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Abstract
Dynamic optimization of batch processes has attracted more attention in recent years since, in the face of growing com-
petition, it is a natural choice for reducing production costs, improving product quality, and meeting safety requirements
and environmental regulations. Since the models currently available in industry are poor and carry a large amount of
uncertainty, standard model-based optimization techniques are by and large ineffective, and the optimization methods
need to rely more on measurements.

In this paper, various measurement-based optimization strategies reported in the literature are classified. A new
framework is also presented, where important characteristics of the optimal solution that are invariant under uncertainty
are identified and serve as references to a feedback control scheme. Thus, optimality is achieved by tracking, and no
numerical optimization is required on-line. When only batch-end measurements are available, the proposed method
leads naturally to an efficient batch-to-batch optimization scheme. The approach is illustrated via the simulation of a
semi-batch reactor in the presence of uncertainty.
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Introduction

Batch and semi-batch processes are of considerable im-
portance in the chemical industry. A wide variety of spe-
cialty chemicals, pharmaceutical products, and certain
types of polymers are manufactured in batch operations.
Batch processes are typically used when the production
volumes are low, when isolation is required for reasons
of sterility or safety, and when frequent changeovers are
necessary. With the recent trend in building small flexi-
ble plants that are close to the markets of consumption,
there has been a renewed interest in batch processing
(Macchietto, 1998).

From a process systems point of view, the key feature
that differentiates continuous processes from batch and
semi-batch processes is that the former have a steady
state, whereas the latter are inherently time-varying
in nature (Bonvin, 1998). This paper considers batch
and semi-batch processes in the same manner and, thus
herein, the term ‘batch processes’ includes semi-batch
processes as well.

The operation of batch processes typically involves fol-
lowing recipes that have been developed in the labora-
tory. However, owing to differences in both equipment
and scale, industrial production almost invariably neces-
sitates modifications of these recipes in order to ensure
productivity, safety, quality, and satisfaction of opera-
tional constraints (Wiederkehr, 1988). The ‘educated
trials’ method that is often used for recipe adjustment is
based on heuristics and results in conservative profiles.
Conservatism is necessary here to guarantee feasibility
despite process disturbances.

To shorten the time to market (by bypassing an elabo-
rate scale-up process) and to reduce operational costs (by
reducing the conservatism), an optimization approach is

called for, especially one that can handle uncertainty ex-
plicitly. Operational decisions such as temperature or
feed rate profiles are then determined from an optimiza-
tion problem, where the objective is of economic nature
and the various technical and operational constraints are
considered explicitly. Furthermore, due to the repetitive
nature of batch processes, these problems can also be
addressed on a batch-to-batch basis.

The objectives of this paper are threefold: i) address
the industrial practice prevailing in the batch specialty
chemical industry and discuss the resulting optimization
challenges, ii) review the dynamic optimization strate-
gies available for batch processes, with an emphasis on
measurement-based techniques, and iii) present a novel
scheme that uses process measurements directly (i.e.,
without the often difficult step of model refinement) to-
wards the goal of optimization. Accordingly, the paper
has three major parts:

• Industrial perspectives in batch processing: The ma-
jor operational challenges aim at speeding up pro-
cess/product development, increasing the produc-
tivity, and satisfying safety and product quality re-
quirements (Allgor et al., 1996). These tasks need
to be performed in an environment characterized
by a considerable amount of uncertainty and the
presence of numerous operational and safety-related
constraints. The measurements available could be
used to help meet these challenges.

• Optimization strategies for batch processes: These
are reviewed and classified according to: i) whether
uncertainty is considered explicitly, ii) whether mea-
surements are used, iii) whether a model is used to
guide the optimization. The type of measurements
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used for optimization (on-line, off-line) adds another
dimension to the classification.

• Invariant-based optimization scheme: New insights
into the optimal solution for a class of batch pro-
cesses have led to an alternative way of dealing with
uncertainty. It involves: i) the off-line characteriza-
tion of the optimal solution using a simplified model,
ii) the selection of signals that are derived from the
conditions for optimality and are invariants to un-
certainty, and iii) a model-free implementation by
tracking these invariants using a limited number of
measurements. This results in a model-free though
measurement-based implementation that is quite ro-
bust towards uncertainty. An interesting feature of
this framework is that it permits naturally to com-
bine off-line data from previous batches with on-line
data from the current batch.

The paper is organized as follows. The industrial per-
spectives in batch processing are presented first. The
next section briefly reviews the optimization strategies
available for batch processes and proposes a classifica-
tion of the methods. The invariant-based optimization
framework is then developed and an example is provided
to illustrate the theoretical developments. Conclusions
are drawn in the final section.

Industrial Perspectives in Batch Process-
ing

It is difficult to address in generic terms the perspec-
tives prevailing in the batch chemical industry since the
processing environments and constraints differ consid-
erably over the various activities (specialty chemicals,
pharmaceuticals, agro and bio products, etc.). Thus,
the situation specific to the production of intermediates
in the specialty chemical industry will be emphasized
in this section. The customer—typically an end-product
manufacturer—often generates competition between sev-
eral suppliers for the production of a new product. The
suppliers need to investigate the synthesis route and de-
sign an appropriate production process. The competi-
tion forces the suppliers to come up, under considerable
time pressure, with an attractive offer (price/kg) if they
want to obtain the major share of the deal.

Batch processes are usually carried out in relatively
standardized pieces of equipment whose operating condi-
tions can be adjusted to accommodate a variety of prod-
ucts. The working environment that will be considered
is that of multi-product plants. In a multi-product plant,
a number of products are manufactured over a period of
time, but at any given time, only one product is being
made. The sequence of tasks to be carried out on each
piece of equipment such as heating, cooling, reaction,
distillation, crystallization, drying, etc. is pre-defined,
and the equipment item in which each task is performed

is also specified (Mauderli and Rippin, 1979).

Operational Objectives

The fundamental objective is of economic nature. The
investment (in time, personnel, capital, etc.,) should pay
off, as the invested capital has to compare favorably with
other possible investments. This fundamental objective
can in turn be expressed in terms of technical objectives
and constraints, which are presented next.

• Productivity: This is the key word nowadays. How-
ever, high productivity requires stable production
so as to reduce the amount of corrective manual
operations that are costly in terms of production
time and personnel. Reducing the time necessary for
a given production is particularly interesting when
the number of batches per shift can be increased.
In multi-product plants, however, equipment con-
straints (bottlenecks) and logistic issues often limit
productivity.

• Product quality: Quality is often impaired by the
appearance of small amounts of undesired by-
products. The presence of impurities (also due to
recycled solvents) is very critical since it can turn
an acceptable product into waste. Removing impu-
rities is often not possible or can significantly reduce
throughput. Also, from an operational, logistic and
regulation point of view, it is often not possible to
use blending operations in order to achieve the de-
sired average quality.
Reproducibility of final product composition despite
disturbances and batch-to-batch variations is impor-
tant when the process has to work closely to some
quality limit (for example, when the quality limits
are tight). Improving the selectivity of an already
efficient process is often not seen as a critical factor.
However, when the separation of an undesirable by-
product is difficult, the selectivity objective may be
quite important.

• Safety aspects: The safety aspects such as the avoid-
ance of runaways are of course very important.
Safety requirements can lead to highly conservative
operation. Here, the real obstacle is the lack of
on-line information. If information about the state
of the process were available, the process engineer
would know how to guarantee safety or react in the
case of a latent problem. Thus, the difficulty results
from a measurement limitation and not from a lack
of operational knowledge.

• Time-to-market: The economic performance is
strongly tied to the speed at which a new prod-
uct/process can be developed. The product lifetime
of specialty chemicals is typically shorter than for
bulk chemicals. Since the production in campaigns
reduces the time to learn, it is necessary to learn
quickly and improve the productivity right away.
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After a couple of years, a profitable new product
may become a commodity (of much lesser value),
for which the development of a second-generation
process is often considered.
Nowadays, there is a trend in the specialty chemi-
cal industry to skip pilot plant investigations unless
the process is difficult to scale up. The situation is
somewhat different in pharmaceuticals production,
where pilot plant investigations are systematically
used since they also serve to produce the small ‘first
amounts’ needed.

