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Abstract
Process identification is undergoing tremendous developments as computational capabilities improve. Theories are rapidly
catching up with the needs of practical applications but practical process identification experiences still reveal significant
gaps between theory and practice. This review attempts to highlight the present gaps and challenges. With this objective,
the review treats recent progress in process identification with data gathered in closed loop, and in the tailoring of an
entire identification process to a given control objective.
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Introduction

Process identification is concerned with using observed
process data to form a model of the process that can be
used in various constructive ways for process improve-
ment. It is unquestionably one of the most important
steps of control system design—accounting for as much
as 80-90% of the cost and time involved. It encompasses
a diverse set of tasks that include plant testing, selection
of a model structure, parameter estimation, and model
validation. Prior to actual controller implementation, it
is the only step that requires direct interaction with the
process. Consequently, any erroneous decision here can
jeopardize success of an entire control project. This fact
demands that all decisions involved in identifying a pro-
cess model be made carefully and systematically based
on sound scientific principles and methods—a fact that
perhaps explains the good synergy between researchers
and practitioners of the field.

The paper of Åström and Eykhoff (1971) was one of
the first to review the research in system identification.
During the 70s and 80s, the theoretical foundations for
system identification were laid by the pioneering work
of Ljung (1987), Söderström and Stoica (1989) and their
coworkers. The work of Ljung centered around a par-
ticular paradigm called Prediction Error Minimization
(PEM), which today is the norm of industrial practice.
Process identification at the beginning of the 90s was
reviewed by Andersen et al. (1991) in CPC-IV.

The decade has seen several major developments. One
of them is the subspace approach, which was motivated to
overcome some drawbacks of PEM for multivariable sys-
tem identification (Van Overschee and De Moor, 1996;
Verhaegen and Dewilde, 1992; Larimore, 1990). Signifi-
cant advances have also come along in closed-loop iden-
tification and “control-oriented” (or “control-relevant”)
identification. In these areas the goal is to tailor the
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whole identification procedure to a given control objec-
tive. The past decade has also seen an unprecedented
range and volume of applications of process identifica-
tion in industries, mainly to provide models for predic-
tive control. After a decade of such explosive develop-
ments, it is indeed apt to reflect upon the progress and
the state of the field at this CPC meeting.

The gap between research and practice, though nar-
rower than in most fields, is nevertheless significant and
therefore is worth elaborating a bit:
• Plant Test: Industrial plant tests use simple signals

like steps or PRBSs. In addition, it is almost always
limited to perturbing one input at a time, mostly out
of the concern for unpredictable effects on process
behavior (Qin and Badgewell, 1997). Literature is
replete with optimal test signal design methods in-
cluding those that attempt to incorporate specific
control requirements and process characteristics into
design in an iterative manner (Rivera et al., 1993;
Asprey and Macchietto, 2000; Pearson, 1998; Cooley
and Lee, 2001). However, such tailored and itera-
tive designs have rarely been attempted in practice,
if ever. The single-input testing will inevitably em-
phasize accuracy of individual SISO dynamics but
several studies have shown that accurate identifica-
tion of SISO dynamics may be inadequate for mul-
tivariable control of certain types of plants (e.g., ill-
conditioned plants) (Andersen et al., 1989; Koung
and MacGregor, 1994; Li and Lee, 1996).

• Model Structure: Popular structures are Finite Im-
pulse Response (FIR) models and ARX models,
both of which lead to linear regression problems.
Other structures, like ARMAX models, OE mod-
els, and Box-Jenkins models, which require non-
convex optimization, are less common but are used
in some occasions. In almost all cases, Multiple-
Input-Single-Output (MISO) structures are used, in
which a separately parameterized model is fitted for
each output (Andersen et al., 1991). This practice
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is clearly inefficient, both with respect to model or-
der and accuracy, in view of the fact that most in-
dustrial process outputs exhibit significant levels of
cross-correlation. The preference for (or insistence
on) MISO structure is clearly linked to ease of pa-
rameter estimation as explained below.

• Model Estimation: PEM is by far the most domi-
nant method for estimating model parameters, per-
haps owing to its flexibility and sound theoreti-
cal basis as well as the ready availability of soft-
ware tools. However, with multivariable structures,
PEM requires special parameterizations and non-
convex optimization (Ljung, 1987; Van Overschee
and De Moor, 1994), a fact that perhaps explains
the industry’s proclivity toward use of MISO struc-
tures. The subspace approach is designed to obvi-
ate these problems but requires relatively large data
sets. In fact, the two approaches are best combined
into one: The subspace approach can be used to pro-
vide a good initialization for PEM, which should al-
leviate the aforementioned problems. However, ex-
tensive use of such MIMO identification methods in
the industry is not at all evident.
Statistical methods like the Maximum Likelihood
Estimation or Bayesian estimation have not found
much use. This is probably because of the lack of
probability information or the fact that these com-
plex methods often reduce to the same least squares
calculation as PEM under commonly made prob-
ability assumptions. Likewise, use of nonparamet-
ric methods such as the frequency-domain Empirical
Transfer Function Estimation seems rare, probably
due to the lack of sufficiently large data sets.

