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Abstract

The increasingly aggressive global competition for the production of higher quality polymer products at lower costs,
along with a general trend away from new capital investments in the U.S., has placed considerable pressure on the
process engineers in the U.S. to operate the existing polymer plants more efficiently and to use the same plant for the
production of many different polymer products. The more efficient operation has been realized by better process control
and monitoring while the available polymer product-quality sensors have been inadequate. Although many product quality
indices cannot be measured readily, they can be estimated/inferred in real time from the readily available measurements,
allowing for inferential control of the polymer product quality. This paper presents a survey of the issues in controlling and
monitoring plant-product quality indices such as molecular weight, copolymer composition, and particle size distributions
in polymerization reactors. Examples will be given to illustrate some of the methods surveyed.
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Introduction

A polymer product is composed of macromolecules with
different molecular weights, and the processability and
subsequent utility of a polymer product depends strongly
on the macromolecule distributions, such as molecular
weight distribution (MWD), copolymer composition dis-
tribution (CCD) [in copolymerization], and particle size
distribution (PSD) [in emulsion polymerization]. For in-
stance, in coatings, film formation, film strength, and
gloss depend on the MWD, CCD, and PSD of the poly-
mer. Since the distributions are influenced greatly by
the polymerization reactor operating conditions, the pro-
duction of a high quality polymer requires effective mon-
itoring and control of the operating conditions (Conga-
lidis and Richards, 1998; Ogunnaike, 1995). The effective
monitoring and control can be realized only when suffi-
cient frequent information on the distributions is avail-
able.

Polymerization reactors are a class of processes in
which many essential process variables related to product
quality cannot be measured or can be measured at low
sampling rates and with significant time delays. The lack
of readily-available, frequent measurements from which
polymer properties can be inferred, has motivated a con-
siderable research effort in the following research direc-
tions:

e The development of new on-line sensors [lists of
many of the currently-available on-line sensors are
provided in (Ray, 1986; Chien and Penlidis, 1990)].

e The development of qualitative and quantitative
relations between easier-to-measure quality indices
such as density, viscosity and refractive index, and
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more-difficult-to-measure quality indices such as
conversion and average molecular weights (Kiparis-
sides et al., 1980; Schork and Ray, 1983; Canegallo
et al., 1993; Soroush and Kravaris, 1994; Ohshima
et al., 1995; Ohshima and Tomita, 1995).

The development of state estimators that are capa-
ble of estimating unmeasurable polymer properties
from readily available measurements. The availabil-
ity of sufficiently-accurate, first-principles, mathe-
matical models of many polymerization reactors has
made possible the development of reliable state esti-
mators for the reactors (Jo and Bankoff, 1996; Ellis
et al., 1988; Kim and Choi, 1991; Kozub and Mac-
Gregor, 1992; Ogunnaike, 1994).

Product Quality in Polymerization Processes

Product quality is a much more complex issue in poly-
merization than in more conventional short chain reac-
tions (Ray, 1986). Because the molecular structure of
the polymer is so sensitive to reactor operating condi-
tions, upsets in feed conditions, mixing, reactor temper-
ature and so on can change significantly critical molec-
ular properties such as molecular weight distribution,
copolymer composition distribution, copolymer chain se-
quence distribution, stereoregularity, and degree of chain
branching.

The properties of a polymer product, such as the me-
chanical properties and the characteristics in molding,
having strong correlation with the molecular weight dis-
tribution (MWD) of the polymer. Nunes et al. (1982)
found that thermal properties, stress-strain properties,
impact resistance, strength and hardness of films of poly-
methyl methacrylate and polystyrene were all improved
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by narrowing MWD. It is also generally said that the
polymer of long chain length gives superior mechanical
properties to polymer products but has insufficient mold-
ing characteristics. Then the molding characteristics can
be improved by blending short chain length polymer into
this long chain length polymer, while the good mechan-
ical characteristics are kept. That is, the broader MWD
can be obtained by this blending. Therefore, the devel-
opment of the methodology for adjusting MWD during
the reaction to suitable one according to its use is de-
sired, especially in producing high quality polymers.

Schoonbrood et al. (1995) studied the influence of
copolymer composition and microstructure on the me-
chanical bulk properties of styrene-methyl acrylate
copolymers. They found that copolymer composition
drift has an influence on polymer mechanical properties
such as Young’s modulus, maximum stress, and elon-
gation at break. In the case of copolymers that are
homogeneous with respect to chemical composition, (a)
maximum stress and elongation at break depend on the
molecular weight distribution, (b) Young’s modulus is
independent of copolymer composition and molecular
weight distribution in the ranges studied, and (c) max-
imum stress and elongation at break weakly depend on
the copolymer composition. In the case of copolymers
that are heterogeneous with respect to chemical composi-
tion, copolymer microstructure affects strongly Young’s
modulus, maximum stress, and elongation at break.

In paints and coatings, molecular weight, composition,
and functional group distributions all play a key role
in polymer performance. For solution viscosity reasons,
narrow molecular weight distribution is useful, but not
every paint or coating benefits from it. It depends on
the application. For example, air-dry paints benefit from
very broad molecular weight distribution (Grady, 2000).

For processing and end-use performance of latex coat-
ings, it is often advantageous to produce a latex with
high solids content while maintaining viscosity within ac-
ceptable limits. Latex particle size and particle size dis-
tribution directly affect the relationship between solids
volume fraction and rheological properties. The influ-
ence of monodisperse latex particles on latex viscosity
is described by the Dougherty-Krieger equation (Krieger
and Dougherty, 1959),

—2.5¢m
- (3)

where 7, is the ratio of emulsion viscosity to that of the
pure fluid (water for instance), ¢ is the volume fraction
of solids, and ¢, is the maximum volume fraction of la-
tex particles. For polydisperse systems, it has long been
established that blends of different size particles yield
viscosities which are lower than the viscosities of any of
the monodisperse particles used to make nthe blend (for
equivalent solids concentrations). Eveson and cowork-
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ers (1951) suggested that a particle suspension with a bi-
modal distribution can be regarded as a system in which
the larger particles are suspended in a continuous phase
formed by suspension of the smaller particles in the fluid
medium. In other words, a suspension of smaller parti-
cles behaves essentially as a fluid toward the larger par-
ticles. Farris (1968) extended this line of reasoning to a
multimodal blend of particle sizes with any number of
modes and Parkinson et al. (1970) to a continuous parti-
cle size distribution. In both cases, successive application
of a monodisperse expression for relative viscosity to par-
ticles of increasing size in a blend yielded an expression
for relative viscosity of the form

_ i —hom.s
= H (1 d)m,i>

i

where the ¢; are volume fractions of particles of a given
size in the particle size distribution. Although this ex-
pressions is not directly applicable to the prediction of
viscosity for continuous latex distributions, the reason-
ing behind its derivation suggests that control of the
particle size distribution would be an appropriate ap-
proach to targeting desired latex rheological properties.
In contrast, the more common approach of controlling
moments of the distribution, is only indirectly related to
target properties.