Industrial Practice

Though the problem of meeting the aforementioned ob-
jectives could be solved effectively as an optimization
problem, there have been only a few attempts in indus-
try to optimize operations through mathematical mod-
eling and optimization techniques. The recipes are de-
veloped in the laboratory in such a way that they can be
implemented safely in production. The operators then
use heuristics gained from experience to adjust the pro-
cess periodically (whenever this is allowed), which leads
to slight improvements from batch to batch (Verwater-
Lukszo, 1998). The stumbling blocks for the use of math-
ematical modeling and optimization techniques in indus-
trial practice have been partly organizational and partly
technical.

Organizational Issues. At the organizational level,
the issues are as follows:

• Registration: Producers of active compounds in
the food and pharmaceuticals areas have to pass
through the process of registration with the Food
and Drug Administration. Since this is a costly
and time-consuming task, it is performed simulta-
neously with R&D for a new production process.
Thus, the main operational parameters are fixed
within specified limits at an early stage of the devel-
opment. Since the specifications provided by the in-
ternational standards of operation (GMP) are quite
tight, there is very little room for maneuver left. It
is important to stress that the registration is tied to
both product and process.

• Multi-step process: In the R&D phase of a large
multi-step process, different teams work on differ-
ent processing steps. Often, each team tries to opti-
mize its process subpart, thereby introducing a cer-
tain level of conservatism to account for uncertainty.
Consequently, the resulting process is the sum of
conservatively designed subparts, which often does
not correspond to the optimum of the global pro-
cess!

• Role of control and mathematical optimization: In
many projects, control is still considered to be a
standard task that has to be performed during the

detailed engineering phase and not a part of the de-
sign phase of the process. It is like ‘painting’ a con-
troller or an optimizer once the process has been
built. At this late stage, there is so much conser-
vatism and robustness in the system that it does
not require a sophisticated control strategy. How-
ever, the performance may still be far from being
optimal.

All these organizational problems can be resolved by
resorting to ‘global thinking’. It has become a challenge
for both project leaders and plant managers to make
chemists and engineers think and act in a global way.
It is done through fostering interdisciplinary teamwork
and simultaneous rather than sequential work for pro-
cess research, development and production (R&D&P).
The objective is a globally optimal process and not sim-
ply the juxtaposition of robust process subparts. Team
work amounts to having R&D&P solutions worked out
simultaneously by interdisciplinary teams consisting of
a project leader, chemists, process engineers, production
personnel and specialists for analytics, simulation, statis-
tics, etc.

Technical Issues. The main technical issues relate
to modeling and measurements, the presence of both un-
certainty and constraints, and the proper use of the avail-
able degrees of freedom for process improvement. These
are addressed next.

• Modeling: In the specialty chemical industry,
molecules are typically more complex than in
the commodity industry, which often results in
complex reaction pathways. Thus, it is illusory
to expect constructing detailed kinetic models.
The development of such models may exceed one
man-year, which is incompatible with the objectives
of batch processing. So, what is often sought in
batch processing, is simply the ability to predict
the batch outcome from knowledge of its initial
phase.
Modern software tools such as Aspen Plus, PRO/II,
or gPROMs have found wide application to model
continuous chemical processes (Marquardt, 1996;
Pantelides and Britt, 1994). The situation is some-
what different in the batch specialty chemistry.
Though batch-specific packages such as Batch Plus,
BATCHFRAC, CHEMCAD, BatchCAD, or BaSYS
are available, they are not generally applicable. Es-
pecially the two important unit operations, reac-
tion and crystallization, still represent a consider-
able challenge to model at the industrial level.
For batch processes, modeling is often done empiri-
cally using input/output static models on the basis
of statistical experimental designs. These include
operational variables specified at the beginning of
the batch and quality variables measured at the end
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of the batch. Time-dependent variables are not con-
sidered beyond visual comparison of measured pro-
files. Sometimes the model is a set of simple lin-
guistic rules based on experience, e.g. when ‘low’
then ‘bad’. Occasionally, the model consists of a
simple energy balance, or the main dynamics are
expressed via a few ordinary differential equations.
The modeling objective is not accuracy but rather
the ability to semi-quantitatively describe the ma-
jor tradeoffs present in the process such as the com-
mon one between quality and productivity in many
transformation and separation processes. For ex-
ample, an increase in reflux ratio improves distillate
purity but reduces distillate flow rate; or a temper-
ature increase can improve the yield at the expense
of selectivity in a chemical reaction system.

• Measurements: Quality measurements are typically
available at the end of the batch via, for exam-
ple, off-line chromatographic methods (GC, HPLC,
DC, IC). In addition, physical measurements such as
temperature, flow, pressure, or pH may be available
on-line during the course of the batch. However,
they are rather unspecific with respect to the key
variables (concentrations) of the chemical process.
Other on-line measurements such as conductivity,
viscosity, refractive index, torque, spectroscopy, and
calorimetry are readily available in the laboratory,
but rarely in production. Pseudo on-line GC and
HPLC are less effective in batch processing than
with continuous processes due to relatively longer
measurement delays.
On-line spectroscopy (FTIR, NIR, Raman) has
opened up new possibilities for monitoring chemical
processes (McLennan and Kowalski, 1995; Nichols,
1988). These techniques rely on multivariate cali-
bration for accurate results, i.e., the spectral mea-
surements need to be calibrated with respect to
known samples containing all the absorbing species.
Though on-line spectroscopy is getting more com-
mon in the laboratory, the transfer of many mea-
surement systems from the laboratory to the plant
is still a real challenge. For example, many process-
ing steps deal with suspensions that lead to plugging
and deposition problems. Even if these problems
can be handled at the laboratory scale, they still
represent formidable challenges at the production
level. There is presently a strong push to develop
and validate measurement techniques that can work
equally well throughout the three levels of Research,
Development and Production.
When quality measurements are not directly avail-
able, state estimation (or soft sensing) is typically
utilized. However, physical on-line measurements
are often too unspecific for on-line state estimation
in batch processes. Current practice indicates that

there are very few applications of state estimation
in the specialty chemistry. However, state estima-
tion works well in fermentation processes due to the
availability of additional physical measurements and
the possibility to reconstruct concentrations with-
out the use of kinetic models (Bastin and Dochain,
1990).

• Uncertainty: Uncertainty is widely present in the
operation of batch processes. Firstly, it enters in
the reactant quality (changes in feedstock), which is
the main source of batch-to-batch variations. Sec-
ondly, uncertainty comes in the form of modeling
errors (errors in model structure and parameters).
These modeling errors can be fairly large since, ac-
cording to the philosophy of batch processing, little
time is available for the modeling task. Thirdly,
process disturbances and measurement noise con-
tribute to the uncertainty in process evolution (e.g.
undetected failure of dosing systems; change in the
‘quality’ of utilities such as brine temperature, or of
manual operations such as solid charge).
Recipe modifications from one batch to the next
to tackle uncertainty are common in the specialty
chemical industry, but less so for the exclusive syn-
theses in agro and pharmaceuticals production. Un-
certainty is typically handled through:

– The choice of conservative operation such
as extended reaction time, lower feed rate
or temperature, the use of a slightly over-
stoichiometric mixture in order to force the re-
action to fully consume one reactant (Robust
mode).

– Feed stock analyses leading to appropriate ad-
justments of the recipe (Feedforward mode).
Adjustment is usually done by scaling linearly
certain variables such as the final time or the
dilution, more rarely the feed rate or the tem-
perature.

– Rigorous quality checks through off-line analy-
ses, or the use of standard measurements such
as the temperature difference between jacket
and reactor, leading to appropriate correction
of the recipe (Feedback mode). For example,
a terminal constraint can be met by succes-
sive addition of small quantities of feed towards
the end of a batch to bring the reaction to
the desired degree of completion (Meadows and
Rawlings, 1991).

The problem of scale-up can also be viewed as one of
(model) uncertainty. The data available from labo-
ratory studies do not quite extrapolate to the pro-
duction level. Thus, when the strategies developed
in the laboratory are used at the production level,
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they do carry a fair amount of uncertainty. Further-
more, the pressure to reduce costs and to speed up
process development calls for large scale-ups with a
considerable amount of extrapolation. As a result,
the proposed strategies can be rather conservative.

