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Abstract
Assessment of performance in tracking set-point changes for single loop systems is presented. In contrast to the works
that used stochastic performances, the current assessment uses a deterministic performance measure, i.e. the integration
of absolute tracking errors (abbr. IAE). A benchmark system that has an open loop transfer function (abbr. OLTF)
comprised of one LHP zero, one integrator, and dead time is established. This benchmark system is used to provide
a goal of performance that the existing system can practically achieve. For assessing an existing control system, the
performance of the system in terms of IAE is computed and an index that indicates the extent of achievement toward
this benchmark system is computed. Evaluation of control based on this index can then be made. The model required
in computing the aforementioned performance index can be obtained from an auto-tuning procedure.
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Introduction

Assessment and monitoring of control systems with
stochastic performance has been an active area of re-
search for the last decade(Harris, 1989; Stanfelj et al.,
1993; Harris et al., 1996; Qin, 1998; Harris et al., 1999;
Leung and Romagnoli, 2000). The developments of re-
search works have been focused on formulating the per-
formance in terms of variance of the systems which
are disturbed by stochastic inputs. As a result, with
few exceptions, for example: Leung and Romagnoli
(2000), controllers are implemented with discrete-time
algorithms to pursuit minimum variance. On the other
hand, the researches regarding assessment for determin-
istic performance have been reported, lately. For such
assessments, technical developments have been focused
on estimating maximum log modules (Lc,max) of closed-
loops, (Chiang and Yu, 1993; Ju and Chiu, 1997), fre-
quency responses (Kendra and Cinar, 1997), process
characteristics(Piovoso et al., 1992), rise time (Åström
et al., 1992), and settling time (Swanda and Seborg,
1999), etc. But, those works mentioned did not provided
any implication regarding the best performance that an
existing system can practically achieve.

In this paper, a benchmark system based on an IAE
measure for an existing control system of single loop is
presented. This benchmark system is to provide a prac-
tical goal of performance that the existing system can
achieve. It has a loop transfer function comprised of
one LHP zero, one integrator, and dead time. An in-
dex based on this benchmark system is thus presented
to evaluate the existing system comparing with its con-
trol limit. This control limit is obtained based on what
has been known about the process in terms of a model
with specific dynamic order. Models to be required for
this purpose can be obtained from an ATV experiment
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Figure 1: The conventional feedback control system.

with relay feedback.

Developing Benchmark System for Per-
formance Assessment

According to the IMC design principle, an IMC equiva-
lent controller in a single loop of Figure 1 is given by:

Ḡc(s) =
Ḡ−1

p,−F (s)
1− Ḡp,+F (s)

(1)

Where, Ḡp(s) designates the model for the process, and
Ḡp,− and Ḡp,+ designate the invertible and noninvert-
ible parts of Ḡp. The transfer function F (s) is an IMC
filter. For design purpose, the dynamics of a open loop
process can in general be represented by a transfer func-
tion either of first-order-plus-dead-time (abbr. FOPDT)
or of second-order-plus-dead-time (abbr. SOPDT) of the
following:

FOPDT:

Ḡp(s) =
kpe

−θs

τs + 1
(2)

SOPDT:

Ḡp(s) =
kp(as + 1)e−θs

τ2s2 + 2τζs + 1
; a ≥ 0 (3)
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Notice that the SOPDT process with RHP zero can
also be modeled with the one of Equation 3 by making
use of the following approximation. Let the RHP zero is
given in the form of 1− βs. Then,

−βs + 1 ≈ e−2βs × (1 + βs) (4)

By using Gc in Equation 1 and Gp in Equations 2–3,
the resulting open loop transfer function (abbr. OLTF)
of the system becomes:

GOL(s) = GcGp(s)

=
Gp,+F (s)

1−Gp,+F (s)

=
e−θsF (s)

1− e−θsF (s)
(5)

Thus, if Gc is implemented exactly with Equation 1, the
performance of the system depends on the choice of F (s).
The limiting performance of such a system can be ob-
tained from the result of Holt and Morari (1985) with
a slight modification to take into account the additional
dead time.

For conventional loops, Gc is used to be confined to
have the following form:

Gc(s) =
bmsm + bm−1s

m−1 + · · ·+ b0

ansn + an−1sn−1 + · · ·+ a0
(6)

To obtain Gc(s) in the above form, e−θs in the de-
nominator of Equation 1 should be replaced with a
Pade’ approximation of proper order. After introduc-
ing the same Pade’ approximation into the denominator
of Equation 5, it is easy to see that the OLTF becomes:

GOL = H(s)
e−θs

s
(7)

where, H(s) is considered a loop filter and its functional
form varies with the choices of F (s) and the Pade’ ap-
proximation being used. But, in general, H(s) consists
of finite number of poles and zeros.