Classification of Variables in a Polymerization
Plant

A customer evaluates the quality of a polymer product
on the basis of indices, end-product quality indices, that
are usually different from the product quality indices,
plant-product quality indices, known to the plant process
engineer. The end-product quality indices are related to
the final use of the polymer product and usually cannot
be measured in real time because of the complicated and
slow measurement techniques needed or simply the in-
ability to measure the quality indices until the final poly-
mer product is formulated and used. On the other hand,
polymer plants are operated at desired conditions by set-
ting and regulating the plant variables (such as pressures,
temperatures, and flow rates) that are measured readily
on-line. We will refer to these readily measurable vari-
ables as basic plant variables to distinguish them from
the plant-product quality indices and the end-product
quality indices (end-use properties). These differences
lead us to categorize variables in a polymer plant into
the following three classes, intersections of which may
not be null:

e Basic plant variables,
e Plant-product quality indices,
e End-product quality indices.

Basic plant variables that can be measured readily on-
line and whose values are set by the process engineer to
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operate the plant at desirable operating conditions. Ex-
amples of the basic process variables are temperatures,
pressures, liquid levels, flow rates, and feed compositions.

Plant-product quality indices are usually monitored
by the process engineer to ennnsure proper operation
of the plant. Measurements of these indices are rarely
available on-line and are usually obtained by laboratory
sample analyses. Examples of these indices are viscosity,
melt viscosity, density, copolymer composition distribu-
tion, molecular weight distribution, melt index, copoly-
mer chain sequence distribution, stereoregularity, parti-
cle size distribution, porosity, surface area, and degree of
chain branching.

End-product quality indices, often referred to as cus-
tomer specifications or end-use properties, quantify the
quality of the final product. These indices are usually
“abstract” (to the plant process engineer), and their
relations to the plant-product quality indices are com-
plex and not well-understood. In many cases, the re-
lations are known qualitatively on the basis of experi-
ence. It is important also to note that in cases where
the relationships between these end-use properties and
the plant-product quality indices are known, they are
not “one-to-one”. The end-product quality indices are
rarely measured off-line in the plant because the mea-
surements usually cannot be made until the final poly-
mer product is formulated and used. Furthermore, many
of these end-use properties (such as “softness”; “block-
iness”, and “color”) are “categorical” but not quantifi-
able in numerical form at the present time. Examples of
the end-product quality indices (customer specifications)
are adhesive strength, impact strength, hardness, elastic
modulus, flow properties (film blowing, molding, etc.)
strength, stress crack resistance, color, clarity, corrosion
resistance, abrasion resistance, density, temperature sta-
bility, plasticity uptake, spray drying characteristics, and
coating and adhesion properties. More examples of the
end-product quality indices can be found in (Nunes et al.,
1982; Ray, 1986; Dimitratos et al., 1994).

One of the greatest difficulties in achieving quality con-
trol of polymer end-products is our poor understand-
ing of the quantitative relationship between (a) the end-
product quality indices and (b) the plant-product qual-
ity indices and the basic plant variables. The actual
customer specifications are in terms of the end-product
quality indices. Since the quantitative relationship is the
least understood area in polymerization reaction engi-
neering, it is very hard to calculate the values of plant-
product quality indices that corresponds to the actual
customer specifications.

Mathematical Modeling

A major objective of polymerization reaction engineer-
ing has been to understand how reaction mechanism, the
physical transport phenomena (e.g. mass and heat trans-

fer, mixing), reactor type and operating conditions affect
the plant-product quality indices. As discussed in (Ray,
1991), various chemical and physical phenomena occur-
ring in a polymer reactor can be classified into the fol-
lowing three levels of modeling;:

1. Microscale chemical kinetic modeling: Polymer re-
actions occur at the microscale. If the elementary
reaction steps of a polymerization mechanism are
known, the distributions can be calculated in terms
of the kinetic rate constants and the concentration
of the reactants. The available mathematical mod-
els are statistical or are based on detailed species
conservation methods. The most powerful approach
to modeling polymerization kinetics is the detailed
species balance method. Using the conservation
laws of mass, one can derive an infinite set of equa-
tions for the species present in the reaction mixture.

2. Mesoscale physical/transport modeling: At this
scale, interphase heat and mass transfer, intraphase
heat and mass transfer, interphase equilibrium, mi-
cromixing, polymer particle size distribution, and
particle morphology play important roles and fur-
ther influence the polymer properties. For example,
diffusion-controlled free-radical polymerizations are
manifestations of mesoscale mass transfer phenom-
ena. For a comprehensive list of results available in
this area, the reader can refer to the excellent review
paper by (Kiparissides, 1996).

3. Macroscale dynamic reactor modeling: At the
macroscale, one has to deal with the development
of models describing the macromixing phenomena
in the reactor, the overall mass and energy bal-
ances, particle population balances, the heat and
mass transfer from the reactor as well as the reactor
dynamics and control.

Population Balance Model

Population balance model descriptions have found a wide
range of application in distributed process systems in-
cluding crystallization, precipitation, and polymeriza-
tion. An excellent treatment of the theoretical aspects of
the subject is given in (Ramkrishna, 2000). In this paper,
we focus on the application of population balance mod-
els to a specific sub-class of polymerization systems—
particle size distributions in an emulsion system. Within
this class, there are two general categories of behaviors:
zero-one and pseudo-bulk systems. When conditions are
such that the rate of radical-radical bimolecular termi-
nation within a latex particle is extremely fast relative
to the rate of radical entry into particles, evolution of
the latex particle size distribution can be modeled as a
zero-one system (Gilbert, 1995). This model considers
latex particles containing either zero or one radical at a
given instant. The reasoning behind this model is that
a particle will flip between two states, the zero and one
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radical states, each time a radical enters the particle (or
exits).

Latex particle size, monomer type and concentration,
are among several key factors which strongly influence
whether a system approaches zero-one kinetics. For ex-
ample, termination of radicals within small particles is
rapid because diffusion distance of the radical reaction
centers is small. Moreover, radical entry rates, accord-
ing to the Smoluchowski relation, k. = 4nrsNaD,, (7
is swollen particle radius) decrease with decreasing par-
ticle size. In fact, many systems (styrene for example)
approach zero-one kinetics during early stages of particle
nucleation and growth when the size of particles is small.

To model a zero-one system, the particle size popula-
tion is divided into a population containing zero radicals,
no(r) and a population containing one radical, nq(r).
The one radical population is further divided into a pop-
ulation containing a polymer radical, n (r), which would
not readily diffuse out of the particle due to its size, and
a population containing a monomer radical formed from
chain transfer reactions, n7*(r), which presumably can
readily exit particles.

The population, nq(r)dr, represents the moles(or
number) of polymer particles per liter of water with
unswollen particle radii between r and r + dr at time
t. Population balance equations for a batch reactor are
given by:

Ono(r,t)

2 = p(r) [ () + i () = o ()] + ko(r) - i (1)
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Taking the first equation as an example, the terms pre-
multiplied by p(r) represent radical entry into particles,
the next term represents radical desorption from parti-
cles, and the integral terms represent coagulation. The
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second equation has an additional term that represents
new particle formation by micellular and homogeneous
nucleation mechanisms.