• Constraints: Industrial processing is naturally char-
acterized by soft and hard constraints related to
equipment and operational limitations and to safety
aspects. In batch processing, there is the additional
effect of terminal constraints (selectivity in reaction
systems, purity in separation systems, admissible
levels of impurities, etc.). Furthermore, in multi-
product batch production, the process has to fit in
an existing plant. Thus, ensuring feasible operation
comes before the issue of optimality, and process de-
signers normally introduce sufficient conservatism in
their design so as to guarantee feasibility even in the
worst of conditions.
The need to improve performance calls for a reduc-
tion of the conservatism that is introduced to handle
uncertainty. Performance improvement can be ob-
tained by operating closer to constraints, which can
be achieved by measuring/estimating the process
state with respect to these constraints. Riding along
an operational constraint is often done when the
constrained variable is directly implemented (such
as maximum feed rate) or can be measured (such as
a temperature).

• Time-varying decisions: Traditionally, chemists in
the laboratories and operators in the plants were
used to thinking in terms of constant values (exper-
imental planning results in static maps between de-
sign variables and process performance). New sen-
sors and increasing computing power (e.g. spectro-
scopic measurements, modern PLC systems) make
on-line time-varying decisions possible. Along with
these new time-dependent insights, the chemists in
the laboratory start to vary process inputs as func-
tions of time. The potential benefit of these addi-
tional degrees of freedom is paramount to using op-
timal control techniques. There are situations where
variable input profiles can be of direct interest:

– There may be a significant theoretical advan-
tage of using a variable profile over the best
constant profile (Rippin, 1983). The perfor-
mance improvement can sometimes be consid-
erable. In batch crystallization, for example,
gains of up to 500% can be obtained by adjust-
ing the temperature, the removal of solvent or
the addition of a precipitation solvent as func-
tions of time. Large gains are also possible in
reactive semi-batch distillation.

– It is more and more common to adjust the feed
rate in semi-batch reactors so as to force the

Industrial
situation

Implications for optimization

Need to improve
performance

Use optimization for comput-
ing time-dependent decisions

Absence of a reli-
able model

Use measurements for imple-
menting optimal inputs

Few on-line mea-
surements

Use off-line measurements in
a batch-to-batch optimiza-
tion scheme

Presence of uncer-
tainty

Identify and track signals
that are invariant to uncer-
tainty

Operational and
safety constraints

Track constraints so as to re-
duce conservatism

Table 1: Implications of the industrial situation re-
garding the choice of an appropriate optimization ap-
proach.

heat generation to match the cooling capacity
of the jacket.

An interesting feature of batch processing is the fact
that batch processes are repeated over time. Thus, the
operation of the current batch can be improved by us-
ing the off-line measurements available from previous
batches. The objective is then to get to the optimum
over as few batches as possible. Also, with the tendency
to skip pilot plant investigations whenever possible, this
type of process improvement is of considerable interest
for the initial batches of a new production campaign.

Implications for Optimization

The industrial situation, as far as technical issues are
concerned, can be summarized as follows:

• There is an immediate need to improve the perfor-
mance of batch processes.

• Models are poor, incomplete or nonexistent.

• On-line measurements are rare, and state estimation
is difficult; however, off-line measurements can be
made available if needed.

• There is considerable uncertainty (model inaccura-
cies, variations in feedstock, process disturbances).

• Several operational and safety constraints need to
be met.

The implications of the current industrial situation re-
garding the choice of an appropriate optimization ap-
proach are presented in Table 1. The details will be
clarified in the forthcoming sections. The main conclu-
sion is that a framework that uses (preferably off-line)
measurements rather than a model of the process for
implementing the optimal inputs is indeed required.
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Figure 1: Dynamic optimization scenarios with, in parentheses, the corresponding major disadvantage.

Overview of Batch Process Optimization

The optimization of batch processes typically involves
both dynamic and static constraints and falls under the
class of dynamic optimization. Possible scenarios in dy-
namic optimization are depicted in Figure 1. The first
level of classification depends on whether or not uncer-
tainty (e.g., variations in initial conditions, unknown
model parameters, or process disturbances) is consid-
ered. The standard approach is to discard uncertainty,
leading to a nominal solution that may not even be fea-
sible, let alone optimal, in the presence of uncertainty.

The second level concerns the type of information that
can be used to combat uncertainty. If measurements
are not available, a conservative stand is required. In
contrast, conservatism can be reduced with the use of
measurements.

In the next levels, the classification is based on how
the measurements are used in order to guide the opti-
mization. The calculation of inputs can be either model-
based or model-free. In the model-based case, the type of
model that is used (fixed or refined) affects the resulting
methodology. If the input calculation is model-free, the
current measurement is either compared to a reference
or used for interpolation between pre-computed optimal
values. The different scenarios are discussed in detail
next.

Nominal Optimization

In nominal optimization, the uncertainty is simply dis-
carded. A typical batch optimization problem consists
of achieving a desired product quality at the most eco-
nomical cost, or maximizing the product yield for a given

batch time. The optimization can be stated mathemati-
cally as follows:

min
u(t)

J = φ(x(tf )) (1)

subject to

ẋ = F (x, u), x(0) = x0 (2)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (3)

where J is the scalar performance index to be minimized,
x the n-vector of states with known initial conditions
x0, u the m-vector of inputs, F a vector field describ-
ing the dynamics of the system, S the ζ-vector of path
constraints (which include state constraints and input
bounds), T the τ -vector of terminal constraints, φ a
smooth scalar function representing the terminal cost,
and tf the final time.

The problem (1)–(3) is quite general. Even when an
integral cost needs to be considered, i.e., J = φ̄(x(tf )) +∫ tf

0
L(x, u)dt, with L a smooth function, it can be con-

verted into the form (1)–(3) by the introduction of an
additional state: ẋcost = L(x, u), xcost(0) = 0, and
J = φ̄(x(tf )) + xcost(tf ) = φ(x(tf )). Let J∗ be the opti-
mal solution to (1)–(3). It is interesting to note that the
minimum time problem with the additional constraint
φ(x(tf )) ≤ J∗, i.e,

min
tf ,u(t)

tf (4)

subject to

ẋ = F (x, u), x(0) = x0 (5)
S(x, u) ≤ 0, T (x(tf )) ≤ 0 (6)

φ(x(tf )) ≤ J∗ (7)
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will lead to exactly the same optimal inputs as (1)–(3),
though the numerical conditioning of the two problems,
(1)–(3) and (4)–(7), may differ considerably. The equiv-
alence of solutions is verified using the necessary condi-
tions of optimality. So, without loss of generality, the
final time will be assumed fixed in this paper.

Application of Pontryagin’s Maximum Principle
(PMP) to (1)–(3) results in the following Hamiltonian
(Bryson and Ho, 1975; Kirk, 1970):

H = λT F (x, u) + µT S(x, u) (8)

λ̇T = −∂H

∂x
, λT (tf ) =

∂φ

∂x

∣∣∣∣
tf

+ νT

(
∂T

∂x

)∣∣∣∣
tf

(9)

where λ(t) 6= 0 is the n-vector of adjoint states (La-
grange multipliers for the system equations), µ(t) ≥ 0
the ζ-vector of Lagrange multipliers for the path con-
straints, and ν ≥ 0 the τ -vector of Lagrange multipliers
for the terminal constraints. The Lagrange multipliers
µ and ν are nonzero when the corresponding constraints
are active and zero otherwise so that µT S(x, u) = 0 and
νT T (x(tf )) = 0 always. The first-order necessary condi-
tion for optimality of the input ui is:

Hui
=

∂H

∂ui
= λT ∂F

∂ui
+ µT ∂S

∂ui
= λT Fui

+ µT Sui
= 0.

(10)
Note that, in this paper, PMP will not be used to de-

termine the optimal solution numerically since this pro-
cedure is well known to be ill-conditioned (Bryson, 1999).
However, PMP will be used to decipher the characteris-
tics of the optimal solution.

Robust Optimization

In the presence of uncertainty, the classical open-loop im-
plementation of off-line calculated nominal optimal in-
puts may not lead to optimal performance. Moreover,
constraint satisfaction, which becomes important in the
presence of safety constraints, may not be guaranteed
unless a conservative strategy is adopted. In general, it
can be assumed that the model structure is known and
the uncertainty concentrated in the model parameters
and disturbances. Thus, in the uncertain scenario, the
optimization can be formulated as follows:

min
u(t)

J = φ(x(tf )) (11)

subject to

ẋ = F (x, θ, u) + d, x(0) = x0

S(x, u) ≤ 0, T (x(tf )) ≤ 0

where θ is the vector of uncertain parameters, and d(t)
the unknown disturbance vector. In addition, the initial
conditions x0 could also be uncertain.