Due to the approximation that has been made for syn-
thesizing Gc(s), the performance limit set by the IMC
will no longer be applicable to the system in Figure 1.
Thus, the performance limit for a single loop system has
to be obtained from a minimization process. The min-
imization process starts with an H(s) of the following
form:

H(s) = ko
βs + 1
γs + 1

(8)

In other words, with an OLTF of the following:

GOL = ko
βs + 1
γs + 1

e−θs

s
(9)

If the performance in terms of IAE is used, then the
procedure is to find the values of ko and those of β and

Model or method IAE
θ Remark

Benchmark system 1.38 k∗o = 0.76
θ ; β∗ = 0.47θ

Rovira(PI)∗ 1.93 FOPDT; τ = θ
Rovira(PID)∗ 1.52 FOPDT; τ = θ
Sung et al.(PID)† 2.06 Gp(s) = 1

(s+1)5

Sung et al.(PID)† 2.22 Gp(s) = e−s

(9s2+2.4s+1)(s+1)

Swanda and Seborg‡ 2.0 PI control

∗Smith and Corripio (1997, pg. 325)
†Sung et al. (1996)
‡Swanda and Seborg (1999)

Table 1: The minimum IAE
θ

values for different con-
trol systems.

γ that minimize the following integral:

J∗IAE = Min[ko,β,γ]

∫ ∞

0

|e(t)|dt (10)

where e(t) is given as the inverse transformation of e(s),
which is the tracking error of the system, i.e.:

e(t) = L−1

{
1

1 + GOL
R(s)

}
(11)

This above optimization problem was solved numerically
by simulations. The result turns out to be:

G∗
OL =

k∗o(1 + β∗s)
s

e−θs (12)

where,

k∗o =
0.76
θ

, β∗ = 0.47θ, andγ∗ = 0 (13)

Notice that GOL should not have excess number of ze-
ros than poles. Thus, for processes of Equations 2 and 3,
the H(s) in the form of Equation 8 is most appropriate
for developing the benchmark system. Thus, with the
optimization results given above, the benchmark system
is selected as the one that has OLTF of the following:

G∗
OL(s) =

0.76(1 + 0.47θs)
θ s

e−θs (14)

The IAE value of this benchmark system subjected
to an unit step set-point change is found to be 1.38 θ.
It is also found that this benchmark system has a gain
margin of 2.11, and a phase margin of 64.4o. The system
with such margin values is considered to have acceptable
stability robustness.

Based on the FOPDT model of Equation 2, and the
the SOPDT processes of Equation 3, the controllers in
the form of Equation 6 that yield the benchmark OLTF
are given as follows:
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FOPDT:

Gc,1(s) =

(
0.76

kpθ

)
(τs + 1)(0.47θs + 1)

s
(15)

SOPDT:

Gc,2(s) =

(
0.76

kpθ

)
(τ2s2 + 2τζs + 1)(0.47θs + 1)

s(as + 1)
(16)

Obviously, these controllers are not physically realizable.
For controllers to be realizable, one or two low pass filters
with small time constants have to be introduced some-
where in Gc. The value of the resulting IAE will thus
be degraded. But, the change is really too small to be
considered. Thus, if Gc(s) has not been confined to the
conventional PID controllers, the minimum achievable
IAE will be:

IAE∗ = 1.38θ (17)

In Table 1, some IAE values of several systems are
given. These systems include the benchmark one and
some others, which have optimal controllers from differ-
ent sources. It is to show none of these other systems
from different sources has IAE less than the benchmark
one.

This above equation can be adapted to apply to the
case where Gp(s) has 1 − βs as a factor in the numera-
tor (i.e. a RHP zero). In this case, the minimum IAE
becomes:

IAE∗ = 1.38× (θ + 2β) (18)

As an example, Consider a system that has open loop
transfer function of the following:

GcGp(s) =
ko(1 + as)(1− 0.5s)e−s

(1 + 0.05s)s

The minimum IAE of this closed loop system occurs
when ko = 0.4 and a = 0.21, and has a value of 2.8,
which is about 1.38× (1 + 2× 0.5) (i.e. 2.76).

Thus, assessment for a single loop control system that
has Gp(s) of Equation 2 or 3, will be targeting at the
minimum IAE values of Equation 17 and 18.

Assessment for Control Based on IAE

In the previous section, it has been mentioned that the
minimum achievable IAE value of a conventional feed-
back loop is 1.38 θ. In order to measure the achievement
of an existing system toward this achievable target for
set-point tracking, the following index is defined:

Φ =
1.38θ∫∞

0
|e(t)|dt

(19)

Where, in the denominator, the IAE measure of the ex-
isting system for tracking step set-point change is used.
This IAE measure can be obtained from experiment or
from prediction based on a model for Gp. The index Φ,

Figure 2: The Φ value for FOPDT process with
Rovira’s PI and PID controller.

always less than one, is used to represent the ability of
an existing system in eliminating the tracking errors. If
Φ is close to one, it indicates that the system is near its
performance limit.