Pseudo-bulk systems are characterized by slow radical
termination within the particles relative to rapid entry
of polymer radicals and re-entry of exited monomer rad-
icals. In such systems, particles can contain more than
one radical at a given instant. Moreover, particles with
zero, 1, 2, ...radicals, switch identities(number of rad-
icals) so rapidly that the evolution of the particle size
distribution can be described by a single type of par-
ticle with an average number of radicals, 7(r). Again,
latex particle size, monomer type and concentration are
factors which strongly influence whether a system ap-
proaches pseudo-bulk kinetics. Specifically, larger parti-
cle sizes increase radical entry rates and decrease radi-
cal termination and desorption rates, all of which favor
pseudo-bulk kinetics.

The gel effect also decreases radical termination rates.
This phenomenon is operative in many polymer systems
when monomer concentration in particles is low rela-
tive to polymer concentration due to monomer depletion.
Monomer depleted conditions often occur at the end of
a batch when particle sizes are large. Therefore, the
gel effect often coincides with large particle size and can
be an additional factor which pushes a system towards
pseudo-bulk kinetics.

A particle size distribution model for a pseudo-bulk
system is given by:

an(rv t) _ 1 [r e ’o / ’ ’
&2/”% B(r — ', r")n(r"n(r —r")dr
oo / / / a
—n(r) B(r,r)n(r')dr’ — =~ [G(r) - n(r)]

+ |:k;f)7jc7‘7it -1 CW [IM]CTN _1]

jcrit_l
+ Z kem,icmicelle [IMz] 6(T - rnuc)

1=z
where particle growth rate is given by

_ kpCpni(r) ppwm,

G(r) 47r2 N,

kp is the propagation rate constant, C, the monomer
concentration in polymer particles, and n(r) the average
radical concentration.

In summary, at least for a batch polymerization, zero-
one kinetics is expected to be operative at early stages
of polymerization when particle size is small and parti-
cles are rich in monomer whereas pseudo-bulk kinetics is
favored in the latter stages of polymerization when par-
ticle size is large and the gel effect is strong. Of course
neither of these models treats the more complicated in-
termediate case wherein particles can contain 0, 1, 2, and
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Coagulation Effect, 5.0x10 persulfate, 3.0x10"2 SDS, 30% styrene
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Figure 1: Simulation of zero-one model with and
without coagulation 10 minutes after inception of
polymerization.

3 radicals, for example, but for model based control pur-
poses, we anticipate that the zero-one and pseudo-bulk
models may be combined in a manner that adequately
handles the intermediate case as well. Details of both
these models can be found in (Gilbert, 1995).

Coagulation Coefficients. Coagulation is an ex-
tremely important phenomena in emulsion polymeriza-
tion, having a large impact on latex particle numbers
and particle size distributions.  Actually, colloidal
particles are thermodynamically unstable.  Surface
tension between particle and bulk phase dictates that
free energy decreases upon particle coagulation due to
decreased surface area (Atkins, 1978):

dG = vdA

dG <0 for dA <0

Colloidal stability is a consequence of kinetics. The elec-
trostatic charge on the surface of a surfactant stabilized
colloidal particle represents a significant energy barrier
to coagulation between two approaching particles. If this
barrier is large, very few particles will have sufficient ki-
netic energy to exceed the barrier and coagulate. Quan-
titatively, this potential energy barrier can be calculated
using DLVO theory. This is based on calculating the to-
tal potential energy of interaction between two particles
as the sum of a van der Waals attractive potential and
an electrostatic repulsion potential (Ottewill, 1982). De-
tails can be found in (Coen et al., 1998b) and the final

result is

2kT st sj
Blri,rj) = 22 (2+T+”)
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Tsi + Tsj émax
W, = —¢
t 4/@7"51‘7“5]' *p < k‘BT >

where W;; is the Fuchs stability ratio and ®,.x the maxi-
mum potential energy with respect to particle separation
distance. One important characteristic of coagulation co-
efficients is that values increase exponentially as particle
size is decreased. Also, for the smallest particles, the
coagulation coefficient is nearly independent of the ra-
dius of the other particles with which the small particles
coagulate. This feature was exploited for determining
coagulation coefficients in our simulations by approxi-
mating the coagulation coefficients as depending only on
the radius of the smaller of any two given particles co-
agulating. Figure 1 is a comparison of two simulated
particle size distributions under identical operation con-
ditions but with and without coagulation respectively.
This figure highlights the influence that coagulation has
on particle numbers and distributions during particle nu-
cleation.

Calculation of coagulation coeflicients in an on-line
control application is problematic because calculation
of ® .y is an extremum problem over particle separa-
tion distance and therefore, would be an embedded op-
timization problem. Another limitation of the DLVO
theory is it does not account for shear effects which can
markedly alter charge distributions surrounding particles
and cause greatly accelerated coagulation rates. These
problems are still open issues and feasible solutions will
likely involve significant empiricism.

Numerical Solution

Approaches to solving population balance equations
found in the literature can be generally classified into
one of three distinct methods. Orthogonal collocation on
fixed and moving finite elements has been used by several
authors (Dafniotis, 1996; Rawlings and Ray, 1988a,b) to
solve population balance models. This moving finite ele-
ment method overcomes some of the numerical instabil-
ities and inaccuracies associated with more conventional
techniques such as finite differences.

Dafniotis (1996) describes the numerical problems as-
sociated with the solution of hyperbolic PDE’s in terms
of wave theory. If the desired solution is expressed in
terms of a Fourier series, the behavior of a solution can
be examined by examining individual components of the
series, i.e., sine-cosine waves that propagate with specific
phase and amplitude. Numerical operators such as finite
differences, do not preserve the correct phase and am-
plitude. Particularly, errors associated with the phase
are sometimes observed as spurious oscillations; referred
to as dispersion. Also, when the amplitude of the nu-
merical wave is damped relative to the exact solution
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wave, discontinuities (for example boundary conditions)
are smeared; referred to as numerical diffusion. Finally,
hyperbolic partial differential equations often describe
the propagation of near-shocks, or sharp wave fronts
which require adequate resolution in the region of the
shock.

In Dafniotis (1996), a moving finite element
method(MFEM) is presented for solving the popu-
lation balance equations for emulsion polymerization
and to address some of the inherent numerical problems
mentioned above. This method is based on the MFEM
developed by Sereno and coworkers (1991).

A less sophisticated but much easier method to set up
is the finite difference method. Here, partial derivatives
in the population balance equations are approximated by
finite differences. Gilbert (1997) has applied this method
to modeling particle size distributions for emulsion poly-
merization systems.

A third method for solving population balance equa-
tions is sometimes referred to as methods of classes.
Here, the distribution is discretized into classes of par-
ticles defined by finite particle size intervals. Mathe-
matically, this involves transforming the partial differ-
ential equations from a differential to integrated form
over small intervals. The presumed advantages of this
approach include transformation of integral terms into
more easily evaluated summation terms, elimination of
partial differential terms with respect to particle size
by forcing the discretization grid to move with parti-
cle growth rate, and the ability to coarsen the grid and
still preserve key properties of the distribution such as
moments (Kumar and Ramkrishna, 1996, 1997).