To solve this optimization problem, an approach re-
ferred to as robust optimization, where the uncertainty

is taken into account explicitly, is proposed in the liter-
ature (Terwiesch et al., 1994). The uncertainty is dealt
with by considering all (several) possible values for the
uncertain parameters. The optimization is performed
either by considering the worst-case scenario or in an ex-
pected sense. The solution obtained is conservative but
corresponds to the best possibility when measurements
are not used.

Measurement-based Optimization (MBO)

The conservatism described in the subsection above can
be considerably reduced with the use of measurements,
thereby leading to a better cost. Consider the optimiza-
tion problem in the presence of uncertainty and measure-
ments as described below:

min
uk

[tl,tf ]

Jk = φ(xk(tf )) (12)

subject to

ẋk = F (xk, θ, uk) + dk, xk(0) = xk
0

yk = h(xk, θ) + vk

S(xk, u) ≤ 0, T (xk(tf )) ≤ 0

given

yj(i), i = {1, · · · , N}
∀ j = {1, · · · , k − 1}, and
i = {1, · · · , l} for j = k.

where xk(t) is the state vector, uk(t) the input vector,
dk(t) the process disturbance, vk(t) the measurement
noise, and Jk the cost function for the kth batch. Let
y = h(x, θ), a p-dimensional vector, be the combination
of states that can be measured, yj(i) the ith measure-
ment taken during the jth batch, and N the number of
measurements within a batch. The objective is to uti-
lize the measurements from the previous (k− 1) batches
and the measurements up to the current time, tl, of the
kth batch in order to tackle the uncertainty in θ and de-
termine the optimal input policy for the remaining time
interval [tl, tf ] of the kth batch.

Role of the Model in the Calculation of the
Inputs. Among the measurement-based optimization
schemes, a classification can be done according to
whether or not a model is used to guide the optimization.

Model-based input calculation: Repeated optimization.
In optimization, the model of the system can be used
to predict the evolution of the system, compute the cost
sensitivity with respect to input variations so as to ob-
tain search directions, and update the inputs towards
the optimum. Measurements are then used to estimate
the current states and parameters. As the estimation
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and optimization tasks are typically repeated over time,
this scheme is often referred to as repeated optimization.
The model is either fixed or refined using measurements,
the advantages and disadvantages of which are discussed
next.

• Fixed model: If the model is not adjusted, it needs
to be fairly accurate. This, however, is against the
philosophy of the approach that assumes the pres-
ence of (considerable) uncertainty. If the uncer-
tainty is only in the form of disturbances and not
in the model parameters, it might be sufficient to
use a fixed model. On the other hand, if the model
is not accurate enough, the methodology will have
difficulty converging to the optimal solution. Note
that, since the measurements are used to estimate
the states only (and not the parameters), there is
no need for persistent inputs.

• Refined model: When model refinement is used, the
need to start with an accurate model is alleviated,
but it is necessary to excite appropriately the system
for estimating the uncertain parameters. However,
the optimal inputs may not provide sufficient ex-
citation. On the other hand, if sufficiently exciting
inputs are provided for parameter identification, the
resulting solution may not be optimal. This leads
to a conflict between the objectives of parameter es-
timation and optimization. This conflict has been
studied in the adaptive control literature under the
label dual control problem (Roberts and Williams,
1981; Wittenmark, 1995).

Model-free input calculation: Implicit optimization. In
this approach, measurements are used directly to update
the inputs towards the optimum, i.e., without using a
model and explicit numerical optimization. However, a
model might be used a priori to characterize the opti-
mal solution. The classification here is based on whether
the measurement is used for interpolation between pre-
computed optimal values or simply compared to a refer-
ence.

• Evolution/interpolation: The inputs are computed
from past data and current measurements. If only
batch-end measurements are used, the difference in
cost between successive experimental runs can be
used to provide the update direction for the in-
puts (evolutionary programming). The on-line ver-
sion of this approach is based on the feedback opti-
mal solution—the solution to the Hamilton-Jacobi-
Bellman equation (Kirk, 1970)—being stored in one
form or the other (e.g., neural network, look-up ta-
ble, or dynamic programming).
The main drawback of this approach is the curse
of dimensionality. A large number of experimental
runs are needed to converge to the optimum if only
batch-end measurements are used. The use of the

method with on-line measurements requires either a
computationally expensive look-up table or a closed-
form feedback law, which is analytically expensive
or impossible to obtain in many cases.

• Reference tracking: The inputs are computed us-
ing feedback controllers that track appropriate ref-
erences. The main question here is what references
should be tracked. In most of the studies found
in the literature, the references correspond to opti-
mal trajectories computed off-line using a nominal
model. Such an approach, however, is not guaran-
teed to be optimal in the presence of uncertainty.
As will be explained later, this paper uses the con-
cept of invariants to chose references, the tracking
of which implies optimality.

Type of Measurements. The type of measure-
ments (off-line or on-line) can add another level to the
classification of optimization strategies.

• Off-line measurements: Off-line measurements in-
clude measurements taken at the end of the batch
(batch-end measurements) and, possibly, off-line
analysis of samples taken during the batch. These
measurements cannot be used to improve the cur-
rent batch but only subsequent ones. Off-line mea-
surements are most common in industrial practice.
They enable the set-up of a batch-to-batch optimiza-
tion approach to account for parametric uncertainty
by exploiting the fact that batch processes are typ-
ically repeated. Process knowledge obtained from
previous batches is used to update the operating
strategy of the current batch. This approach re-
quires solving an optimization problem at the be-
ginning of each batch. The objective is then to get
to the optimum over a few batches.

• On-line measurements: When information is avail-
able during the course of the batch, an on-line opti-
mization approach can be used. Measurements are
used to compensate for uncertainty both within the
batch and, possibly, also in a batch-to-batch man-
ner. With this compensation, the variability caused
by uncertainty is reduced to a large extent. Thus, it
is possible to guarantee feasibility with smaller con-
servative margins which, in turn, helps improve the
cost.

MBO vs. MPC. Model-predictive control (MPC),
which has been well studied in the literature (see Rawl-
ings et al. (1994); Qin and Badgwell (1997); Morari and
Lee (1999) for surveys), has both some overlap and dif-
ferences with MBO schemes that form the subject of this
paper. MPC typically uses the repeated optimization ap-
proach to solve a control problem in an optimal manner.
The major points that distinguish MBO from MPC are
discussed next.
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• Goal and cost function: The goal in MPC
is control—choose the inputs to track given
references—whereas the goal in MBO is
optimization—maximize the yield of a prod-
uct, minimize time for a given productivity, etc.
In MPC, the control problem is formulated as an
optimization with the cost function reflecting the
quality of control, which typically is quadratic
in nature, i.e., J =

∫ tf

0

(
xT Qx + uT R u

)
dt. In

contrast, the cost function in MBO reflects the
economic objective to optimize. However, once the
optimization problem is formulated, similar tools
are used for solution.

• Continuous vs. batch processes: MPC is oriented
principally towards continuous processes. Stability
is the main issue there and has been studied exten-
sively in the MPC literature (Mayne et al., 2000).
In contrast, MBO is oriented towards batch pro-
cesses with a finite terminal time. Stability does
not play a crucial role, and there is even a tendency
to destabilize the system towards the end for the
sake of optimality (the so-called batch kick). The
important issues in MBO are feasibility and feed-
back optimality—how optimal is the operation in
the presence of constraints and uncertainty. In con-
trast to MPC, MBO schemes can take advantage of
the fact that batches are typically repeated. Run-
to-run and implicit optimization schemes are thus
particular to the MBO literature.

• Role of constraints: MBO typically has solutions
that are on the constraints since the potential of op-
timization arises mainly from the presence of path
and terminal constraints. Thus, it is important to
go as close to the constraints as possible and, at the
same time, guarantee feasibility. In contrast, though
MPC has been designed to handle constraints, the
typical problems considered in the framework of
MPC try to avoid the solution being on the con-
straints by introducing a compromise between track-
ing performance and input effort.