• Use of Estimated Model: The PEM approach
with many structures (e.g., ARX or ARMAX) as
well as the subspace approach yield a combined
deterministic-stochastic system model. However,
the noise part of the model is seldom used in control
system design. This may be due to the belief that
disturbances experienced during an identification
experiment are not representative of those encoun-
tered during real operation. However, this practice
bears some danger as the two model parts are iden-
tified to work together as a single predictor. Also,
many process monitoring and soft-sensing schemes
require precisely information on how variables are
correlated to one another in time due to unknown
inputs and noises. Hence, the noise part of a multi-
variable model, when fitted with appropriate data,
can serve a very useful function. In addition, some
control applications, such as those involving infer-
ential estimation, should clearly benefit from avail-
ability of an accurate noise model (Amirthalingam
and Lee, 1998; Amirthalingam et al., 2000).

• Model Validation: Standard tests like residual anal-
ysis and cross validation are ubiquitous in the in-

dustrial practice. However, model uncertainties are
seldom captured in a form that can be used for ro-
bust controller design. There is an extensive liter-
ature on how information on process noises (either
statistics or bounds) can be translated into model
bounds (Rivera et al., 1993; Ninness and Goodwin,
1995; Böling and Mäkilä., 1995). However, these
methods are seldom used as process noise informa-
tion itself is unavailable or highly inaccurate. In
addition, there are many other contributing uncer-
tainties, e.g., process nonlinearities, actuator errors,
etc. Good theories with wrong assumptions are just
as ineffective as bad theories.

• Closed-Loop Testing and Iterative Improvement:
Many industrial processes already have several
working loops that may not be removed. Hence,
we suspect that closed-loop testing has already been
practiced to some extent. However, it is not clear
whether practitioners are always aware of poten-
tial problems that can arise with usage of feed-
back correlated data. It is also less common to use
closed-loop testing as a way to generate data that
are highly informative for feedback controller design
(Gevers and Ljung, 1986; Gevers, 2000; Forssell and
Ljung, 1999a). In addition, many published papers
deal with iterative improvement of model and con-
troller through closed-loop testing (Van den Hof and
Scharma, 1995; Hjalmarsson and Birkel, 1998). The
idea of continually improving the closed-loop per-
formance by using data collected from a working
loop is very attractive from a practical viewpoint.
It connects well with the industry’s growing con-
cern over maintaining performance of advanced con-
trollers. However, it is not clear that the industry
at large has seriously considered this possibility.

• Nonlinear Process Identification: While systematic
tools for formulating first engineering principle mod-
els have begun to appear, few systematic methods
for identifying first engineering principle models are
available (Asprey and Macchietto, 2000; Lee, 2000).
On the other hand, some implementations of non-
linear model predictive control have been reported
(Qin and Badgewell, 1998; Young et al., 2001). The
most common industrial approach to deal with pro-
cess nonlinearities is by use of multiple models.
Switching rules among different models are ad hoc
and seldom systematically designed. Some applica-
tions of artificial neural networks are reported but
their effectiveness as causal models, i.e., as opti-
mization and control would use them, is question-
able at best. Despite the vigorous research in this
area during the past decade, the field still lacks a ba-
sic framework and a unifying theoretical foundation
(Johansen and Foss, 1995).

These gaps in Table 1 serve to motivate our selec-
tion of topics covered in this review paper. We have
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Issue Practice Theory
Model Structure SISO/MISO ARX or FIR MIMO State Space

Parameter estimation PEM (Least Squares) Subspace and PEM
Noise info usage Rarely used Disturbance estimation, inferential control
Model validation Residual analysis Model error bounds

Plant Test One input at a time Simultaneous testing of multiple inputs
Closed Loop test Little understood Vigorously researched

Nonlinear Process Identification Seldom used Systematic tools lacking

Table 1: Summary of current gaps between practice and theory.

chosen topics, for which theories, in our view, have ad-
vanced to a point that some of the aforementioned gaps
can be closed to bring significant benefits to the prac-
tice. For that, we concentrate mainly on two topics,
control-oriented identification and closed-loop identifica-
tion, which in our view have seen the most significant
research and progress related to process control during
the past decade. We attempt to highlight the progress as
well as the current limitations, and point out obstacles
an engineer may face in adopting the new approaches in
practice.

We have chosen to leave out the subspace approach in
our review, other than developments relevant to closed-
loop identification, as the topic has already been well
publicized. Current literature on this topic includes a
book (Van Overschee and De Moor, 1996) and several
review papers, e.g., Viberg (1995) and Shi and MacGre-
gor (2000). We have also chosen to leave out a review on
nonlinear process identification, for which only limited
progress has occurred but further developments are very
much needed. Marquardt (2001)in this conference gives
a comprehensive coverage of this topic.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the current state of knowledge in closed-
loop identification. The asymptotic behavior of various
identification approaches are discussed but our focus re-
mains on practical implications of the theories. In Sec-
tion 3, we discuss the problem of tailoring the entire
identification process to a given specific control objec-
tive. We discuss why this consideration naturally leads
to iterative identification and review both open-loop and
closed-loop strategies. In Section 4, we conclude.