To illustrate assessing with this presented index, first,
the control of FOPDT process with PID controllers is
considered. In order to be more inclusive for the results,
the FOPDT model is normalized with dimensionless time
unit. The normalized transfer function for the FOPDT
model is:

¯̄Gp(s) =
kpe

−s

τ̄ s + 1
(20)

where, τ̄ = τ/θ. Then, for each τ̄ , Rovira’s tuning for-
mula(Smith and Corripio, 1997, pg. 325) are used to
tune the PI or PID controllers, which were claimed op-
timal for the IAE measure. As shown in Figure 2, the
values of Φ resulting from such PI and PID control sys-
tems are given. It is thus found that, these optimal PID
controllers give values of Φ higher than 0.8. On the other
hand, those for optimal PI controllers, have values sit-
ting between 0.65 and 0.75. Thus, as far as the control
for FOPDT processes is concerned, the PID controller is
a good choice.

Next, for dynamic systems of SOPDT, a normalized
Gp with dimensionless time units are also considered for
illustration:

¯̄Gp(s) =
kp(ās + 1)e−s

(τ̄2s2 + 2τ̄ ζs + 1)
(21)

where, ā designates a
θ , and τ̄ designates τ

θ .
The normalized transfer function shows that τ̄ and

ζ can be used to characterize the dynamic behaviors
of such a process. Thus, PID control systems for Gp

with different τ̄ and ζ are used for illustration. For PID
control of SOPDT processes, tuning rules of Sung et al.
(1996) are used to compute the values of Φ. The results
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Figure 3: The Φ value for SOPDT process with PID
controller given by Sung et al.

are given in Figure 3, where Φ is plotted along the val-
ues of θ/τ in the range between 0.1 and 2. The damping
factor ζ has been used as a parameter. The computed
Φ for such systems indicates that such PID controllers
are more close to the limit for well overdamped Gp. In
this figure, it is also observed that the Φ values com-
puted based on the IAE∗ from SOPDT models are lower
than those from FOPDT models. This does not imply ,
for control purpose, an FOPDT model is superior to the
SOPDT one. Instead, it indicates that with more knowl-
edge about the dynamics, the control performance would
have more stringent limit, and, if achievable, the perfor-
mance would be superior to those with simpler (such as
FOPDT) models.

In general, a Gp(s) of high order may have an FOPDT
and an SOPDT models at the same time as approxi-
mations of different accuracy. One may be questioned
which type of models to be used. To justify, let θ1 and
θ2 designate two apparent dead times in the FOPDT and
SOPDT models, respectively. In general, θ2 ≤ θ1. Two
values of Φ will be resulted:

Φ1 =
1.38θ1∫∞

0
|e(t)|dt

Φ2 =
1.38θ2∫∞

0
|e(t)|dt

Then, we shall have:

Φ2 = (1− η)× Φ1 (22)

where,

η =
θ1 − θ2

θ1
(23)

The value of η implies the portion of apparent dead
time, from this FOPDT model, that can be reduced by
the controllers based on SOPDT model. Thus, if the
value of η is too high, that means FOPDT model is not
sufficient for designing good control system.

Assessment with Relay Feedback Experi-
ments

The information needed for assessing the control will be
a model of FOPDT or of SOPDT that has an appar-
ent dead time. To obtain this model, a relay feedback
system can be used. The use of relay feedback has ad-
vantages on a few aspects. The most important one is
that the control loop is still operated under closed loop
and, hence, is still under control.

The relay feedback system is the same one as has been
used in the ATV test of Åström and Hagglund (1984).
The experiment consists of two stages. In the first stage,
the system is perturbed with a bias to the output of
the relay and wait until the system to appear constant
cycling at the output. At this time, the cycling period
(designated as P ) and the amplitude (designated as a)
of the cycles are measured to calculate the process gain:

kp =

∫ t0+P

t0
y(t)dt∫ t0+P

t0
u(t)dt

(24)

Then, in the second stage, the bias to the relay is set to
zero and wait again until the system appear constant cy-
cling again. The period as well as the amplitude of the
cycles are measured for estimating the other dynamic
parameters. With these data obtained on-line, param-
eter estimations are carried out. The procedures and
the algorithms for these estimations can be found else-
where(Huang et al., 1996, 2000).

Thus, with the estimated model, we can calculate the
predicted IAE for a set-point change by simulating the
following with computer, i.e.:

e(s) =
1

1 + Gc(s)Ḡp(s)
1
s

(25)

Predictions of IAE via this identification procedures and
simulations have been carried out over several example
processes of high order dynamics, and pretty close re-
sults are obtained. In other words, the computation of
Φ for assessment can be performed with an ATV test
mentioned above.

Conclusions

For a single loop control, a benchmark system that aims
at minimuming IAE for set-point change has been es-
tablished. This benchmark system system provides a
performance limit for all feasible controllers in the form
of Equation 6. It has an open loop transfer function
(abbr. OLTF) comprised of one integrator, one simple
lead, and dead time. For assessing an existing system,
an index for indicating the extent of achievement toward
this benchmark system is presented. This index is closely
associated with the knowledge of dynamics being avail-
able, and the knowledge is usually contained in models of
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different orders. To obtain these models an auto-tuning
experiment with relay feedback can be used. Technically,
this assessment reveals how close the existing system is
to the benchmark one, and, if the knowledge (model) for
design is sufficient.
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