Certain MBO schemes in the category of repeated op-
timization have been referred to as MPC schemes in
the literature (Eaton and Rawlings, 1990; Meadows and
Rawlings, 1991; Helbig et al., 1998; Lakshmanan and
Arkun, 1999) and, thus, fall in the grey area between
Batch MPC (Lee et al., 1999; Chin et al., 2000) and MBO
for batch processes. It might be interesting to note that
the search for optimality via tracking has also been stud-
ied for continuous processes. The terms “self-optimizing
control”, “feedback control”, or “constraint control” are
often used. The reader is referred to (Skogestad, 2000)
for an overview of the work done in this area.

Classification of Measurement-based Optimiza-
tion Methods. Only MBO methods (as opposed to

MPC methods) that have been designed to deal explic-
itly with uncertainty in batch processing are considered
in the classification. Table 2 illustrates the interplay be-
tween the type of measurements (off-line vs. on-line) and
the role played by the model (model-based vs. model-
free adaptation). Representative studies available in the
literature are placed in the table.

Invariant-based Optimization

The idea of Invariant-Based Optimization (IBO) is to
identify those important characteristics of the optimal
solution that are invariant under uncertainty and provide
them as references to a feedback control scheme. Thus,
optimality is achieved by tracking these references with-
out repeating numerical optimization. Also, the fact that
batches are typically repeated over time can be used ad-
vantageously, thereby providing the possibility of on-line
and/or batch-to-batch implementation. The methodol-
ogy consists of:

1. a parsimonious state-dependent parameterization of
the inputs,

2. the choice of signals that are invariant under uncer-
tainty, and

3. the tracking of invariants using measurements.

These three steps are discussed in the following sub-
sections.

Piecewise Analytic Characterization of the Opti-
mal Solution

The parsimonious state-dependent parameterization
arises from intrinsic characteristics of the optimal
solution. The optimal solution is seen to possess the
following properties (Visser et al., 2000):

• The inputs are in general discontinuous, but are an-
alytic in between discontinuities. The time at which
an input switches from one interval to another is
called a switching time.

• Two types of arcs (constraint-seeking and
compromise-seeking) are possible between switching
instants. In a constraint-seeking arc, the input is
determined by a path constraint, while in the other
type of interval, the input lies in the interior of the
feasible region (Palanki et al., 1993). The set of
possible arcs is generically labelled η(t).

The structure of the optimal solution is described by
the type and sequence of arcs which can be obtained in
three ways:

• educated guess by an experienced operator,

• piecewise analytical expressions for the optimal in-
puts,

• inspection of the solution obtained from numerical
optimization.
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Methodology Batch-to-batch optimization
(Off-line measurements)

On-line optimization
(On-line measurements)

Model-based
Fixed model

Zafiriou and Zhu (1990)
Zafiriou et al. (1995)
Dong et al. (1996)

Meadows and Rawlings (1991)
Agarwal (1997)
Abel et al. (2000)

Model-based
Refined model

Filippi-Bossy et al. (1989)
Marchal-Brassely et al. (1992)
Rastogi et al. (1992)
Fotopoulos et al. (1994)
Le Lann et al. (1998)
Ge et al. (2000)
Martinez (2000)

Eaton and Rawlings (1990)
Ruppen et al. (1998)
Gattu and Zafiriou (1999)
Noda et al. (2000)
Lee et al. (2000)

Model-free
Evolution
Interpolation

Clarke-Pringle and MacGregor (1998) Tsen et al. (1996)
Rahman and Palanki (1996)
Yabuki and MacGregor (1997)
Krothapally et al. (1999)
Schenker and Agarwal (2000)

Model-free
Reference
tracking

Scheid et al. (1999)
Srinivasan et al. (2001)

Soroush and Kravaris (1992)
Terwiesch and Agarwal (1994)
Van Impe and Bastin (1995)
de Buruaga et al. (1997)
Ubrich et al. (1999)
Fournier et al. (1999)
Gentric et al. (1999)
Lakshmanan and Arkun (1999)
Visser et al. (2000)

Table 2: MBO methods specifically designed to compensate uncertainty.

In the most common third case, a simplified model
of the process is used to compute a numerical solution
in which the various arcs need to be identified. The
exercise of obtaining the analytical expressions for the
optimal inputs is undertaken only if the numerical so-
lution cannot be interpreted easily. This analysis is, in
general, quite involved and is only intended to provide
insight into what constitutes the optimal solution rather
than to implement the optimal solution. This analysis is
discussed next.

Constraint-seeking vs. compromise-seeking
arcs.
Constraint-seeking arc for ui (Bryson and Ho, 1975). In
this case, the input ui is determined by an active con-
straint, say, Sj(x, u) = 0. Thus, µj 6= 0. If Sj(x, u) de-
pends explicitly on ui (e.g., in the case of input bounds),
the computation of the optimal ui is immediate. Oth-
erwise, since Sj(x, u) = 0 over the entire interval un-
der consideration, its time derivatives are also zero,
dk

dtk Sj(x, u) = 0, for all k. Note that the time differentia-
tion of Sj(x, u) contains ẋ, i.e., the dynamics of the sys-
tem. Sj(x, u) can be differentiated with respect to time
until ui appears. The optimal input is computed from
that time derivative of Sj(x, u) where ui appears. The
computed input ui is typically a function of the states of

the system, thus providing a feedback law.
Compromise-seeking arc for ui (Palanki et al., 1993).

In this arc, none of the path constraints pertaining to the
input ui is active. The input is then determined from the
necessary condition of optimality, i.e., Hui = λT Fui = 0.
If Fui

depends explicitly on ui, the computation of the
optimal ui is immediate. Otherwise, since Hui

= 0 over
the entire interval, the time derivatives of Hui

are also
zero, dk

dtk Hui = 0, for all k. Hui can be differentiated
with respect to time until ui appears, from which the
optimal input is computed. The computed input is a
function of the states and might possibly also depend on
the adjoint variables. If ui does not appear at all in the
time differentiations of Hui

, then either no compromise-
seeking arcs exist or the optimal input ui is non-unique
(Baumann, 1998).

The fact that the optimal solution is in the interior
of the feasible region is the mathematical representation
of the physical tradeoffs present in the system and af-
fecting the cost. If there is no intrinsic tradeoff, the
input ui does not appear in the successive time differ-
entiations of Hui

. This forms an important subclass for
practical applications. It guarantees that the optimal
solution is always on the path constraints. This is the
case in controllable linear systems, feedback-linearizable
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systems, flat systems, and involutive-accessible systems,
a category which encompasses many practical systems
(Palanki et al., 1993; Benthack, 1997).

Constraint-seeking vs. compromise-seeking pa-
rameters.
Parsimonious input parameterization. The pieces de-
scribed above are sequenced in an appropriate manner
to obtain the optimal solution. The switching times
and, possibly, a few variables that approximate the
compromise-seeking arcs completely parameterize the in-
puts. The decision variables of the parameterization are
labelled π. In comparison with piecewise constant or
piecewise polynomial approximations, the parameteriza-
tion proposed is exact and parsimonious.

Optimal choice of π. Once the inputs have been pa-
rameterized as u(π, x, t), the optimization problem (1)–
(3) can be written as:

min
π

J = φ(x(tf )) (13)

subject to

ẋ = F (x, u(π, x, t)), x(0) = x0 (14)
T (x(tf )) ≤ 0 (15)

Some of the parameters in π are determined by ac-
tive terminal constraints (termed the constraint-seeking
parameters) and some from sensitivities (termed the
compromise-seeking parameters). Note the similarity
with the classification of arcs for input ui. Without loss
of generality, let all τ terminal constraints be active at
the optimum. Consequently, the number of decision vari-
ables arising from the parsimonious parameterization,
nπ, needs to be larger than or equal to τ in order to
satisfy all terminal constraints.

The idea is then to separate those variations in π that
keep the terminal constraints active from those that do
not affect the terminal constraints. For this, a transfor-
mation πT → [π̄T π̃T ] is sought such that π̄ is a τ -vector
and π̃ a (nπ − τ)-vector with ∂T

∂π̃ = 0. A linear trans-
formation which satisfies these properties can always be
found in the neighborhood of the optimum. Then, the
necessary conditions for optimality of (13)–(15) are:

T = 0,
∂φ

∂π̄
+ νT ∂T

∂π̄
= 0, and

∂φ

∂π̃
= 0. (16)

The active constraints T = 0 determine the τ decision
variables π̄ while π̃ are determined from the sensitivities
∂φ
∂π̃ = 0. Thus, π̄ corresponds to the constraint-seeking
parameters and π̃ to the compromise-seeking parame-
ters. The Lagrange multipliers ν are calculated from
∂φ
∂π̄ + νT ∂T

∂π̄ = 0.

