
Neuro-Dynamic Programming: An Overview

Dimitri P. Bertsekas∗

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract
There has been a great deal of research recently on dynamic programming methods that replace the optimal cost-to-
go function with a suitable approximation. These methods are collectively known as neuro-dynamic programming or
reinforcement learning, and are described in a number of sources, including the books by Bertsekas and Tsitsiklis (1996)
and Sutton and Barto (1988). In this paper, we provide an overview of the major conceptual issues, and we survey a
number of recent developments, including rollout algorithms which are related to recent advances in model predictive
control for chemical processes.

Keywords
Dynamic programming, Neuro-dynamic programming, Reinforcement learning, Optimal control, Suboptimal control

Neuro-dynamic programming (NDP for short) is a
relatively new class of dynamic programming methods
for control and sequential decision making under uncer-
tainty. These methods have the potential of dealing with
problems that for a long time were thought to be in-
tractable due to either a large state space or the lack of
an accurate model. They combine ideas from the fields of
neural networks, artificial intelligence, cognitive science,
simulation, and approximation theory. We will delineate
the major conceptual issues, survey a number of recent
developments, describe some computational experience,
and address a number of open questions.

We consider systems where decisions are made in
stages. The outcome of each decision is not fully pre-
dictable but can be anticipated to some extent before
the next decision is made. Each decision results in some
immediate cost but also affects the context in which fu-
ture decisions are to be made and therefore affects the
cost incurred in future stages. Dynamic programming
(DP for short) provides a mathematical formalization of
the tradeoff between immediate and future costs.

Generally, in DP formulations there is a discrete-
time dynamic system whose state evolves according to
given transition probabilities that depend on a deci-
sion/control u. In particular, if we are in state i and we
choose decision u, we move to state j with given probabil-
ity pij(u). Simultaneously with this transition, we incur
a cost g(i, u, j). In comparing, however, the available
decisions u, it is not enough to look at the magnitude
of the cost g(i, u, j); we must also take into account how
desirable the next state j is. We thus need a way to rank
or rate states j. This is done by using the optimal cost
(over all remaining stages) starting from state j, which
is denoted by J∗(j). These costs can be shown to satisfy
some form of Bellman’s equation

J∗(i) = min
u

E{g(i, u, j) + J∗(j) | i, u}, for all i,

where j is the state subsequent to i, and E{· | i, u} de-
∗bertsekas@lids.mit.edu

noted expected value with respect to j, given i and u.
Generally, at each state i, it is optimal to use a con-
trol u that attains the minimum above. Thus, decisions
are ranked based on the sum of the expected cost of the
present period, and the optimal expected cost of all sub-
sequent periods.

The objective of DP is to calculate numerically the
optimal cost function J∗. This computation can be done
off-line, i.e., before the real system starts operating. An
optimal policy, that is, an optimal choice of u for each
i, is computed either simultaneously with J∗, or in real
time by minimizing in the right-hand side of Bellman’s
equation. It is well known, however, that for many im-
portant problems the computational requirements of DP
are overwhelming, mainly because of a very large num-
ber of states and controls (Bellman’s “curse of dimen-
sionality”). In such situations a suboptimal solution is
required.

Cost Approximations in Dynamic Pro-
gramming

NDP methods are suboptimal methods that center
around the approximate evaluation of the optimal cost
function J∗, possibly through the use of neural networks
and/or simulation. In particular, we replace the optimal
cost J∗(j) with a suitable approximation J̃(j, r), where
r is a vector of parameters, and we use at state i the
(suboptimal) control µ̃(i) that attains the minimum in
the (approximate) right-hand side of Bellman’s equation

µ̃(i) = arg min
u

E{g(i, u, j) + J̃(j, r) | i, u}.

The function J̃ will be called the scoring function, and
the value J̃(j, r) will be called the score of state j. The
general form of J̃ is known and is such that once the pa-
rameter vector r is determined, the evaluation of J̃(j, r)
of any state j is fairly simple.