State Estimation

The inadequacy of frequent measurements related to the
plant-product quality indices in polymer processes, has
motivated the use of state estimators in controlling and
monitoring the indices. The availability of sufficiently-
accurate, first-principles, mathematical models for many
polymerization reactors has made possible the develop-
ment of the state estimators/observers. An estimator,
which is designed on the basis of the process model, es-
timates unmeasured process variables from current and
past process measurements. State estimators have also
been used for sensor/plant fault detection and data rec-
onciliation.

A major characteristic of polymerization reactors is
their complex nonlinear behavior. Phenomena such as
multiple steady states in continuouns stirred tank reac-
tors, parametric sensitivity, and limit cycles are man-
ifestations of the complex nonlinearity. Thus, reliable
state estimation in polymerization reactors requires non-
linear models that can capture the complex nonlinear
behavior. Motivated by the need for nonlinear state es-
timation, since the 1970s nonlinear state estimators have
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been used for polymerization reactors (Jo and Bankoff,
1996; Schuler and Suzhen, 1985; Ellis et al., 1988; Ade-
bekun and Schork, 1989; Kim and Choi, 1991; Kozub
and MacGregor, 1992; van Dootingh et al., 1992; Ogun-
naike, 1994; Robertson et al., 1993; Liotta et al., 1997;
Tatiraju et al., 1998a, 1999). In most of these studies, ex-
tended Kalman filters (EKF’s) have been used for state
estimation.

Multi-Rate State Estimation

In polymerization reactors, most of essential measure-
ments related to plant-product quality indices, such as
the leading moments of a MWD obtained by a gel perme-
ation chromatograph (GPC), are available at low sam-
pling rates and with considerable time-delays. On the
other hand, measurements of basic plant variables such
as temperatures, pressures, and densities are usually
available at high sampling rates and with almost no de-
lays. Because the plant product quality indices are usu-
ally not observable from the frequent, delay-free mea-
surements alone, one has to design a multi-rate estima-
tor/observer (i.e. one that uses both the frequent and
infrequent measurements), to provide reliable estimates
of the states, especially in the presence of model-plant
mismatch and measurement noise. Multi-rate state es-
timation in polymerization processes has received con-
siderable attention (Elicabe and Meira, 1988; Ellis et al.,
1988; Dimitratos et al., 1989; Kim and Choi, 1991; Ogun-
naike, 1994; Liotta et al., 1997; Mutha et al., 1997; Tati-
raju et al., 1998a, 1999). Multi-rate EKF’s have been
used in most of these studies. For example, Ellis et al.
(1988) used a multi-rate EKF to estimate the unmea-
surable process states continuously from the frequently
available measurements of temperature and density and
the infrequent and delayed measurements of the average
molecular weights (obtained by a gel permeation chro-
matograph). Mutha et al. (1997) proposed the use of
a fixed-lag smoothing algorithm for multi-rate state es-
timation in a polymerization reactor. Tatiraju et al.
(1998a, 1999) developed a method of multi-rate nonlin-
ear state estimation and applied it to a solution polymer-
ization reactor with fast measurements of reactor tem-
perature, jacket temperature and density, and slow mea-
surements of the zeroth, first and second moments of the
polymer molecular weight distribution.

Inferential Control of Polymerization Re-
actors

An inferential control system has been defined conven-
tionally as one that requires an estimated or inferred
value of a controlled output to calculate the value of a
manipulated input (Joseph and Brosilow, 1978a,b; Se-
borg et al., 1989; Marlin, 1995). Inferential control has
application in processes in which (a) measurement of a
controlled variable is not available frequently enough or
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quickly enough to be used for feedback control, and (b)
there are readily-available process measurements from
which the value of the controlled variable can be in-
ferred or estimated. The design of an inferential con-
trol system consists of two steps: (i) the synthesis of a
controller assuming that all the controlled outputs are
measured readily, and (ii) the design of an estimator to
estimate the controlled outputs that are not measured
readily. An inferential control system should ensure zero
offset for all the controlled outputs. One of the indus-
tries that has benefitted greatly from inferential control
is the polymer industry, where frequent measurements
of even plant-product quality indices are rare. Extensive
reviews of recent advances in inferential control can be

found in (Doyle III, 1998; Soroush, 1998b).

Multi-Rate Control

In the polymer industry, there are many processes
wherein the choice of sampling rate is limited by the
availability of the output measurement. For example,
composition analyzers such as gas chromatographs have
a cycle time of say 5 to 10 minutes compared to a desired
control interval of say 0.1 to 1 minute. If the control
interval is increased to match the availability of mea-
surements then control performance deteriorates signif-
icantly. In addition to the slow measurements (which
are available at different low sampling rates and are de-
layed), there are usually process variables such as tem-
perature and pressure that can be measured at high
sampling rates and with almost no time delays, lead-
ing to multi-rate control problems. Successful recent
implementations of multi-rate control on polymerization
processes include (Ellis et al., 1994; Ogunnaike, 1994;
Ohshima et al., 1994; Sriniwas et al., 1995; Crowley and
Choi, 1996; Niemiec and Kravaris, 1997; Tatiraju et al.,
1998b).

In the polymer industry, the problem of multi-rate
control has been addressed by the following control meth-
ods:

e Cascade control
e Decentralized control

e State-estimator-based control

Cascade control systems have been used successfully to
control essential variables whose measurements are not
available frequently. The slave controller regulates a set
of basic plant variables and adjust the manipulated in-
puts of process, while the master controller regulates the
essential variables (usually plant-product quality indices)
whose measurements are infrequent and delayed and cal-
culates the set-points of the slave controller. While the
inner loop is executed at the high rate at which the basic
plant variables are measured, the outer loop is executed
at the low rate at which the essential variables are mea-
sured (whenever these measurements are available). An

advantage of this multi-rate control structure is its con-
trol system integrity in the face of any unforeseeable fur-
ther delay in the essential slow measurements; whether
the slow measurements arrive or not, the inner loop is
always in place (Lee and Morari, 1990; Lee et al., 1992).

Decentralized control systems have been used in the
polymer industry to control process variables whose mea-
surements are available at different rates. As in every
decentralized control system design, first the manipu-
lated inputs and the controlled outputs should be paired.
A single-input single-output controller is then designed
for each pair. Each of the SISO controllers is executed
(takes action) at the rate at which the measurements of
the corresponding controlled output are available. An
advantage of these multi-rate control structures is also
its control system integrity in the face of any unforesee-
able further delay in the slow measurements; whether
the slow measurements arrive or not, the “fast” loops
are always in place.

State-estimator-based multi-rate control systems in-
clude a state estimator which estimates frequently all
state variables of the process from the available, fast and
slow measurements. The frequent measurements and es-
timates are then fed to a single-rate controller as if the
process has only single-rate measurements. In contrast
to the first two classes of the multi-rate control systems
that can be non-model-based, the last class of the multi-
rate systems have to be model-based (since they include
estimators).