Signals Invariant under Uncertainty

In the presence of uncertainty, the numerical values of
the optimal input ui in the various arcs and the input

parameters π might change considerably. However, what
remains invariant under uncertainty is the fact that the
necessary condition Hui = 0 has to be verified. Hui = 0
takes on different expressions for constraint-seeking and
compromise-seeking arcs. To ease the development, it
is assumed that the uncertainty is such that it does not
affect the type and sequence of arcs nor the set of active
terminal constraints.

Choice of invariants.
Choice of invariants for constraint-seeking and
compromise-seeking arcs. A set of signals
Iη
i (t) = hη

i (x(t), u(t), t), referred to as invariants
for arcs, will be chosen such that optimality is achieved
by tracking Iη

ref,i = 0. Note the dependence of hη
i with

respect to t, which indicates that hη
i can be different in

different intervals of the optimal solution.
Tracking Hui = 0 has different interpretations with

respect to the two types of arcs. In the case of a
constraint-seeking arc for ui with the constraint Sj be-
ing active, Hui

= λT Fui
+ µj

∂Sj

∂ui
= 0, with µj 6= 0

and λT Fui 6= 0. The constraint has to be active for
the sake of optimality since otherwise µj is zero and
Hui

6= 0. Thus, the invariant along a constraint-seeking
arc is hη

i (x, u, t) = Sj(x, u). For a compromise-seeking
arc, Hui

= λT Fui
= 0. Therefore, the invariant is

hη
i (x, u, t) = λT Fui(x, u).
Note that the element that remains invariant despite

uncertainty is the fact that optimal operation corre-
sponds to Iη

ref = 0. However, the uncertainty does have
an influence on the value of Iη(t), and the inputs need
to be adapted in order to guarantee Iη

ref = 0.
Choice of invariants for constraint-seeking and

compromise-seeking parameters. In addition to the
choice of invariants for the various arcs, it is important
to choose the invariants for the parameters π. Following
similar arguments, a set of signals Iπ = hπ(x(tf )) can
be constructed such that the optimum corresponds to
Iπ
ref = 0, also in the presence of uncertainty. Clearly,

the invariants arise from the conditions of optimality.
For the constraint-seeking parameters, they correspond
to the terminal constraints hπ(x(tf )) = T (x(tf )) and,
for the compromise-seeking parameters, to sensitivities
hπ(x(tf )) = ∂φ(x(tf ))

∂π̃ .
To summarize, the invariants are as follows:

• For constraint-seeking arcs:

hη
i (x, u, t) = Sj(x, u)

• For compromise-seeking arcs:

hη
i (x, u, t) = λT Fui(x, u)

• For constraint-seeking parameters:

hπ(x(tf )) = T (x(tf ))
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• For compromise-seeking parameters:

hπ(x(tf )) =
∂φ(x(tf ))

∂π̃

Sensitivity of the Cost. The sensitivity of the cost
to non-optimal operation is in general much lower along a
compromise-seeking arc than along a constraint-seeking
arc. Consider the optimal input ui determined by the
path constraint Sj and the optimality condition Hui =
λT Fui + µj

∂Sj

∂ui
= 0 with µj 6= 0. If the input does not

keep the constraint active, µj becomes zero. Thus, the
change in cost is directly proportional to λT Fui , which is
non-zero. In contrast, along a compromise-seeking arc,
Hui

= λT Fui
= 0, and a small deviation of ui from

the optimal trajectory will result in a negligible loss in
cost. Similarly, as seen from (16), the deviation in cost
arising from the non-satisfaction of a terminal constraint
is proportional to νT ∂T

∂π̄ , whilst a small variation of π̃
cause negligible loss in cost.

In summary, it is far more important to track the path
constraints Sj than the sensitivity λT Fui

. Furthermore,
it is far more important to track the terminal constraints
T than the sensitivities ∂φ

∂π̃ . Consequently, it is often
sufficient in practical situations to focus attention only
on constraint-seeking arcs and parameters.

Tracking of Invariants

The core idea of the optimization scheme is to use a
model to determine the structure of the optimal inputs
and measurements to update a few input parameters and
the value of the inputs in some of the intervals. This
way, the optimal inputs are determined directly from
process measurements and not from a (possibly inaccu-
rate) model.

Optimality despite uncertainty is approached by work-
ing close to the active constraints, i.e., where there is
much to gain! Indeed, tracking path and terminal con-
straints is usually much more important than regulating
sensitivities as was argued above. The structure given
in Figure 2 is proposed to track the invariants by use
of feedback (Srinivasan et al., 1997; Visser, 1999; Visser
et al., 2000). The two major blocks are described below:

• Analysis: This level consists of a simplified (not nec-
essarily accurate) model of the process. The tasks
are as follows:

1. The numerical optimizer solves the optimiza-
tion problem using the simplified model and
provides the nominal signals x∗ and u∗.

2. The type and sequence of arcs are deciphered
from the numerical solution, leading to a parsi-
monious parameterization of the inputs (char-
acterization of the optimal solution).

3. The invariant functions hη(x(t), u(t), t) and
hπ(x(tf )) are obtained as proposed earlier.

Note that the switching strategy is inherent in
the choice of hη.

• Optimality through feedback: The invariants Iη
ref =

0 and Iπ
ref = 0 are tracked with the help of path

and terminal feedback controllers, respectively. The
trajectory generator computes the current inputs as
a function of η(t) and π.

The model-based ‘Analysis’ is normally carried out
off-line once, and only the measurement-based ‘Opti-
mality through feedback’ operates on-line during pro-
cess runs. Thus, the implementation is model-free and
measurement-based.

Practical Applicability of IBO

If the model and the true (unknown) system share the
same input structure (type and sequence of arcs) and the
same active terminal constraints, IBO will be capable of
optimizing the true system. Thus, the value of IBO in
practice will depend on both the robustness of the pro-
posed input structure with respect to uncertainty (mod-
eling errors and disturbances) and the ability to mea-
sure the path and terminal constraints. These issues are
briefly discussed next.

• Role of the model. Although the implementation
of optimal inputs in the invariant-based scheme is
truly model-free, a model may still be needed at the
analysis step. The role of the model is to deter-
mine the structure of the optimal inputs, i.e., the
type and the sequence of arcs and the set of active
constraints. The structure of the inputs is obtained
either numerically or via educated guesses, with the
proposed input structure being verified using PMP
necessary conditions on the nominal model. The ap-
proach is directly applicable to large-scale industrial
process, as long as the nominal model and the real
system share the same input structure. So, in con-
trast to model-based approaches or what is sought
for simulation purposes, there is no need for a de-
tailed model or for accurate parameter values. The
model simply needs to reflect the major tradeoffs
specific to the optimization problem at hand. The
parts of the model that do not address these effects
can be discarded.

• Construction of invariants from measurements.
Since Iη and Iπ are not measured directly, they
need to be reconstructed from the available mea-
surements. In the case of constraint-seeking arcs
and parameters, the invariants correspond to
physical quantities (path or terminal constraints).
Off-line measurements of terminal quantities are in
general available. On-line measurements to meet
path constraints might be more difficult to have.
Three cases can be considered:
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Figure 2: Invariant-based optimization.

1. The path constraint deals directly with a phys-
ical quantity that can be easily measured such
as temperature or pressure.

2. The path constraint deals with a quantity that
cannot be directly measured, but the con-
straint can be rewritten with respect to some-
thing that can be measured. This is, for exam-
ple, possible when a heat removal constraint
can be rewritten as a constraint on a cooling
temperature.

3. Cases 1 and 2 do not apply, and some type
of inference or state estimation is necessary to
meet the constraint. This case is clearly more
involved than the two preceding ones. The re-
construction problem is closely related to in-
ferential control (Joseph and Brosilow, 1978;
Doyle III, 1998). However, it may well hap-
pen that a conservative approach for meeting
the path constraint (requiring easily-available
or no measurements) is sufficient.