We note that in some problems the minimization over

92



Neuro-Dynamic Programming: An Overview 93

u of the expression

E{g(i, u, j) + J̃(j, r) | i, u}

may be too complicated or too time-consuming for mak-
ing decisions in real-time, even if the scores J̃(j, r) are
simply calculated. In such problems we may use a re-
lated technique, whereby we approximate the expression
minimized in Bellman’s equation,

Q(i, u) = E{g(i, u, j) + J∗(j) | i, u},

which is known as the Q-factor corresponding to (i, u).
In particular, we replace Q(i, u) with a suitable approxi-
mation Q̃(i, u, r), where r is a vector of parameters. We
then use at state i the (suboptimal) control that mini-
mizes the approximate Q-factor corresponding to i:

µ̃(i) = arg min
u

Q̃(i, u, r).

Much of what will be said about approximation of the
optimal cost function also applies to approximation of
Q-factors. In fact, we will see later that the Q-factors
can also be viewed as optimal costs of a related problem.
We thus focus primarily on approximation of the optimal
cost function J∗.

We are interested in problems with a large number
of states and in scoring functions J̃ that can be de-
scribed with relatively few numbers (a vector r of small
dimension). Scoring functions involving few parameters
are called compact representations, while the tabular de-
scription of J∗ are called the lookup table representation.
Thus, in a lookup table representation, the values J∗(j)
are stored in a table for all states j. In a typical com-
pact representation, only the vector r and the general
structure of the scoring function J̃(·, r) are stored; the
scores J̃(j, r) are generated only when needed. For ex-
ample, J̃(j, r) may be the output of some neural network
in response to the input j, and r is the associated vec-
tor of weights or parameters of the neural network; or
J̃(j, r) may involve a lower dimensional description of
the state j in terms of its “significant features”, and r is
the associated vector of relative weights of the features.
Thus determining the scoring function J̃(j, r) involves
two complementary issues: (1) deciding on the general
structure of the function J̃(j, r), and (2) calculating the
parameter vector r so as to minimize in some sense the
error between the functions J∗(·) and J̃(·, r).

Approximations of the optimal cost function have been
used in the past in a variety of DP contexts. Chess play-
ing programs represent a successful example. A key idea
in these programs is to use a position evaluator to rank
different chess positions and to select at each turn a move
that results in the position with the best rank. The posi-
tion evaluator assigns a numerical value to each position,
according to a heuristic formula that includes weights for
the various features of the position (material balance,

piece mobility, king safety, and other factors). Thus, the
position evaluator corresponds to the scoring function
J̃(j, r) above, while the weights of the features corre-
spond to the parameter vector r. Usually, some general
structure of position evaluator is selected (this is largely
an art that has evolved over many years, based on ex-
perimentation and human knowledge about chess), and
the numerical weights are chosen by trial and error or (as
in the case of the champion program Deep Thought) by
“training” using a large number of sample grandmaster
games.

As the chess program paradigm suggests, intuition
about the problem, heuristics, and trial and error are
all important ingredients for constructing cost approxi-
mations in DP. However, it is important to supplement
heuristics and intuition with more systematic techniques
that are broadly applicable and retain as much as possi-
ble the nonheuristic aspects of DP.

NDP aims to develop a methodological foundation for
combining dynamic programming, compact representa-
tions, and simulation to provide the basis for a rational
approach to complex stochastic decision problems.

Approximation Architectures

An important issue in function approximation is the se-
lection of architecture, that is, the choice of a parametric
class of functions J̃(·, r) or Q̃(·, ·, r) that suits the prob-
lem at hand. One possibility is to use a neural network
architecture of some type. We should emphasize here
that in this presentation we use the term “neural net-
work” in a very broad sense, essentially as a synonym
to “approximating architecture.” In particular, we do
not restrict ourselves to the classical multilayer percep-
tron structure with sigmoidal nonlinearities. Any type
of universal approximator of nonlinear mappings could
be used in our context. The nature of the approximating
structure is left open in our discussion, and it could in-
volve, for example, radial basis functions, wavelets, poly-
nomials, splines, etc.

Cost approximation can often be significantly en-
hanced through the use of feature extraction, a process
that maps the state i into some vector f(i), called the
feature vector associated with the state i. Feature vec-
tors summarize, in a heuristic sense, what are considered
to be important characteristics of the state, and they are
very useful in incorporating the designer’s prior knowl-
edge or intuition about the problem and about the struc-
ture of the optimal controller. For example in a queueing
system involving several queues, a feature vector may in-
volve for each queue a three-value indicator, that spec-
ifies whether the queue is “nearly empty”, “moderately
busy”, or “nearly full”. In many cases, analysis can com-
plement intuition to suggest the right features for the
problem at hand.