Batch Control Issues

Model-based Optimization Approaches to Batch
Polymerization Control

In the case of batch systems, one can formulate a clas-
sical optimal control problem in an effort to control the
endpoint properties of the batch. In a number of stud-
ies, this is implemented in a receding horizon framework,
yielding a so-called Model Predictive Controller (MPC).
MPC utilizes a process model to compute a future open-
loop control sequence which optimizes an objective func-
tion, given past and current information of the system.
The first control move is implemented and the optimiza-
tion problem is re-solved at the next sampling time as
updated information becomes available.

Applications of MPC to semi-batch polymerization
systems include (Russell et al., 1997), where linear MPC
was applied to a Nylon system using empirical models
for quality control. The primary modification to the
MPC algorithm was the use of a shrinking horizon, orig-
inally proposed in (Joseph and Hanratty, 1993). A sim-
ilar formulation of MPC was adopted by Georgakis and
co-workers (Liotta et al., 1997). In their work, a nonlin-
ear formulation was proposed; however, they employed
a “least-squares”-like analytical solution to the uncon-
strained problem. Another notable citation is the work
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in (Ettedgui et al., 1997), where a fed-batch reactor is
studied (in simulation) for the application of nonlinear
model-based estimation and predictive control. In that
case, the sequential solution and optimization technique
of (Wright and Edgar, 1994) was employed.

In general, MPC is posed as an on-line optimization
problem, typically requiring the solution of a constrained
linear, quadratic, or nonlinear programming problem.
The generalized optimization problem considered can be
expressed as:

min[max @;(z, u)] i =1,M0p;
u
subject to
= f(z,u)
gz(@ < = 17nineq

i =1,n¢q

Here, the vector w contains the values for the sequence
of manipulated variable moves over the batch cycle (e.g.,
surfactant feed), nyp; denotes the number of terms con-
sidered in the objective function, and the constraints
describe the process model and corresponding operat-
ing constraints. Several forms of the objective function
can be considered. The following 1-norm type objective
could be considered:

Ng | tarqet
7/] i
byt
Nscale

=1 j=1

Here, ngcqe is a factor used to scale the objective func-
tion values. A 2-norm objective can also be formulated;

Ng Ny L targef) 2
®= Z Z l Nscale ‘|

=1 j=1
Many interesting polymer products have corresponding
distributions that are multi-modal in nature. These can
be produced, for example, by multiple surfactant addi-
tions, sufficiently separated in time. Therefore, a poten-
tially effective objective definition is to actually define
multiple objective functions, each tied to a particular
distribution mode, and perform a min-max optimization.
For bimodal distributions, the objective can be expressed
as follows:

=33 [(W - n)] i

Nscale

& & [(W - nz;“”gef)] i

Nscale
min & = max ($1, P2)
ui,t=1,11

Here, N; represents the number of finite elements span-
ning the lower particle size mode of the distribution.
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Case Study I: Control of an Emulsion
Polymerization Reactor

The control of particle size distribution as an end-
objective in emulsion polymerization control is well mo-
tivated in industrial practice, and has been well docu-
mented in the literature (see, for example, the recent
review by Congalidis and Richards, 1998). The au-
thors pointed out that “on-line control not only of aver-
age polymer properties but also of polymer distributions
such as the particle size. . . will become important”. They
continue: “The instrumentation and control methodolo-
gies that will need be deployed to meet these needs is
a challenging and vibrant area of investigation for aca-
demic researchers and industrial practitioners alike.”

In this section, we present a case study for the opti-
mal control of particle size distribution in a semi-batch
styrene polymerization reactor. The isothermal model of
Coen et al. (1998a) incorporates current theory on par-
ticle nucleation, growth and coalescence mechanisms for
styrene at 50°C and serves as the modeling basis for this
study. This model is a zero-one model, referring to the
assumption of instantaneous bimolecular radical termi-
nation in polymer particles, which gives rise to a mixed
population of particles containing either one or zero rad-
icals. Parts of the model that deviate from (Coen et al.,
1998a) are described in detail in (Crowley et al., 2000).

The basic control problem is defined as the achieve-
ment of a target PSD at the end of the batch. For this
study, we consider the manipulation of both surfactant
feed rate (and/or concentration), and initiator feed rate.
On-line measurement of the full PSD, for example by
light scattering, is assumed for this study.

Open-loop Optimization of PSD

Two distinct variables related to surfactant concentra-
tions were optimized to match a target PSD. The first
variable considered is surfactant feed rate. Specifically,
the optimization routine calculates a sequence of 10 sur-
factant feed flow rates(zero-order hold), each with a sam-
ple hold time of 3 minutes, up to a final time of 30 min-
utes. The target PSD was generated by simulating the
model up to 30 minutes, with values for the 10 surfactant
feed flow rates that yield a bimodal distribution. Con-
trol trajectories were calculated by defining an objective
function in terms of simulated PSD deviations from a tar-
get distribution, and minimizing the objective function
using the sequential quadratic programming algorithm,
FSQP.

In a different approach, we considered use of free sur-
factant concentration, rather than surfactant feed rate,
as the control variable. The reason behind this choice
is that free surfactant concentration above the cmc is
the essential driving force for particle nucleation. The
free surfactant profiles consist of a sequence of first-order
holds (i.e. piecewise linear), with each hold spanning a 3
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Figure 2: Optimization of surfactant feed rate se-
quence for target PSD; cmc= 3 x 107 mol/L, [I]o =
0.01 mol/L, [M]o = 2.59 mol/L.

minute interval. As in the previous case, 10 holds were
used to span a 30 minute control horizon. For this formu-
lation of the optimization problem, the decision variables
are 11 free surfactant concentration nodes, spaced at 3
minute intervals. Free surfactant concentration values
between any two neighboring nodes are calculated sim-
ply by linear interpolation between the two nodal values.
Linked in this way, the nodes form a continuous, though
non-smooth, free surfactant profile.

The first optimization case involves computation of a
sequence of surfactant feed flow rates which drive the sys-
tem to a target PSD. The target distribution was gen-
erated by fixing the initial surfactant concentration at
time= 0 and simulating the system out to 30 minutes
with one large surfactant addition at 21 minutes. This
addition is shown in Figure 2. Surfactant addition at 21
minutes produces a shoulder in the distribution at the
end of the 30 minute simulation, with a peak height lo-
cated at a particle size of about 20 nm. The solid stair
case profile for surfactant feed rate in this figure repre-
sents the optimization solution. The 2-norm objective
was used in this case. Although the optimizer appears
to drive the simulated PSD to the target, as seen in this
figure, the final free surfactant concentration for the op-
timized case is much larger than that of the target case.
With disparity in surfactant levels at 30 minutes, the
two distributions would diverge beyond this time. These
differences can be improved through the use of input
blocking (Crowley et al., 2000).