Our main objective for writing this paper is to fuel an
honest and substantive debate among researchers and
practitioners on the current state of identification theo-
ries as related to potential closure of the existing gaps.
We hope that such a debate will clarify the strengths and
limitations of the existing theories and methodologies for
practitioners. We also hope that the factors previously
passed over by the researchers but must be accounted for
theories to be practicable will also be brought out in the
open.

Closed-Loop Identification

Introduction

During the past decade, interest in closed-loop identifi-
cation by the community has risen noticeably. Closed-
loop identification is motivated by the fact that many
industrial processes have already in place one or more
loops that cannot be removed for safety and/or economic
reasons. Beyond this lies the attractive idea of being
able to improve the closed-loop performance continually
by making use of data being collected from a working
loop. It has also been claimed that data collected from a
closed-loop operation better reflect the actual situation
in which the developed model will be used, and there-
fore could yield better overall results (Gevers and Ljung,
1986; Hjalmarsson et al., 1996; Gevers, 2000).

On the other hand, a closed-loop condition presents
some additional complications for system identification.
The fundamental problem is the correlation between the
output error and the input through the feedback con-
troller. Because of the correlation, many identification
methods that are proven to work with open-loop data
can fail. This is true for the prediction error approach
as well as the subspace approach and nonparametric ap-
proaches like empirical transfer function estimation.

Awareness of the potential failings has engendered sig-
nificant research efforts, which in turn have led to better
understanding of the properties of the existing methods
when used with closed-loop data as well as some remedies
and special measures needed to circumvent the potential
problems. We will try to give a concise and pragmatic
summary of the recent developments, concentrating on
the practical implications of the theoretical results. See
Gustavsson et al. (1987); Van den Hof and Scharma
(1995); Forssell and Ljung (1999a) for more comphen-
sive surveys and formal disquisitions on the topic. We
will focus on the prediction error approach (Ljung, 1987),
which is the standard at the moment, but we will also
point to some potential problems and remedies for the
subspace approach at the end.

The closed-loop identification methods can be classi-
fied into three broad categories. In the direct approach,
the feedback is largely ignored and the open-loop system
is identified directly using measurements of the input and
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Figure 1: Typical setup for closed-loop identification.

output. In the indirect approach, the closed-loop transfer
function between an external perturbation signal and the
output (or input) is first identified and an open-loop sys-
tem model is determined from it with knowledge of the
controller. Finally, in the joint input-output approach,
measurements of both the input and output are used to
identify a joint system, which has the plant input and
output as its outputs and the external perturbation sig-
nal as its input. From the joint system, an open-loop sys-
tem model is extracted. We will examine each approach
one at a time, concentrating on asymptotic properties
and their implications.

The block diagram in Figure 1 displays a typical setup
of closed-loop identification experiment. External per-
turbations may be added to the setpoint of the controller
(at Location 1 in Figure 1) or directly to the controller
output (at Location 2 in Figure 1). For the simplicity
of exposition, we will assume from now on that exter-
nal perturbations enter through Location 2. Note that,
in the case that the controller is linear, this assumption
can be made without loss of generality since perturba-
tions introduced at Location 1 can always be rewritten
as equivalent perturbations at Location 2.

Disturbances in the plant output are described col-
lectively as a white noise signal (denoted by e) passed
through some linear filter H0. Without loss of general-
ity, we will assume that H0 is stably invertible and monic
(H0(∞) = I) and the white noise signal e has the mean
of zero and the covariance of Pe.

Assuming the plant G0 and the controller C are both
linear, we can write down the following closed-loop rela-
tionships:

[
y(t)

u(t)

]
=


(I + G0C)−1︸ ︷︷ ︸

S0

G0 (I + G0C)−1H0

(1 + CG0)−1︸ ︷︷ ︸
Sr

0

−C(I + G0C)−1H0


[
r(t)

e(t)

]

(1)
In the above, S0 and Sr

0 represent the sensitivity function
and reverse sensitivity function respectively.

Of course, both the assumption of linear plant and the
particular way of describing the disturbance are great
simplifications but are typical of developing and analyz-
ing linear identification methods. In addition, the as-
sumption of linearity of the controller, when made, may

be untenable in many industrial situations where the
controllers are equipped with various anti-windup and
override features.

Direct Approach

In the direct approach, measurements of the plant input
and output are used to build a model for the open-loop
system directly, as in open-loop identification. The main
advantage of the direct method is that the controller is
not restricted to linear ones and its identity needs not
be known. However, the correlation introduced by the
feedback can cause problems and successful application
demands some additional knowledge as we shall see.

The Method. The generic model structure used in
linear identification is as follows:

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (2)

θ is the vector of unknown parameters of the model and
e is a white noise sequence. We may restrict the search
to θ ∈ ΘM . In this case, GM

∆= {G(q, θ) | θ ∈ ΘM} and
HM

∆= {H(q, θ) | θ ∈ ΘM} represent the allowable set
for plant model G and noise model H, respectively. Let
the available data be denoted by

DN = [y(1), u(1), · · · , · · · , y(N), u(N)] (3)

The prediction error minimization (PEM) chooses θ̂N ,
the estimate of θ based on DN , according to

θ̂N = arg min
θ∈ΘM

[
VN (θ, DN )

]
(4)

where

VN (θ, DN ) =
1
N

N∑
t=1

‖ε(θ, t)‖W (5)

ε(θ, t) = H−1(q, θ) [y(t)−G(q, θ)u(t)] (6)

and ‖x‖W
∆= xT Wx denotes the weighted quadratic

norm.