Feature vectors are particularly useful when they can



94 Dimitri P. Bertsekas

capture the “dominant nonlinearities” in the optimal
cost function J∗. By this we mean that J∗(i) can be
approximated well by a “relatively smooth” function
Ĵ(f(i)); this happens for example, if through a change
of variables from states to features, the function J∗ be-
comes a (nearly) linear or low-order polynomial function
of the features. When a feature vector can be chosen to
have this property, one may consider approximation ar-
chitectures where both features and (relatively simple)
neural networks are used together. In particular, the
state is mapped to a feature vector, which is then used
as input to a neural network that produces the score of
the state. More generally, it is possible that both the
state and the feature vector are provided as inputs to
the neural network.

A simple method to obtain more sophisticated ap-
proximations, is to partition the state space into several
subsets and construct a separate cost function approx-
imation in each subset. For example, by using a lin-
ear or quadratic polynomial approximation in each sub-
set of the partition, one can construct piecewise linear
or piecewise quadratic approximations over the entire
state space. An important issue here is the choice of
the method for partitioning the state space. Regular
partitions (e.g., grid partitions) may be used, but they
often lead to a large number of subsets and very time-
consuming computations. Generally speaking, each sub-
set of the partition should contain “similar” states so
that the variation of the optimal cost over the states of
the subset is relatively smooth and can be approximated
with smooth functions. An interesting possibility is to
use features as the basis for partition. In particular, one
may use a more or less regular discretization of the space
of features, which induces a possibly irregular partition
of the original state space. In this way, each subset of
the irregular partition contains states with “similar fea-
tures.”

Simulation and Training

Some of the most successful applications of neural net-
works are in the areas of pattern recognition, nonlinear
regression, and nonlinear system identification. In these
applications the neural network is used as a universal
approximator: the input-output mapping of the neural
network is matched to an unknown nonlinear mapping F
of interest using a least-squares optimization. This opti-
mization is known as training the network . To perform
training, one must have some training data, that is, a set
of pairs (i, F (i)), which is representative of the mapping
F that is approximated.

It is important to note that in contrast with these
neural network applications, in the DP context there is
no readily available training set of input-output pairs
(i, J∗(i)), which can be used to approximate J∗ with
a least squares fit. The only possibility is to evaluate

(exactly or approximately) by simulation the cost func-
tions of given (suboptimal) policies, and to try to iter-
atively improve these policies based on the simulation
outcomes. This creates analytical and computational
difficulties that do not arise in classical neural network
training contexts. Indeed the use of simulation to evalu-
ate approximately the optimal cost function is a key new
idea, that distinguishes the methodology of this presen-
tation from earlier approximation methods in DP.

Using simulation offers another major advantage: it
allows the methods of this presentation to be used for
systems that are hard to model but easy to simulate;
that is, in problems where an explicit model is not avail-
able, and the system can only be observed, either as it
operates in real time or through a software simulator.
For such problems, the traditional DP techniques are
inapplicable, and estimation of the transition probabili-
ties to construct a detailed mathematical model is often
cumbersome or impossible.

There is a third potential advantage of simulation: it
can implicitly identify the “most important” or “most
representative” states of the system. It appears plausi-
ble that if these states are the ones most often visited
during the simulation, the scoring function will tend to
approximate better the optimal cost for these states, and
the suboptimal policy obtained will perform better.

Neuro-Dynamic Programming

The name neuro-dynamic programming expresses the re-
liance of the methods of this article on both DP and
neural network concepts. In the artificial intelligence
community, where the methods originated, the name re-
inforcement learning is also used. In common artificial
intelligence terms, the methods allow systems to “learn
how to make good decisions by observing their own be-
havior, and use built-in mechanisms for improving their
actions through a reinforcement mechanism.” In less an-
thropomorphic DP terms, “observing their own behav-
ior” relates to simulation, and “improving their actions
through a reinforcement mechanism” relates to iterative
schemes for improving the quality of approximation of
the optimal cost function, or the Q-factors, or the op-
timal policy. There has been a gradual realization that
reinforcement learning techniques can be fruitfully moti-
vated and interpreted in terms of classical DP concepts
such as value and policy iteration; see the nice survey by
Barto et al. (1995), and the book by Sutton and Barto
(1988), which point out the connections between the ar-
tificial intelligence/reinforcement learning viewpoint and
the control theory/DP viewpoint, and give many refer-
ences.