The optimal solution is quite sensitive to the choice of
initial conditions, as well as the particular blocking for-
mulation. Consequently, a second control strategy was
considered. Because particle nucleation is dependent on
the free surfactant level relative to the critical micelle

concentration, a free surfactant trajectory is more closely
related to the physical phenomena than surfactant feed
flow rates. Of course, ultimately the feed flow rates are
manipulated. A free surfactant trajectory represents a
higher control level in a cascade configuration, with feed
rates being the lowest level control variable. A useful
property arises from this form. An intuitive initialization
for optimization computations is to set all free surfactant
concentrations in the control vector to the critical micelle
concentration. Sensitivity of particle nucleation rate to
surfactant perturbations is greatest at the CMC.

Local minima are often a cause of poor performance in
gradient based optimization. For a bimodal distribution,
it is possible to obtain suboptimal PSD solutions that are
trapped in a local minimum because surfactant pertur-
bations which decrease target offset for one of the modes
may increase offset for the other mode. As an attempt to
partially decouple this kind of interaction, we formulated
a multi-function objective wherein each function is tied
to a particular mode of the distribution. As described
above, the resulting optimization is a min-max problem
with two objective functions for a bimodal distribution.
Figure 3 depicts the result of this case. When compared
to the PSD offsets seen using the 2-norm (Crowley et al.,
2000), the target offset for the min-max optimization is
lower. Another advantage of this approach is that the
optimization is “well-behaved” in the sense that offset of
each mode from the target is balanced due to the struc-
ture of the objective function.

Batch-to-Batch Studies

In this section, a model refinement optimization tech-
nique is described using information from historical
batch data of emulsion polymerization in conjunction
with a fundamental first-principles model to determine
the operating conditions necessary for a desired product
quality.

The desired product quality must be a grade of prod-
uct produced in the same range of operating conditions
used in the historical batch data. As a result of this con-
dition, the desired PSD must have a similar character to
known PSDs produced by the process. A fundamental
first-principles model of emulsion polymerization which
accounts for polymer particle nucleation and polymer
propagation exists. While these phenomena are well un-
derstood, emulsion polymerization presents a challenging
process to control due to difficulty in modeling complex
behavior such as particle aggregation and the significant
nonlinear behavior involved in particle formation. The
method described in this section seeks to combine this
first-principles model of emulsion polymerization with an
MPLS model to find the optimal control input sequence
needed to achieve a desired product quality in a semi-
batch emulsion polymerization reaction. In the experi-
ments conducted in this section, the process variables are
the surfactant and initiator feed rate inputs at distinct
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Figure 3: Synthesis of optimal free surfactant profile using min-max objective.
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shown are at a batch time of 30 minutes. Initial reactant conditions are as follows: cmc= 0.0039, [I]o = 0.005 mol/L,

[M]o = 2.59 mol/L.

time intervals, and the product quality is determined by
the particle size distribution (PSD) at the final time of
the experiment.

The design of inputs for the emulsion polymerization
process is performed on an off-line batch-to-batch ba-
sis. The hybrid model, which combines a first-principles
model with MPLS, is referred to as the design model.
The MPLS model is used to approximate the difference
between the PSD the first-principles model calculates
and the PSD obtained from executing a given input se-
quence in an actual semi-batch reactor, thus capturing
the effect of phenomena for which the first-principles
model does not take into account. The optimization
will be performed by minimizing the sum of the squared
residual error between the PSD yielded by the design
model and the target PSD. The design model is a func-
tion of the states of the system and the control inputs.
A calibration set of data from historical batches having a
set of operating conditions similar to that of the desired
PSD will be required to begin the optimization proce-
dure. The PSDs in the historical batch data and the tar-
get PSD are created from a virtual process model which
simulates the actual semi-batch reaction in a plant. This
virtual process model is structurally different from the
first-principles model in the design model because it ac-
counts for aggregation and has four parameter values
that are varied from the design model values by 5%.

The hybrid design model is potentially useful because
the MPLS model will account for the phenomena such
as particle aggregation which are not included in the
first-principles model within the design model. Further-

more, the MPLS model can be adjusted to account for
noise that may occur during PSD measurement. In ad-
dition, the MPLS model calibration set can be refined
once a significant amount of batches have been designed
by using only a subset of historical batches in the MPLS
model, and including only those batches most recently
designed. A pure MPLS model could also be attempted,
but important information can be extracted from the
first-principles model, so one would not want to aban-
don it altogether. The first-principles model in the de-
sign model could be useful for optimizing control inputs
for new processes with little batch history, and for opti-
mizing control inputs for new grades with no batch his-
tory. The efficacy of using a first-principles/MPLS hy-
brid model in achieving a target PSD is investigated in
the following work.

While MPCA is used to compress information in the
process variables to low-dimensional spaces that describe
the historical batch operation, MPLS reduces both the
process variables and product quality variables to low di-
mensional spaces, and attempts to find a correlation be-
tween these low-dimensional spaces (Neogi and Schlags,
1998). PLS attempts to maximize covariance, which
means that it focuses on the variance of X that is more
predictive for the product quality Y, rather than focus-
ing on the variance of X only (Nomikos and MacGregor,
1995). In this investigation, the MATLAB PLS Toolbox
2.0 by Eigenvector, Inc is used to perform PLS analyses.

Before beginning the optimization algorithm, it is nec-
essary to generate historic batch data and a target PSD
with the use of the process model. The target PSD must
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be created within the same range of operating conditions
used to generate the batch history, so that it is a differ-
ent grade of product, within the same product family.
The target PSD and historic PSDs are vectors contain-
ing the 48 particle number densities yi corresponding to
48 discrete particle radii r; . A control input sequence
of length 20 corresponding to the surfactant and initia-
tor feed inputs at 10 evenly spaced time steps for a 100
minute batch reaction are used to create the PSDs.
The first step in the optimization algorithm is to ob-
tain the scaling data and PLS regression matrix for the
current batch history (X and Y blocks) in MATLAB.
The second step in the optimization is to design an
input sequence using the following hybrid design model:

ydesign(t — tf) — yfp(.f, u, t) —+ yTeSid(I, U)

where

ty
fp _ d
Y (e ut) /0 f,u)dt

In this equation, ¢ is the duration time of the semi-
batch reaction, x and u are vectors containing the states
of the system and the control inputs of the system, re-
spectively 37¢**? is an approximation of the residual PSD
between the process model PSD and the PSD from the
first-principles model. y"¢**(z, u)is calculated using the
regression matrix calculated with the current batch his-
tory. The first iteration of the optimization will require
an initial value for the control input sequence u. The op-
timization is performed by making small perturbations
in u for each iteration. The direction of the perturbations
are determined by the Jacobian matrix calculated from
the previous iteration of the optimization. The size of
the perturbation in wu is fixed prior to optimization. The
following objective function is minimized by the opti-
mization procedure to determine control input sequence
u to be used in the next batch:

Y N
Z (y;arget _ yideszgn)
i=1

The optimized input sequence is then executed in the
virtual process model, which simulates a batch reaction
within an actual plant. Representative results of this
study are shown below in Figures 4 and 5. The first
figure shows the mismatch between the simulated process
and the fundamental model used for PSD control. The
overall trend along the batch history is mapped in the
form of integral squared error in Figure 5. Clearly, the
algorithm “learns” as the batches proceed.