Notation: We will often use symbols ĜN and ĤN

to denote G(q, θ̂N ) and H(q, θ̂N ). The same symbols
may also be used to compactly represent G(ejω, θ̂N ) and
H(ejω, θ̂N ) when the context makes their meanings clear.
Similarly, we will use Gθ and Hθ to denote G(q, θ) and
H(q, θ), or sometimes G(ejω, θ) and H(ejω, θ).

Convergence Behavior. If all the signals are quasi-
stationary, VN (θ, DN ) → V̄ and θ̂N → θ̄ w.p. 1 as N →
∞, where

V̄ (θ) ∆= lim
N→∞

1
N

N∑
t=1

E{‖ε(θ, t)‖W } (7)
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and
θ̄

∆= arg min
θ∈ΘM

V̄ (θ) (8)

From Parseval’s relation,

θ̄ = arg min
θ∈ΘM

1
2π

∫ π

−π

tr [WΦε] dω (9)

where Φε is the spectrum of the prediction error ε.
Since from (6),

ε(t) = H−1
θ [G0u(t) + H0e(t)−Gθu(t)−Hθe(t)] + e(t)

(10)
and e(t) is independent of (G0 − Gθ)u(t) and (H0 −
Hθ)e(t) because (G0 −Gθ) and (H0 −Hθ) both contain
at least one delay,

Φε = H−1
θ ∆GHH−1∗

θ + Pe (11)

where

∆GH =
[
(G0 − Gθ) (H0 − Hθ)

] [
Φu Φue

Φeu Pe

] [
(G∗

0 − G∗
θ)

(H∗
0 − H∗

θ )

]
(12)

Hence,

θ̄ = arg min
θ∈ΘM

∫ π

−π

tr
{
∆GHH−1∗

θ WH−1
θ

}
dω (13)

The expression in (13) provides some good insights into
the convergence behavior under the direct approach.

• Suppose G0 ∈ GM and H0 ∈ HM (i.e., the true plant
and noise process both lie inside the parameterized
model sets). Then, it is clear from the objective
function that the minimum corresponds to Gθ̄ = G0

and Hθ̄ = H0 (implying consistent estimation) if

Φx =
[

Φu Φue

Φeu Pe

]
> 0 ∀ω.

• In the case of a linear controller,[
Φu Φue

Φeu Pe

]

=


Sr

0ΦrS
r∗
0︸ ︷︷ ︸

Φr
u

+CS0H0PeH
∗
0S∗0C∗︸ ︷︷ ︸

Φe
u

−CS0H0Pe︸ ︷︷ ︸
Φue

−PeH
∗
0S∗0C∗︸ ︷︷ ︸

Φeu

Pe


=

[
Φr

u + ΦueP
−1
e Φeu Φue

Φeu Pe

]
=

[
I ΦueP

−1
e

0 I

] [
Φr

u 0
0 Pe

] [
I 0

P−1
e Φeu I

]
(14)

Note that Φu is expressed as sum of two compo-
nents, Φr

u representing the contribution from exter-
nal dithering and Φe

u the contribution from noise
feedback. From (14), it is clear that Φx > 0 iff
Φr

u > 0.

• If the controller is nonlinear or time-varying, Φx

may be positive definite even without Φr > 0.
• Suppose G0 ∈ GM but H0 /∈ HM (implying the

noise part is undermodelled). Then, from (13), we
see that ĜN does not converge to G0 as Gθ = G0

does not achieve the minimum of (13) in this case.
• When the noise model is completely fixed a priori (as

in an Output Error structure), ĜN does not converge
to G0 in general. From expression (13), we see that
ĜN → G0 only when the assumed noise model is
perfect or Φue = 0, which corresponds to the open-
loop case.

Error Analysis. The error behavior in the limit can
be formalized as follows.

Bias
Bias refers to the expected error E{θ0 − θ̂N}. In terms
of our notations, it is θ0 − θ̄ (or G0 − Gθ̄ in terms of
frequency-domain transfer function). An expression for
bias in the limit can be obtained by further manipulating
equation (13) into the following expression (Forssell and
Ljung, 1999b).

θ̄ =

arg min
θ∈ΘM

∫ π

−π

tr {[(G0 + Eθ −Gθ)Φu(G0 + Eθ −Gθ)∗

+ (H0 −Hθ)(Pe − ΦeuΦ−1
u Φue)

(H0 −Hθ)∗]H−1∗
θ WH−1

θ

}
dω (15)

where
Eθ = (H0 −Hθ)ΦeuΦ−1

u (16)

From (15), we can conclude the followings:

1. If the parameterization of the plant/noise model is
flexible enough that Gθ ∈ GM and Hθ ∈ HM ,

Gθ̄ = G0 and Hθ̄ = H0

provided that the minimum is unique, which is guar-
anteed by Φr

u > 0. In this case, ĜN is an unbiased
estimate of G0.