The currently most popular methodology in NDP it-
eratively adjusts the parameter vector r of the scoring
function J̃(j, r) as it produces sample state trajectories
(i0, i1, . . . , ik, ik+1, . . . , ) by using simulation. These tra-



Neuro-Dynamic Programming: An Overview 95

jectories correspond to either a fixed stationary policy, or
to a “greedy” policy that applies, at state i, the control
u that minimizes the expression

E{g(i, u, j) + J̃(j, r) | i, u},

where r is the current parameter vector. A central notion
here is the notion of a temporal difference, defined by

dk = g(ik, uk, ik+1) + J̃(ik+1, r) − J̃(ik, r),

and expressing the difference between our expected cost
estimate J̃(ik, r) at state ik and the predicted cost es-
timate g(ik, uk, ik+1) + J̃(ik+1, r) based on the outcome
of the simulation. If the cost approximations were ex-
act, the average temporal difference would be zero by
Bellman’s equation. Thus, roughly speaking, the values
of the temporal differences can be used to make incre-
mental adjustments to r so as to bring about an approx-
imate equality (on the average) between expected and
predicted cost estimates along the simulated trajectories.
This viewpoint, formalized by Sutton in 1988, can be im-
plemented through the use of gradient descent/stochastic
approximation methodology. Sutton proposed a family
of methods of this type, called TD(λ), and parameter-
ized by a scalar λ ∈ [0, 1]. One extreme, TD(1), is closely
related to Monte-Carlo simulation and least-squares pa-
rameter estimation, while the other extreme, TD(0), is
closely related to stochastic approximation. A related
method is Q-learning, introduced by Watkins (1989),
which is a stochastic approximation-like method that it-
erates on the Q-factors. While there is convergence anal-
ysis of TD(λ) and Q-learning for the case of lookup ta-
ble representations (see Tsitsiklis, 1994; Jaakkola et al.,
1994), the situation is much less clear in the case of
compact representations. In our presentation, we will
describe results that we have derived for approximate
policy and value iteration methods, which are obtained
from the traditional DP methods after compact repre-
sentations of the various cost functions involved are in-
troduced.

A simpler type of methodology for NDP, called roll-
out , is to approximate the optimal cost-to-go by the cost
of some reasonably good suboptimal policy, called the
base policy . Depending on the context, the cost of the
base policy may be calculated either analytically, or more
commonly by simulation. In a variant of the method, the
cost of the base policy is approximated by using some
approximation architecture. It is possible to view this
approach as a single step of a policy iteration method.
The rollout approach is particularly simple to implement,
and is also well-suited for on-line replanning, in situa-
tions where the problem parameters change over time.
The rollout approach may also be combined with rolling
horizon approaximations, and in some variations is re-
lated to model predictive control , and receding horizon
control ; see Keerthi and Gilbert (1988), the surveys by

Morari and Lee (1999), and Mayne et al. (2000), and the
references quoted there. Despite being less ambitious
than the TD and approximate policy iteration methods
mentioned earlier, the rollout approach has performed
surprisingly well in a variety of studies and applications,
often achieving a spectacular improvement over the base
policy.

While the theoretical support for the NDP methodol-
ogy is only now emerging, there have been quite a few
reports of successes with problems too large and complex
to be treated in any other way. A particularly impres-
sive success is the development of a backgammon playing
program as reported by Tesauro (1992). Here a neural
network provided a compact representation of the opti-
mal cost function of the game of backgammon by using
simulation and TD(λ). The training was performed by
letting the program play against itself. After training
for several months, the program nearly defeated the hu-
man world champion. Variations of the method used by
Tesauro have been used with success by us and several
other researchers in a variety of applications. In our pre-
sentation we will provide some analysis that explains the
success of this method, and we will also point to some
unanswered questions.