Case Study II: Control of a Solution Poly-
merization Reactor

In this section, we present a comparative study of
multi-rate control of a jacketed polymerization reactor
in which free-radical solution polymerization of styrene
takes place. A multi-rate control system consisting of the
multi-rate nonlinear state estimator of (Tatiraju et al.,
1999) and a mixed error- and state-feedback controller,
is used. The performance of the multi-rate nonlinear
control system is shown and compared with those of a
multi-rate, PI, parallel cascade, control system and a
multi-rate, PI, completely decentralized, control system.

Polymerization Process and the Control Problem

The reactor is a 3 m?, jacketed, continuous, stirred tank
reactor in which free-radical solution polymerization of
styrene takes place. The solvent and initiator are ben-
zene and azo-bis-iso-butyro-nitrile, respectively. The re-
actor has three feed streams: a pure monomer stream
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at a volumetric flow rate of F,,, a pure solvent stream
at a volumetric flow rate of F, and an initiator stream,
which includes solvent and initiator, at a volumetric flow
rate of F;. The volume of the reacting mixture inside the
reactor is constant.

We use the same dynamic model described in (Tatiraju
et al., 1999) to represent the reactor. The model has the
form:

ac; F F;Cy,
dC,  FRC, FC, +FEC,,

a Vv 14

Ao Fo |

ﬁ — % +f3(CZ,CS,Cm,T)

dAq Fi)\

Y, = R maT

I v + f1(Ci, Cs, O, T) 1)
A Fih |

E — % +f5(Cl,CS,Cm,T)

= [2) maT =

at f6(Ci, O, T) + v

dr Fy(Ty —T)
dt 7f7(C’LvC'm,7T7T])+ V

dT;

ditj = fs(T.1}) + aQ

where F; = F; + F,, + F,s, V is the volume of the re-
acting mixture inside the reactor, C,, is concentration
of the monomer in the reactor outlet stream, C; is con-
centration of the initiator in the reactor outlet stream,
C, is concentration of the solvent in the reactor outlet
stream, T' is the reactor temperature, T; is the jacket
temperature, () is the rate of heat input to the reac-
tor jacket, and Ao, A1 and Ay are the zeroth, first, and
second moments of the MWD of the polymer product,
respectively. The functions fi,--- , fs and the parameter
values of the reactor model are given in (Tatiraju et al.,
1999); for brevity they are not given here. The first-
principles mathematical model of the process described
by (1) is used to represent the actual process.

The number-average and weight-average molecular
weights of the polymer product (denoted by M,, and M,
respectively) are related to the moments according to

The reacting mixture density, reactor temperature
(T), and jacket temperature (T;) are assumed to be mea-
sured on-line once every 30 seconds and with almost no
time delays. The monomer conversion (and thereby the
monomer concentration, Cp,) can be inferred from the
density measurement, and thus can be calculated on-
line. The zeroth, first, and second moments of the MWD
of the polymer product are assumed to be measured at
sampling periods of 3 hours and with time delays of 1
hour. The rate of heat input to the reactor jacket, @,
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and the flow rate of the initiator feed stream, Fj;, can
be set arbitrarily on-line within the following ranges:
—20< Q<50 kJstand 0 < F; <3.0x107% m3.s7 1.

The control problem is to maintain the weight-average
molecular weight of the polymer, M,,, and the reactor
temperature, T, at desired values by manipulating the
rate of heat input to the reactor jacket, @), and the flow
rate of the initiator feed stream, F;.

Multi-Rate Nonlinear Control System

State Feedback Synthesis. With M,, and T as
controlled outputs (y1 = M, and y» = T), and F; and
@ as manipulated inputs (u; = F; and us = Q), relative
orders (degrees) of the process 11 = 2 and 7o = 1, and
the characteristic (decoupling) matrix of the process is
generically singular. Because of this generic singularity,
we request a state feedback that induces two completely
decoupled, 2nd-order, process output responses of the
form:

d2M,, dM,,
B2 a2 + B ar + My = My, (2)

2T dT
522@ + ﬁ21$ +T =T, (3)

where (12, (11, 22 and (21 are positive adjustable
scalar parameters, M, , is the weight-average molecu-
lar weight set-point, and Ty, is the reactor temperature
set-point. Substituting for the time derivatives from the
process model in the preceding two equations, we obtain
two identities of the forms

1
$1(z,u1) = =—My,,,
Bra .
! 4)
¢2(.’L’,U1,U2,’d1) = 7Tsp
B22

where x is the vector of the state variables of the reactor.
Let us represent the solution for u = [u; wuz]? of the
constrained minimization problem

M, 12 ) 2
Hg}n{[@(m‘,ul)—ﬂl;p] + {@(x,uhwﬁ)— Zﬂ }

subject to

0<wu; <3.0x107° m3.s7!
—20 < wuy <50 kJst,

by
u = \P($7MwspaTsp) (5)

Using the identities of (4), we add integral action to the
state feedback of (5) (see Soroush, 1998a, for the details),
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leading to the mixed error- and state-feedback controller

N =12
) 1 Bi1
=———n — =02+ ¢1(z,u
12 Bra m 1 72 1( 1)
13 = N4 (6)
) 1 B
g = — =1y — sy + ¢2(z, u1,ug,0)
B22 B

u="V(z,e1+n,ex+n3)

where ey = My,,, — My, and ez = Ty, —T'. The controller
of (6) has integral action and inherently includes opti-

mal windup and directionality compensators (Soroush,
1998a).

Multi-Rate State Observer. Application of the
multi-rate nonlinear state estimation method described
in (Tatiraju et al., 1999) to this polymerization reactor
leads to the following reduced-order, multi-rate, nonlin-
ear, state estimator:
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where L = [L;;] and K = [K;;| are the estimator gains,

chmm_(Fi+Fm+Fs)C7n

Vv

(Fi + Fm + Fs)(Tin - T)

v
A5(t), Aj(t) and Ai(t) are the predicted present values
of the infrequent measurable outputs, each of which is
obtained by fitting a least-squared-error line to the most
recent, three measurements of the moment. These linear
regressions are always carried out except when only one

M=

Yo =

measurement of each slow measurable output is avail-
able. In this case, the predicted present value of each
slow measurable output is set equal to the single avail-
able measurement. The estimator initial conditions are
the same as those in (Tatiraju et al., 1999). The multi-
rate state estimator of (7) can be written in the compact
form

2=F(z,5,Y",u)

&t =0Q(29)

Mo AT AT and § =[Gy, T Ty)T.

(8)

where Y* =

Multi-Rate Nonlinear Control System. The use
of the mixed error- and state-feedback controller of (6),
together with the multi-rate state estimator of (7), leads
to a multi-rate nonlinear control system of the form:

2.: = F(ngv Y*7u)

n=1n2
) 1 B
= — =2+ T, u

T2 512 - Bra 712 ¢1( 1)

T3 =14 9)

) 1 B .

