbT

‖b‖1

∥∥∥∥∥
1

≤ |a|+‖b‖1 +‖Mr‖1 +
∥∥∥∥ bbT

‖b‖1

∥∥∥∥
1

(23)

Taking into account that
∥∥∥ bbT

‖b‖1

∥∥∥
1
= ‖b‖1 it follows that

∥∥∥∥∥
a+‖b‖1 0

0 Mr + bbT

‖b‖1

∥∥∥∥∥
1

≤ ‖M‖1 (24)

and thus every diagonalization step decreases ‖Γ̂‖1. This

proves that:

V̂ ∗(x, ṽ∗) ≤ Ṽ ∗(x, ṽ∗) (25)

and this completes the proof. �
It is clear that the optimal solution v̂∗ of problem (20)

is a suboptimal feasible solution for problem (9). As it is

claimed in the following property, the difference between

the optimal value of the original objective function and the

value obtained with v̂∗ is bounded by trace(T )ε2.

Property 2: It holds that:

V ∗(x, v̂∗)−σε2 ≤ J(x),

where σ = trace(T ).
Proof: Note that J(x) = V ∗(x,v∗). On the other hand:

Ṽ (x,v,θθθ) = V (x,v,θθθ)+θθθ T (T −H)θθθ .

Taking into account that T ≥ H ≥ 0, ‖θθθ‖∞ ≤ ε and that T is

diagonal

Ṽ (x,v,θθθ) ≤V (x,v,θθθ)+θθθ T T θθθ ≤V (x,v,θθθ)+ trace(T )ε2

thus it can be inferred that V ∗(x,v∗) ≥ Ṽ ∗(x,v∗)−σε2 with

σ = trace(T ). As ṽ∗ is the minimizer of Ṽ ∗(x, ṽ), then it

holds that V ∗(x,v∗) ≥ Ṽ ∗(x, ṽ∗)−σε2 which in turn can be

rewritten as J(x) ≥ J̃(x)− σε2. Recall that from property

1: Ĵ(x) ≤ J̃(x); thus J(x) ≥ V̂ ∗(x, v̂∗)−σε2. Furthermore by

construction V̂ ∗(x,v) ≥V ∗(x,v) thus J(x) ≥V ∗(x, v̂∗)−σε2

and this completes the proof. �
The following property, which is proved in [2] will be

used in the proof of the stability of the proposed approach

(see theorem 1 below).

Property 3: Consider that assumptions C1, C2 and C3 are

satisfied. Let v = [v0v1 · · ·vn−1]
T

and vs a shifted version

of v computed as vs = [v1v2 · · ·vn−10]T . If v is feasible for

problem (9) at x(t) then vs is also feasible at x(t + 1) and

there is γ > 0 such that for every feasible sequence v:

V ∗(x(t +1),vs) ≤V ∗(x(t),v)− x(t)T Qx(t)+ γε2

Proof: See [2] for a proof. �
Theorem 1: Under assumptions C1, C2 and C3, the con-

trol law given by u(x) =−Kx+ v̂∗(t|t) stabilizes system (1).

Proof: Let v̂∗s the shifted version (as in property 3) of v̂∗.

Due to non optimality of v̂∗s for problem (9) it holds that

J(x(t +1)) ≤V ∗(x(t +1), v̂∗s ) (26)

Note that v̂∗s is feasible for both (20) and (9), thus by property

3

V ∗(x(t +1), v̂∗s ) ≤V ∗(x(t), v̂∗)− x(t)T Qx(t)+ γε2 (27)

Furthermore, by property (2) V ∗(x(t), v̂∗) ≤ J(x(t)) + σε2,

thus taking into account this in (27) and using (26) J(x(t +
1)) ≤ J(x(t))− x(t)T Qx(t)+(γ +σ)ε2 which can be rewrit-

ten

J(x(t +1))− J(x(t)) ≤−x(t)T Qx(t)+(γ +σ)ε2 (28)

Define

Φε =
{

x ∈ R
n : (9) is feasible and x(t)T Qx(t) ≤ (γ +σ)ε2}

Then the system evolves into set Ωβ =
{x ∈ R

n : V ∗(x,v∗) ≤ β (ε)} where β (ε) = max
x∈Φε

V ∗(x,v∗) +

(γ + σ)ε2. Thus the state system is ultimately bounded

which means that the system is stabilized by the control

law K̂MPC(x(t)) = −Kx(t)+ v̂∗(t|t). �

V. EXAMPLE

To illustrate the results presented in this paper, consider

the two-tank network example given in chapter 20 of [12].

Using the parameters given in [3] the following continuous

time state-space model can be obtained:

ẋ =
[ − 0.5

3
0.2
3

0.5
2 − 0.5

2

]
x+

[ 1
3 0

0 1
2

]
u (29)

y =
[

1 0

0 1

]
x

Constraints are imposed on both states and control actions

such that ‖x(k)‖∞ ≤ 1.5 and ‖u(k)‖∞ ≤ 0.4. A discrete time

model has been obtained from (29) sampling at 0.2 minutes

using a zero-order holder. Figure 1 shows the results of the

proposed controller applied to the two-tank model. The set-

point for the liquid level of each tank was 1 m and 0.7
m respectively. The prediction and control horizons were

N = Nu = 7. Identity matrices were chosen as Q and R. An

uncertainty of ±0.025 meters is considered to affect both

liquid levels. In the simulation a random noise of ±0.01

meters has been added to both levels and an unexpected loss

of liquid in tank 1 is introduced at sampling time t = 60.

The absolute deviation of the solution of (20) from that of

(9) (computed as v̂∗(x)−v∗(x)) is also shown in figure 1. It

can be seen that it is very small throughout the simulation.

This conclusion is supported by figure 2. In it the worst
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Fig. 1. Liquid levels, inlet flows and absolute deviation (from the exact
MMMPC) of the proposed strategy (tank 1 solid plot, tank 2 dotted plot).

TABLE I

MEAN FLOPS FOR THE ORIGINAL MIN-MAX MPC AND THE PROPOSED

STRATEGY FOR DIFFERENT VALUES OF THE PREDICTION AND CONTROL

HORIZON (N) IN THE SIMULATION EXAMPLE OF SECTION V.

N Avg. flops (min-max) Avg. flops (prop.)

4 4.77×106 4.28×104

5 3.73×107 7.6×104

6 3.43×108 1.28×105

7 1.84×109 1.42×105

case cost when v = v̂∗(x) is plotted along with its deviation

(percentage) from the optimal cost when v = v∗(x). Note that

at worst this deviation is under 4%.
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Fig. 2. Worst case cost using v̂∗(x) (top) and deviation from the worst
case cost of v∗(x) (bottom).

Finally, the lower computational burden of the proposed

strategy is illustrated in table I in which are listed the average

flops that problem (9) took to be solved as well as the

flops needed to compute v̂∗(x) (including those needed to

compute ṽ∗(x), the sequence α1, . . . ,αn−1 and Γii(v)). The

computational burden is, thus, much lower in the proposed

strategy and the gap broadens exponentially as prediction

horizon grows.

VI. CONCLUSIONS

An MMMPC based on an tractable QP problem has been

presented in this paper. This QP problem has a much lower

computational burden than the original min-max problem

whereas its solution is close to that of the min-max problem.

As it is based on a QP problem, it can be implemented almost

in whatever industrial hardware capable to run a constrained

MPC controller. Thus it extends very much the fields of

application of MMMPC controllers.
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