The recent experience of several researchers, involv-
ing several engineering applications, has confirmed that
NDP methods can be impressively effective in problems
where traditional DP methods would be hardly appli-
cable and other heuristic methods would have a limited
chance of success. We note, however, that the practical
application of NDP is computationally very intensive,
and often requires a considerable amount of trial and er-
ror. Fortunately, all the computation and experimenta-
tion with different approaches can be done off-line. Once
the approximation is obtained off-line, it can be used to
generate decisions fast enough for use in real time. In
this context, we mention that in the machine learning
literature, reinforcement learning is often viewed as an
“on-line” method, whereby the cost approximation is im-
proved as the system operates in real time. This is rem-
iniscent of the methods of traditional adaptive control.
We will not discuss this viewpoint in our presentation, as
we prefer to focus on applications involving a large and
complex system. A lot of training data is required for
such a system. These data typically cannot be obtained
in sufficient volume as the system is operating; even if
they can, the corresponding processing requirements are
typically too large for effective use in real time.

Extensive references for the material of this article
are the research monographs by Bertsekas and Tsitsiklis
(1996), and by Sutton and Barto (1988). A more limited
textbook discussion is given in the DP textbook by Bert-
sekas (1995a). The 2nd edition of the first volume of this
DP text (Bertsekas, 1995b) contains a detailed discussion
of rollout algorithms. The extensive survey by Barto
et al. (1995), and the overviews by Werbös (1992a,b),



96 Dimitri P. Bertsekas

and other papers in the edited volume by White and
Sofge (1992) point out the connections between the arti-
ficial intelligence/reinforcement learning viewpoint and
the control theory/DP viewpoint, and give many refer-
ences.

References

Barto, A. G., S. J. Bradtke, and S. P. Singh, “Real-Time Learn-
ing and Control Using Asynchronous Dynamic Programming,”
Artificial Intelligence, 72, 81–138 (1995).

Bertsekas, D. P. and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming. Athena Scientific, Belmont, MA (1996).

Bertsekas, D. P., Dynamic Programming and Optimal Control,
volume 2. Athena Scientific, Belmont, MA (1995a).

Bertsekas, D. P., Dynamic Programming and Optimal Control,
volume 2. Athena Scientific, Belmont, MA, 2 edition (1995b).

Jaakkola, T., M. I. Jordan, and S. P. Singh, “On the Con-
vergence of Stochastic Iterative Dynamic Programming Algo-
rithms,” Neural Computation, 6, 1185–1201 (1994).

Keerthi, S. S. and E. G. Gilbert, “Optimal Infinite-horizon Feed-
back Laws for a General Class of Constrained Discrete-time Sys-
tems: Stability and Moving-horizon Approximations,” J. Opt.
Theory and Appl., 57(2), 265–293 (1988).

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained Model Predictive Control: Stability and Optimal-
ity,” Automatica, 36(6), 789–814 (2000).

Morari, M. and J. H. Lee, “Model predictive control: past, present
and future,” Comput. Chem. Eng., 23, 667–682 (1999).

Sutton, R. S. and A. G. Barto, Reinforcement Learning. MIT
Press, Cambridge, MA (1988).

Sutton, R. S., “Learning to Predict by the Methods of Temporal
Differences,” Machine Learning, 3, 9–44 (1988).

Tesauro, G., “Practical Issues in Temporal Difference Learning,”
Machine Learning, 8, 257–277 (1992).

Tsitsiklis, J. N., “Asynchronous Stochastic Approximation and Q-
Learning,” Machine Learning, 16, 185–202 (1994).

Watkins, C. J. C. H., Learning from Delayed Rewards, PhD thesis,
Cambridge University, England (1989).

Werbös, P. J., Approximate Dynamic Programming for Real-Time
Control and Neural Modeling, In White, D. A. and D. A. Sofge,
editors, Handbook of Intelligent Control. Van Nostrand, NY
(1992a).

Werbös, P. J., Neurocontrol and Supervised Learning: an Overview
and Valuation, In White, D. A. and D. A. Sofge, editors, Hand-
book of Intelligent Control. Van Nostrand, NY (1992b).

White, D. A. and D. A. Sofge, editors, Handbook of Intelligent
Control. Van Nostrand, NY (1992).