2. Suppose noise model is fixed a priori as HM , which
does not have any dependence on θ. (Alternatively,
assume that separate sets of parameters are used for
G and H as in Box-Jenkins model). Also suppose
that Gθ ∈ GM . Then, we can conclude from the
above that

(G0 −Gθ̄) = (H −HM )ΦeuΦ−1
u (17)

Hence, (H −HM )ΦeuΦ−1
u is the bias. The bias will

be zero if one or both of the following conditions is
satisfied.

• The assumed noise model is perfect, i.e., HM =
H0.
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• Φeu = 0, which implies open-loop testing.

We also note that the size of bias depends on the
following two things:

• (H − HM ), which is the error in the assumed
noise model.

• ΦeuΦ−1
u , which is affected by, among many

things, the power of the external perturbation
signal relative to the noise signal. Note that

ΦeuΦ−1
u = (PeΦ−1

u )× (Φe
uΦ−1

u ) (18)

PeΦ−1
u is the noise-to-signal ratio in an open-

loop sense. What multiplies this is Φe
uΦ−1

u ,
which can be interpreted as the relative contri-
bution of the noise feedback to the total input
power. The larger the noise feedback’s contri-
bution, the bigger the bias. Note that increas-
ing the controller gain will decrease PeΦ−1

u but
will also increase Φe

uΦ−1
u , thus making its effect

on the bias inconclusive.

3. In the case of undermodeling such that Gθ /∈ GM

and/or Hθ /∈ HM , θ will be chosen to make both
G0 −Gθ and H0 −Hθ small. Bias in the frequency
domain will be distributed according to the weight-
ings given in (15).

Variance
The other part of error is variance, which refers to the
error due to an insufficient number of data points relative
to the number of parameters. This error is mathemati-
cally formalized as

Cov(θ̂N ) ∆= E

{(
θ̂N − θ̄

) (
θ̂N − θ̄

)T
}

(19)

in the parameter domain and

Cov
(
vecĜN

)
∆=

E

{(
vecĜN − vecGθ̄

) (
vecĜN − vecGθ̄

)T
}

(20)

in the frequency domain, where the notation vec(·) refers
to a vectorized form of a matrix obtained by stacking the
columns of the matrix into a single column.

In Zhu. (1989), it is shown for open-loop identification
that, as n →∞ and N →∞,

Cov(vecĜN ) ∼ n

N
(Φu)−T ⊗ Φd (21)

where
Φd = H0PeH

∗
0 (22)

and ⊗ denotes the Kronecker product. The above ex-
pression shows that the asymptotic variance distribution

in the frequency domain is shaped by the signal-to-noise
ratio.

For a closed-loop system, it follows directly (Forssell
and Ljung, 1999b) that

Cov(vecĜN ) ∼ n

N
(Φr

u)−T ⊗ Φd (23)

Recall that Φu = Φr
u +Φe

u. Thus the above says that the
excitation contributed by noise feedback does not con-
tribute to variance reduction, at least in the asymptotic
case of n →∞. One can make some sense of this result
by considering the extreme case that input excitation is
entirely due to noise feedback. In this case, measure-
ments of output and input contain just the information
about closed-loop transfer functions (I +G0C)−1H0 and
C(I + G0C)−1H0. If the model order is allowed to ap-
proach infinity, even perfect knowledge of the closed-loop
functions yields no information about G0 and H0 inde-
pendently. This is because, for an arbitrary choice of H0,
one can always choose G0 to match any given closed-loop
functions and vice versa (barring an invertibility prob-
lem). In such a case, variance would be infinite at all
frequencies, which is consistent with expression given in
(23).

An exceptional case is when noise model is perfectly
known a priori. In this case, one can show that asymp-
totic variance distribution follows the open-loop case.
Hence, noise feedback contributes just as much as ex-
ternal dithering to variance reduction. This is consistent
with the foregoing argument as the perfect knowledge of
H0 would enable direct translation of information about
the closed-loop functions into that about the open-loop
function.

In situations where model order can be constrained
to a finite number, the noise feedback would make some
contribution to the information content for the estima-
tion of open-loop functions G and H.

Notation: The Kronecker product between A ∈ <n×m

and B ∈ <p×r is defined as

A ⊗ B =


a1,1B · · · · · · a1,mB

a1,2B
. . . · · ·

...
...

. . .
. . .

...
an,1B · · · · · · an,mB

 (24)

Practical Implications. The following are the im-
portant points to take away from the foregoing analysis.
• The main advantage of the direct approach is that

the controller is completely taken out of the picture
in the estimation step. Not only is it unnecessary
to know the controller, but it is also not required
for the controller to be linear and time-invariant.
It is an important advantage considering that most
industrial controllers are not adequately represented
by a linear, time-invariant operator.
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• The most serious problem for the direct approach
is that noise model (structure) needs to be perfect
in order for it to yield consistent estimates. Fixing
noise model completely a priori, as is often done in
practice, results in a biased-esimate of G0 in general.
For example, the popular least squares identification
of finite impulse response parameters would give a
biased model. This is the most important difference
from the open-loop identification case.

• The theoretical result indicates that consistent esti-
mates can be obtained by leaving noise model suf-
ficiently flexible (so that Hθ ∈ HM ). Though this
would indeed help reduce bias, it may not get rid of
the bias problem completely in practice as most dis-
turbances in industrial processes are non-stationary
and are not accurately captured by a white noise
through a linear filter. In addition, increasing the
order of model would mean increased variance, thus
demanding heavier external dithering.