= — =12 — 20 + 6o (i, w1, uz, 0)
B22 Ba2

u=V(&,é +mn,ez+13)

T =Q(z,9)

where é; = M,,, )\2//\1

Multi-Rate Cascade and Decentralized Control
Systems

We compare the performance of the multi-rate nonlin-
ear control system of (9) with a multi-rate, PI, cascade,
control system and a multi-rate, PI, completely decen-
tralized, control system.

The multi-rate, PI, cascade, control system consists
of two PI controllers. The master PI controller regulates
the weight-average molecular weight by manipulating the
reactor temperature set-point. The master controller is
executed once every three hours, since the average molec-
ular weight measurements are available at that low rate.
The slave PI controller regulates the reactor temperature
by manipulating the rate of heat input to the reactor
jacket. The slave controller is executed at a much faster
rate (once every 30 seconds). The control system has the
form

fk+ 1) = [1- 2 ) +

I

At

o (Tsp(k) =

Ty
. 1 1
52(t) = 7;52(15) + T [Q(t) - st]

g 2 (10)
Tok) = st { T+ ey 006)+ —-a(0)| |

Q(t) = satq {st + ke, {52(75) + L& (t)} }

TIq



Control of Product Quality in Polymerization Processes

with £1(0) = M, (0), £&(0) = T(0), ke, = —4.0 x 1075,
ke, =1.0x 1074, 77, = 1.0x 10 s, and 77, = 1.0 x 10 s,
where e1(k) = My, (t) — My (k), e2(t) = Tsp(t) — T(1),
and At = 1.08 x 10* s.

The multi-rate, PI, completely decentralized, control
system consists of two completely-decentralized PI con-
trollers. One of the PI controllers regulates the weight-
average molecular weight by manipulating the flow rate
of the initiator feed stream, and the other regulates the
reactor temperature by manipulating the rate of heat in-
put to the reactor jacket. While the first PI controller
is executed once every three hours (sampling rate of the
average molecular weight), the second controller is exe-
cuted once every 30 seconds (sampling rate of the reactor
temperature). The control system has the form

At
ke,

G(k+1) = [1 - g} §u(k) + — [Fi(k) — Fi,,]

TI,

Iy

F;(k) = satr, {Fiss + Koy {él(k) + %gl(k)} } (11)

1
ke

Ex(t) = — &0 + 1 Q) ~ Qul,

1
Q1) =satq { @ + ko [0+ ]}
2
with &1(0) = M, (0), &(0) = T(0), ke, = —5.0 x 1077,
ke, =25x107% 77, = 1.0x 107 s, and 77, = 1.0 x 10° s.
Each of the preceding PI control systems includes

two PI controllers with windup compensators (Soroush,
1998a).

Simulation Results

The performance of the multi-rate nonlinear controller
is evaluated by simulating the following two cases: (a)
when there is no measurement noise or model-plant mis-
match (nominal case); and (b) when there are mea-
surement noise and model-plant mismatch (non-nominal
case). For each case, the performance of the multi-rate
nonlinear control (NC) system is compared with those of
the cascade control (CC) system and the decentralized
control (DC) system. Measurement noise is introduced
by adding a white noise signal to each of the moments
calculated by the process model. Each of the noise sig-
nals is a 10% deviation from the value of the moment at
that particular time. Model error is simulated by adding
a 10% error in the propagation step rate constant. The
following values of tunable parameters are used for the
nonlinear controller:

K1 =10, K3 =00, Ki5=1.0
Kil = Kig = KiS = 00, 1= 2, . ,5,
LZ‘l:LiQZLigzo.O, ’L:L. ,2
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Figure 6: Controlled outputs and manipulated inputs
under the multi-rate control systems (nominal case).

The temperature set-point T, = 324.0 K, and the
weight-average molecular weight set-point M, =
80,000 kg.kmol 1.

Figure 6 shows the profiles of the controlled outputs
and the manipulated inputs for the nominal case under
the three multi-rate control systems. The solid line rep-
resents the set point. For the M, graph, the dashed
line stands for the continuous estimates of M,, obtained
by using the estimator of the multi-rate NC system,
while the bullets stand for the infrequent and delayed
“measurements” of the average-molecular weight. For
this case, Ls; = 1.0 x 1074, Ly = 1.0 x 107°, and
Lss = 1.0 x 1078, The benefit of using the multi-rate
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Figure 7: Controlled outputs and manipulated inputs
under the multi-rate control systems (non-nominal
case).

NC system is obvious in Figure 6. Not only under the
NC system are the process output responses faster, but
also they have smaller overshoots in the controlled vari-
ables. Under the CC and DC systems it takes more
than 40 hours to take both the temperature and average
molecular weight to their respective set-points, while un-
der the NC system it takes less than 5 hours. The CC
system regulates M,, only by manipulating @, but the
DC system regulates both M,, and T" by manipulating
Q@ and F;. From the manipulated input graphs we can
see that the NC system makes the most optimal use of
manipulated variables. Under the CC and DC systems

the manipulated inputs hardly reach the constraints, but
still the CC and DC systems cannot be tuned to be more
aggressive because the overshoots start increasing. Fig-
ure 7 depicts the profiles of controlled outputs and ma-
nipulated inputs for the non-nominal case. For this case,
L3 =1.0x107%4, Lys =2.0x1077, and L5z = 9.5x 1076
Again, the NC system shows a much superior perfor-
mance as compared to the two PI control systems.

Conclusions

In this paper a brief survery of the recent advances that
have led to improvement in polymer product quality
was presented. Further improvement in polymer prod-
uct quality requires solving challenging design, control,
and monitoring problems that still exist in polymer pro-
cesses.

Lack of sufficient controllability is a barrier to better
product quality control in some polymer processes. In
many polymer processes, better product quality requires
minimizing/maximizing several product quality indices
simultaneously. This multi-objective requirement may
result in narrow ranges of process trajectories, putting
a premium on the controllability of the process. For in-
stance, in coatings, the product’s composition, molec-
ular weight, and particle size distributions should be
maintained simultaneously in limited ranges to ensure
the coating has a desired level of film formation, film
strength, and gloss.

In many batch processes, product quality suffers from
batch-to-batch inconsistency. There is a trend towards
products with specific performance, which have higher
value to a formulator or end-user. Furthermore, many
of the current processes result in products with a broad
inter-batch variance of molecular and physical charac-
teristics, which in turn result in broad variance of per-
formance. Blending of these batches usually lowers the
average performance of the product lots. Segregation of
“off-spec” product results in higher costs which may not
be transferable to the customer.

Our understanding of the relationships among the ba-
sic plant variables, plant-product quality indices, and
end-product quality indices is mostly empirical and qual-
itative. Polymer product development in the absence of
qualitative relationships between the recipe, process and
the final performance requires long times. Experimen-
tal techniques have been used to develop relationships
that hold for the range of the experimental parameters
studied. These products and processes therefore do not
readily lend themselves to optimization, either in terms
of productivity or reduction in variance. Having the abil-
ity to develop these relationships on a more fundamen-
tal basis will allow products to be developed in shorter
times.
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