On the other hand, for compromise-seeking arcs
and parameters, the invariants are sensitivities.
For computation of sensitivities, either a model of
the process or multiple process runs are required,
which is typically more difficult. However, as dis-
cussed above, the sensitivity with respect to in-
put variations in compromise-seeking arcs and pa-
rameters can often be neglected. In such a case,
all compromise-seeking arcs and parameters are
kept at their off-line determined values, and only

the constraint-seeking arcs and parameters are ad-
justed.

• Difference in time scale—on-line vs. off-line mea-
surements. In general, there is a difference in time
scale between the path controller and the termi-
nal controller. The path controller works within a
batch using on-line measurements (running index is
the batch time t) (Benthack, 1997). The terminal
controller operates on a batch-to-batch basis using
batch-end measurements (running index is the batch
number k) (Srinivasan et al., 2001).
If on-line measurements are not available, the path
controller is inactive. If off-line measurements of
the path constraint are available, it is possible to
use the path controller in a batch-to-batch mode so
that the system will be closer to the path constraint
during the next batch (Moore, 1993). On the other
hand, if it is possible to predict Iπ from on-line mea-
surements, it might be possible to use the terminal
controller within the batch (Yabuki and MacGregor,
1997).
The presence of disturbances influences both η(t)
and π. Disturbances affecting η(t) within the batch
are rejected by the path controller. However, the ef-
fect of any disturbance within the batch on π cannot
be rejected since the terminal controller only works
on a batch-to-batch basis. Constant disturbances
(e.g. raw material variations) can be rejected from
batch-to-batch by the terminal controller.

• Backoff from constraints. In the presence of distur-
bances and parametric uncertainty that cannot be
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compensated for by feedback, the use of conserva-
tive margins, called backoffs, is inevitable to ensure
feasibility of the optimization problem (Visser et al.,
2000). The presence of measurement errors also ne-
cessitates a backoff. Based on an estimate of the
uncertainty, the probability density function of the
state variables can be calculated. The margins are
then chosen such that the spread of the states re-
mains within the feasible region with a certain con-
fidence level. Note that the margins typically vary
with time.

• Reduction of backoff. Due to the sensitivity reduc-
tion characteristic of feedback control, the conser-
vatism can be reduced considerably in the proposed
framework in comparison with the standard open-
loop optimization schemes. The feedback param-
eters can be chosen so as to minimize the spread
in the state variables resulting from uncertainty.
The use of feedback becomes particularly impor-
tant when the uncertainty tends to increase during
a batch run. With reduced backoffs, the process
can be driven closer to active constraints, thereby
leading to improved performance.

Example—Semi-batch Reactor with
Safety and Selectivity Constraints

Description of the Reaction System

• Reaction: A + B → C, 2 B → D.

• Conditions: Semi-batch, isothermal.

• Objective: Maximize the amount of C at a given
final time.

• Manipulated variable: Feed rate of B.

• Constraints: Input bounds; limitation on the heat
removal rate through the jacket; constraint on the
amount of D produced.

• Comments: The reactor is kept isothermal by (say)
adjusting the cooling temperature in the jacket, Tc.
B is fed at the temperature Tin = T . To remain
isothermal, the power generated by the reactions,
qrx, must be evacuated through the cooling jacket,
i.e., qrx = UA(T −Tc). Thus, the heat removal con-
straint can be expressed in terms of a lower bound
for the cooling temperature, Tcmin. The variables
and parameters are described in the next subsection.
Without any constraints, optimal operation would
consist of adding the available B at initial time
(i.e., batch mode). The presence of the heat re-
moval constraints calls for semi-batch operation
with constraint-seeking arcs. Furthermore, the con-
straint on the amount of D that can be produced
imposes a compromise-seeking feeding of B in or-
der to maximize C without violating the terminal
constraint on D.

Problem Formulation

Variables and parameters: cX : Concentration of species
X, nX : Number of moles of species X, V : Reactor vol-
ume, u: Feed rate of B, cBin: Inlet concentration of
B, k1, k2: Kinetic parameters, ∆H1, ∆H2: Reaction
enthalpies, T : Reactor temperature, Tc: Cooling tem-
perature in the jacket, Tin: Feed temperature, U : Heat
transfer coefficient, A: Surface for heat transfer, and qrx:
power produced by the reactions. The numerical values
are given in Table 3.
Model equations:

˙cA = −k1cAcB − u

V
cA (17)

˙cB = −k1cAcB − 2 k2c
2
B +

u

V
(cBin − cB) (18)

V̇ = u (19)

with the initial conditions cA(0) = cAo, cB(0) = cBo, and
V = Vo. Assuming cC(0) = cD(0) = 0, the concentration
of the species C and D are given by cC = cAoVo−cAV

V and
cD = (cBoVo−cBV )+cBin(V−Vo)−(cAoVo−cAV )

2 V . The power
produced by the reactions and Tc are given by

qrx = k1 cA cB(−∆H1)V + 2 k2 c2
B(−∆H2)V (20)

Tc = T − qrx

U A
(21)

Optimization problem:

max
u(t)

J = nC(tf ) (22)

subject to

(17)− (19)
Tc(t) ≥ Tcmin

nD(tf ) ≤ nDfmax

umin ≤ u ≤ umax

Piecewise Analytic Characterization

Using Pontryagin’s Maximum Principle, it can be shown
that the competition between the two reactions results
in a feed that reflects the optimal compromise between
producing C and D. This compromise-seeking input can
be calculated from the second time derivative of Hu as:

ucomp =
V cB(k1cA(2 cBin − cB) + 4 k2cBcBin)

2 cBin (cBin − cB)
(23)

The other possible arcs correspond to the input being
determined by the constraints: (i) u = umin, (ii) u =
umax, and (iii) u = upath. The input upath corresponds
to riding along the path constraint Tc = Tcmin. The
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k1 0.75 l/(mol h)
k2 0.014 l/(mol h)
∆H1 −7× 104 J/mol
∆H2 −5× 104 J/mol
cBin 10 mol/l
UA 8× 105 J/Kh

umin 0 l/h
umax 100 l/h
Tcmin 10 oC
nDfmax 5 mol

cAo 2 mol/l
cBo 0 mol/l
Vo 500 l
tf 2.5 h

Table 3: Model parameters, operating bounds and
initial conditions.

input is obtained by differentiating the path constraint
once with respect to time, i.e., from Ṫc = 0 :

upath =
N

D

∣∣∣∣
Tc=Tcmin

(24)

N = cBV
(
∆H1k1cA(k1(cA + cB) + 2 k2cB)

+ 4 ∆H2k2cB(k1cA + 2 k2cB)
)

D = ∆H1k1cA(cBin − cB)
+ 4 ∆H2k2cB(2 cBin − cB)

Sequence of arcs and parsimonious parameterization:

• The input is initially at the upper bound, u = umax,
in order to attain the path constraint as quickly as
possible.

• Once Tc reaches Tcmin, u = upath is applied in order
to keep Tc = Tcmin.

• The input switches to u = ucomp at the time instant
π so as to take advantage of the optimal compromise
in order to maximize nc(tf ) and meet the terminal
constraint nD(tf ) = nDfmax

.

Since analytical expressions for the input in the various
arcs exist, the optimal solution can be parameterized us-
ing only the switching time between the path constraint
and the compromise-seeking arc. This parameter π is
determined numerically so as to satisfy the terminal con-
straint nD(tf ) = nDfmax . The invariants Iη correspond
to the input bound in the first interval, the path con-
straint in the second interval and the sensitivity λT Fu

for the compromise-seeking arc. For the switching time,
the invariant is the terminal constraint itself. The opti-
mal input is shown in Figure 3 with the optimal values
π = 1.31 h and J = 600.6 mol.

Note that the input upath given by (24) will keep the
system on the path constraint once the path constraint
Tc = Tcmin is attained, but will not keep the path con-
straint active in the presence of uncertainty. The same

0 0.5 1 1.5 2 2.5
10

20

30

40

50

60

70

80

90

100
Input

Time [h]

u [l/h]

π

u
max

u
path

u
comp

Figure 3: Nominal optimal input (solid) and Conser-
vative optimal input (dotted).

can be said for ucomp in (23). Thus, the analytical ex-
pressions for upath and ucomp will only be used for in-
terpretation of the nominal optimal trajectory and not
for implementation of the true optimal solution. At the
implementation level, simple PI-controllers will be used.