• In case that noise part is undermodelled, the size
of the resulting bias in G depends on the signal-to-
noise ratio and the relative contribution of exter-
nal dithering to the total input power (compared
to noise feedback). Hence, in principle, bias can
be made negligible by overwhelming noise feedback
with heavy external dithering. On the other hand,
boosting the signal-to-noise ratio by increasing the
controller gain has no ameliorating effect on bias as
it increases the relative contribution of noise feed-
back to the input power as well the signal-to-noise
ratio .

• External dithering with a persistently exciting sig-
nal is necessary for consistent estimation. It is gen-
erally not sufficient to have an input that is persis-
tently exciting. The requirement for external dither-
ing may be removed by using a nonlinear controller
or a time-varying controller.

• Asymptotic variance of a frequency transfer func-
tion estimate is shaped by input excitation achieved
through external dithering. The excitation through
noise feedback contributes little to variance reduc-
tion when model order is high. This means relying
solely on noise feedback for input excitation can lead
a very bad result (an estimate of infinite variance).
Exception is the case where the noise model is accu-
rately known a priori. However, such a case would
be rare in practice, and any error in the a priori
fixed noise model could translate into a bias in the
estimate for G0.

• External dithering is motivated from both the view-
point of bias and of variance. If the noise structure
is left very flexible, variance would be a significant
problem without external dithering, no matter how

much input excitation is there through noise feed-
back. On the other hand, if the noise structure is
very restricted (for example, fixed completely), ex-
ternal dithering would be needed to reduce bias.

• Choice of location for dithering (between Location 1
and Location 2) is not important as a perturbation
made at one location can always be translated into
an equivalent perturbation at the other location. On
the other hand, the perturbation signal (e.g., its
spectrum) should be designed accordingly. To see
this, let us compare the expressions for the resulting
input spectrum (Φr

u), which appears in the asymp-
totic variance expressions of (23), under the two
dithering strategies. For dithering at Location 1,
we obtain

Φr
u = CS0ΦrS

∗
0C∗ (25)

Dithering at Location 2 gives

Φr
u = Sr

0ΦrS
r∗
0 (26)

Loops with integral controllers yield S0 (or Sr
0) that

starts from 0 at ω = 0 and increases to 1 at high fre-
quencies. Hence, a white noise perturbation signal
at Location 2 would give Φr

u that is zero at ω = 0
and very low in the frequency region well below the
controller’s bandwidth. In view of (23), this would
make the low frequency part of the model very poor.
Estimation of the low frequency dynamics is exac-
erbated by the typical shape of noise spectrum Φv,
which is high in the low frequency region for most
process control problems. On the other hand, white
noise dithering at Location 1 does not suffer from
this problem to a same degree since CS0 ≈ G−1

0 in
the low frequency region and ≈ I in the high fre-
quency region. However, white noise dithering sig-
nal is generally not optimal, regardless of the loca-
tion, and its spectrum could be designed systemati-
cally based on estimated noise spectrum and desired
variance distribution.

• In many practical situations, disturbances process
sees during an identification experiment are non-
stationary and better represented by a model that
contains integrators such as the one shown below:

y = G(q)u + H(q)
1

1− q−1
e

⇒ ∆y = G(q)∆u + H(q)e (27)

From the right-hand-side of the arrow in the above,
we see that differencing the input and output data
prior to applying the PEM makes this case equiv-
alent to the standard case. All the foregoing dis-
cussions regarding the signal spectra hold with re-
spect to the differenced signals. For example, to
distribute the variance fairly evenly across the fre-
quency, one should use a dithering strategy where
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an integrated white noise signal (or an integrated
PRBS) is added to the controller’s setpoint. This
would make ∆r a white noise signal in our analysis.
On the other hand, differencing of noisy data can
amplify the noise effect and make the identification
more difficult.

Indirect Approach

In the indirect approach, measurements of plant output
(or input) is used along with record of an external dither
signal to build a model for the closed-loop system first.
Then, based on knowledge of the controller, an estimate
for open-loop function is extracted from the estimate of
the closed-loop function. Note that

y(t) = (I + G0C)−1G0︸ ︷︷ ︸
T yr

0

r(t) + (I + G0C)−1H0︸ ︷︷ ︸
T ye

0

e(t) (28)

Hence, in the first step, T yr
0 is estimated using data

record for r and y, and in the second step, G0 is ex-
tracted from the estimate.

The main advantage of the indirect approach is that
the first step is in essence the same problem as open-
loop identification because one does not have to be con-
cerned with any feedback-induced correlation between
the system input (r) and the noise (e). This removes
the requirement of perfect noise model (structure) for
consistent estimation. On the other hand, the second
step requires a mathematical representation of the con-
troller, which generally has to be assumed linear in order
to extract the open-loop functions from the closed-loop
function. In addition, the resulting model can be of very
high order, depending on the parameterization used.

The Method. The generic model structure used
here is

y(t) = T yr(q, θ)r(t) + T ye(q, θ)e(t) (29)

The same PEM can be applied to the above model struc-
ture with data record of

DN = [y(1), r(1), · · · , · · · , y(N), r(N)]

to obtain estimates T̂ yr
N and T̂ ye

N . Since T yr
0 = (I +

G0C)−1G0, we can obtain an estimate for open-loop
function G0 as follows:

ĜN = T̂ yr
N (I − T̂ yr

N C)−1 (30)

The above calculation can result in ĜN of very high or-
der. One may obviate this problem by using the following
parameterization of the closed-loop function:

T yr(q, θ) = (I + G(q, θ)C)−1G(q, θ) (31)

However, adoption of such a parameterization would
make parameter estimation (via PEM) more complex.

Another concern may be that resulting ĜN may not
even give a stable closed loop under the controller C. To
ensure that the model is stabilized by the controller, one
can first parameterize the set of all linear plants that are
stabilized by C using the dual Youla parameterization
and then perform the search over the set (de Callafon
and Van den Hof, 1996).

By applying the expression of (13) to the indirect iden-
tification, convergence behavior can be easily analyzed.
It is not discussed here since the problem is essentially
the same as the open-loop case. Error analysis can also
be carried out in a similar manner as before. Asymptotic
variance of ĜN under the indirect method is the same as
in the direct method and follows (23).

Key Points.

• To obtain the closed-loop function, one can use
any proven open-loop identification method without
modification.

• Consistent estimation is possible even without a per-
fect noise model (structure), which is the main at-
tractive point for the indrect approach.

• The most serious problem for the indirect approach
is the assumption of linear controller, which may be
untenable in many industrial situations. Most in-
dustrial controllers are equipped with special anti-
windup/override features and their behavior may
not be represented accurately by a single linear func-
tion. One needs to be careful that these special
features do not become active during data collec-
tion. An error in the controller representation will
translate into an error in extracting the open-loop
function from the closed-loop function.

• Another potential disadvantage is high model or-
der that often results from the two step calcula-
tion. This problem may be obviated by employing
a particular parameterization involving a parame-
terized form of the open-loop function (such as the
one in (31)). On the other hand, with such a spe-
cialized structure, the prediction error minimization
becomes more demanding computationally.

• The asymptotic variance distribution in the fre-
quency domain follows the same expression as in the
direct identification case. Hence, all the previous
remarks regarding shaping of variance distribution
apply here as well.

Joint Input-Output Approach

The idea behind the joint input-output approach is to use
measurements of both the output and input to remove
the requirement of a known controller. Since

y(t) = G0(I + CG0)−1︸ ︷︷ ︸
T yr

0

r(t) + (I + G0C)−1H0︸ ︷︷ ︸
T ye

0

e(t) (32)
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and

u(t) = (I + CG0)−1︸ ︷︷ ︸
T ur

0

r(t)+−C(I + G0C)−1H0︸ ︷︷ ︸
T ue

0

e(t) (33)

we have
G0 = T yr

0 (Tur
0 )−1 (34)

The above relation can be used to calculate the open-
loop function from the two closed-loop functions without
knowledge of the controller.

In effect, in the joint input-output approach, the con-
troller is “identified.” Even though the controller is not
required to be known, it is implicitly assumed to be linear
and time-invariant, an assumption that may not always
be justified in practical situations.

The Method. In the first step, the following model
form is used:[

y(t)
u(t)

]
=

[
T yr(q, θ)
Tur(q, θ)

]
r(t) +

[
T ye

M (q)
Tue

M (q)

]
e(t) (35)

In the above, we assumed that the noise part of the model
is fixed a priori but it too can be parameterized for esti-
mation. Note that consistent estimates can be obtained
with a fixed noise model in this case since r and e are
uncorrelated.

To the above, PEM can be applied with the data
record of

DN = [y(1), u(1), r(1), · · · · · · · · · , y(N), u(N), r(N)]

to obtain estimates T̂ yr
N and T̂ur

N . Then open-loop plant
estimate ĜN is obtained by

ĜN = T̂ yr
N

(
T̂ur

N

)−1

(36)

One drawback is that ĜN so obtained may be of very
high order. This can be circumvented by using a model
form that recognizes the underlying structure, such as
the one below:

T yr(q, θ) = G(q, θ1)Tur(q, θ2) (37)

θ =
[

θ1

θ2

]
By adopting the above structure, G(q, θ1) is identified
directly, rather than through the inversion in (36).

Two-Stage Method and Projection Method.
Among the variations of the above method are the so
called two-stage method by Van den Hof and Schrama.
(1993) and projection method by Forssell and Ljung
(2000a). Note that

u(t) = (I + CG0)−1r(t)︸ ︷︷ ︸
ur(t)

+−C(I + G0C)−1H0e(t)︸ ︷︷ ︸
ue(t)

(38)

Hence, ur represents the portion of the input generated
by signal r and ue is the portion due to noise feedback.
Now,

y(t) = G0u
r(t) + G0u

e(t) + H0e(t) (39)

Since ur is uncorrelated with the rest of the right-hand-
side, a consistent estimate of G0 can be obtained with
data for y and ur. This consideration leads to the fol-
lowing method:

1. Start with the parameterized structure

u(t) = Tur(q, θ)r(t) + Tue
M (q)e(t) (40)

Apply PEM to the above model with data record
DN and obtain T̂ur

N .