Measurement-based Optimization

In practice, there can be considerable uncertainty both in
the stoichiometric and kinetic models. This is reflected
here as some uncertainty for the kinetic parameter k1 in
the interval 0.4 ≤ k1 ≤ 1.2 (The nominal value k1 = 0.75
used in the simulation is assumed to be unknown). In
order not to violate the constraints, a conservative feed
profile (Figure 3) would have to be designed so that: i)
the path constraint is not violated for k1 = k1max =
1.2, and ii) the terminal constraint is not violated for
k1 = k1min = 0.4 (a smaller k1 corresponds to more B
in the reactor and thus to a higher production of D). So,
the conservative profile would consist of computing upath

and the first switching instant using k1 = k1max, and
adjusting π so that the terminal constraint is satisfied
for k1 = k1min.

With respect to the measurements available, different
optimization scenarios are considered:

1. No measurements: The conservative optimal feed
profile defined above is applied open loop to the sim-
ulated nominal plant.

2. Batch-end measurements: Only the measurement of
nD(tf ) is available and, thus, the switching time π
is updated in a batch-to-batch manner. For the sec-
ond interval, upath = ucons

path, the conservative value
computed off-line using k1max is applied. Due to
the low sensitivity of the cost with respect to the
fine shape of the input in the compromise-seeking
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Figure 4: Evolution of switching time for one real-
ization of the batch-to-batch optimization with only
batch-end measurements (5% measurement noise).

interval, the latter is approximated by the constant
value ucomp = 20 (l/h).

3. On-line and batch-end measurements: On-line mea-
surement of the cooling jacket temperature Tc is
available. The path constraint is kept active using
the feedback upath(t) = ucons

path + kp (Tcmin−Tc(t))+
ki

∫ t

0
(Tcmin − Tc(t))dt, where kp and ki are the pa-

rameters of a PI controller. In addition, the switch-
ing time π is updated in a batch-to-batch manner.
As in Scenario 2, the compromise-seeking arc is ap-
proximated by ucomp = 20 (l/h).

The cases of both noise-free and noisy measurements
(5% relative Gaussian measurement noise) are consid-
ered. The results are given in Table 4. If the measure-
ments are noisy, a conservative margin (backoff) needs
to be incorporated so as to guarantee feasibility. The
backoffs are 0.25 mol for nDf max and 1.25oC for Tcmin.

It is seen that with only off-line (or batch-end) mea-
surements, the terminal constraint can be satisfied by
adapting the switching instant π. The evolutions of the
switching instant and the cost for batch-to-batch opti-
mization are shown in Figures 4 and 5. It can be seen
that the solution gets close to the optimum within a few
batches.

If, in addition, on-line measurements are available, the
path constraint can be kept active as well. Thus, it is
possible to get very close to the optimum by using mea-
surements. The loss of 0.02% in the last noise-free sce-
nario is due to the approximation of the compromise-
seeking arc by the constant value ucomp = 20 (l/h).
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Figure 5: Evolution of cost for the same scenario as
in Figure 4.

Discussion

The model was only necessary to obtain the type and
sequence of arcs: umax, upath and ucomp. As far as the
implementation is concerned, umax = 100 l/h is part of
the problem formulation, upath is determined by a PI-
controller upon tracking Tcmin, and ucomp = 20 l/h is
a constant-value approximation to the optimal profile
computed off-line using the model. The switching time
π between upath and ucomp is adjusted in a run-to-run
manner by a PI-controller in order to meet nDfmax

. The
actual value of ucomp is of little relevance as any error in
ucomp can be easily compensated for by an appropriate
shift in π.

Assume that, in addition to the two modeled reactions,
the true system also includes B + C → E, B → F . This
would not affect the type and sequence of arcs (umax,
upath and ucomp) since the two additional reactions are
similar to the second reaction with respect to the effect
of the input u, i.e., they consume B away from the first
(desired) reaction. However, the two additional reactions
are going to affect the two switching times t1 and π as
well as the numerical values of upath and ucomp. The
proposed scheme adjusts t1 and upath on-line (using the
measurement of Tc) and π from batch-to-batch (using the
measurement of nD(tf )). Since the cost is insensitive to
the fine shape of ucomp, ucomp= 20 l/h is kept constant
between π and tf . Thus the proposed scheme would
be equally applicable even in the presence of the two
additional reactions.

In the formulation of the optimization problem it was
assumed Tin = T . Even without this assumption, the
proposed approach is applicable. The possibility of re-
moving heat through temperature increase of the feed
from Tin to T (so-called sensible heat) changes the heat
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Terminal Constraint Path Constraint
Optimization Scenario nD(tf ) mol min

t
Tc(t) oC Cost Loss

(nDf max = 5 mol) (Tc,min = 10oC) (mol)
Open-loop application

1 of optimal 2.71 12.87 498.8 20%
conservative input
Adaptation of π
using off-line 4.75 11.62 582.6 3%
measurements (with 5% noise)

2 Adaptation of π
using off-line 5.00 11.50 589.2 2%
measurements (no noise)
Adaptation of upath(t) and π
using on-line and off-line 4.75 11.25 590.9 1.5%
measurements (with 5% noise)

3 Adaptation of upath(t) and π
using on-line and off-line 5.00 10.00 600.5 0.02%
measurements (no noise)

Table 4: Invariant-based optimization. Results averaged over 100 noise realizations, each consisting of run-to-run adap-
tation over 50 batches.

removal constraint to:

qrx − qin ≤ UA(T − Tcmin) (25)

with qin the rate of heat removal due to the feed of B.
However, the implementation of the heat removal con-
straint remains unchanged as it concerns only the RHS
of (25): upath(t) is determined as the output of a PI-
controller designed to track Tcmin.

A final important remark: The model parameters
given in Table 3 are not used for calculating the optimal
feed rate. Only the off-line measurement of nD(tf ) and
the on-line measurement of Tc(t) are used to implement
the proposed optimizing scheme.

Conclusions

This paper has addressed several optimization issues that
directly affect the operation of batch processes. It is
argued that process improvement is necessary for the
economic well-being of many batch manufacturers. The
industrial practice specific to the batch specialty chem-
istry is presented, with an emphasis on both organiza-
tional and technical problems. On the organizational
side, the lack of global thinking in dealing with the indi-
vidual steps of a complex process limits the potential for
performance improvement. On the technical side, impor-
tant limitations regarding both modeling and measure-
ment aspects impair the use of optimization techniques.
In addition, batch processes are characterized by a con-
siderable amount of uncertainty and the presence of op-
erational and safety constraints.

The lack of reliable models, together with the pres-
ence of uncertainty, has favored the investigation of pro-
cess improvement via utilization of measurements (some-
times on-line, most often off-line). This paper has classi-
fied measurement-based optimization methods reported
in the literature according to whether or not a model is
used to guide the optimization and the type of measure-
ments (on-line, off-line) available.

The major contribution towards process improvement
of a constrained batch process is through operation on
active constraints. Thus, a feedback-based framework
has been proposed to keep the system ‘close’ to the ac-
tive constraints. If only off-line measurements are avail-
able, this framework results in a batch-to batch optimiza-
tion scheme with the objective to meet the terminal con-
straints within a few batches. If on-line measurements
are available, the path constraints can also be kept ac-
tive.

The proposed invariant-based optimization scheme ad-
dresses most of the requirements stemming from indus-
trial practice and needs that were listed in Table 1. More
specifically,

• it is aimed at process improvement via the use of
time-dependent inputs,

• it is model-independent as far as implementation is
concerned,

• if necessary, it uses only available off-line measure-
ments,

• it is robust against uncertainty since signals that are
invariant under uncertainty are tracked, and finally,
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• it guarantees feasibility since the constraints are ap-
proached from the safe side.

The approach proposed is effective when the optimiza-
tion potential stems mainly from meeting path and/or
terminal constraints. Such is the case in most of the
batch process optimization problems.

It is possible to perceive the proposed feedback-based
optimization strategy from an industrial perspective.
Classical PID control is the most popular technique used
currently in industry, and trading it to attain optimal-
ity is unacceptable industrially. Therefore, in contrast
to most model-based optimization studies, this work at-
tempts to use feedback control for the sake of optimality.
In this sense, the approach has great industrial potential
and could help take optimization to the batch chemical
industry.
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