2. Obtain data for ur through

ûr
N (t) = T̂ur

N r(t), t = 1, · · · , N (41)

3. Apply PEM to the model structure

y(t) = G(q, θ)ur(t) + T ye
M (q)e(t) (42)

using the data record of

DN = [ûr
N (1), y(1), · · · , · · · , ûr

N (N), y(N)]

to obtain ĜN .

In the projection method, Tur is allowed to be an
acausal operator by parameterizing it as a two-sided FIR
filter:

Tur(q, θ) =
n2∑

i=−n1

θiq
−i (43)

This is to ensure that the resulting ûr
N is uncorrelated

(“orthogonal” in the least squares language) asymptoti-
cally with u− ûr

N , which becomes a part of the residual
in the second PEM. Recall that, in the least squares esti-
mation, the residual has to be orthogonal to the regressor
in order to obtain a consistent estimate (Ljung, 1987).
If the controller is linear, all the preceding argument
holds and the orthogonality of the residual can be as-
sured (asymptotically) with a sufficiently rich yet causal
Tur

θ . However, with a nonlinear or time-varying con-
troller, ûr

N obtained with any casual T̂ur
N and u−ûr

N may
be correlated, thereby destroying the consistency of esti-
mation in the final step. By employing an acausual FIR
filter with sufficiently large n1 and n2 for Tur(q, θ), one
gets ûr

N that is uncorrelated (orthogonal) with u − ûr
N ,

even when the controller is nonlinear or time-varying.
The convergence behavior is essentially the same as for

the indirect approach and does not require an elaborate
discussion here. Error behavior too is similar to that
for the indirect approach. The variance also follows the
same expression of (23). The same comments apply to
the two-step method and the projection method.
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Closed-Loop Perfect External Linear Known
method Noise Model Dithering Controller Controller
Direct Yes Yes∗ No No

Indirect No Yes Yes Yes
Joint I/O No Yes Yes No
Two-Step No Yes Yes No
Projection No Yes No No

∗Unless the noise model is perfectly known a priori

Table 2: Summary of the requirements of different closed-loop identification methods.

Key Points. Some key points for the joint I/O
method and its off-springs are:

• As with the indirect approach, the main advantage
of the joint input-output approach over the direct
approach is that consistent estimates can be ob-
tained even with an imperfect noise model.

• The main advantage of the joint input-output ap-
proach over the indirect approach is that explicit
knowledge of the controller is not required. How-
ever, it does implicitly assume that the controller is
linear.

• The two step method is essentially same as the stan-
dard joint input-output method and does not appear
to offer any new advantage.

• The projection method, on the other hand, further
improves it by removing the requirement of linear
controller for consistent estimation. It also retains
the aforementioned advantage over the direct ap-
proach. The relaxation of the requirement for lin-
ear controller behavior is practically significant in
view of the fact that most industrial controllers show
some degree of nonlinear behavior due to various
fixes and add-ons.

• Measurement errors for the input do not destroy the
consistency if they are uncorrelated with the dither
signal.

The practical requirements of the different closed-loop
identification approaches are summarized in table 2.

Subspace Identification with Closed-Loop Data

So far, our discussion has centered around PEM. An al-
ternative to PEM is subspace identification, which has
drawn much attention in recent years. The main attrac-
tion for the subspace approach is that it yields a mul-
tivariable system model without the need for a special
parameterization, which requires significant prior knowl-
edge and nonconvex optimization. Both represent sig-
nificant hurdles for using PEM for multivariable system
identification, which explains why it is hardly used for
this purpose. Most subspace methods in the literature
can fail, however, when used with closed-loop data. By
“fail”, we mean that the guarantee of an asymptotically

unbiased estimate, a nice proven property for most sub-
space methods, is lost. A practical implication is that,
with closed-loop data, the method may yield a poor
model regardless of number of data points used. Here, we
will briefly examine what fundamental problem closed-
loop data pose for the subspace method and examine
some available modifications to the standard approach
in order to circumvent the problem.

Main Idea of Subspace Identification. We first
review the subspace method. Though many versions ex-
ist in the literature, the essential ideas are same and the
practical outcomes from applying different algorithms
should not differ much (Van Overschee and De Moor,
1995). We will discuss one of the most popular methods,
called N4SID, which was introduced by Van Overschee
and De Moor (1995).

The underlying plant is assumed to be

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + ν(t)

(44)

where w(t) and ν(t) are white noise processes. The state-
space description is very general and subsumes most of
the input-output structures studied in the system iden-
tification literature.

The following is an alternative representation of the
above when (44) is viewed as an input-output system
description:

x∞(t + 1) = Ax∞(t) + Bu(t) + K∞ε∞(t)
y(t) = Cx∞(t) + Du(t) + ε∞(t)

(45)

(45) can be interpreted as the steady-state Kalman filter
for (44) and hence ε∞ is the innovation sequence, which
is white. The two are equivalent in an input-output sense
and (45) is referred to as the innovation form for (44).

The N4SID method attempts to identify the follow-
ing non-steady-state Kalman filter equation (within some
state coordinate transformation) to obtain the parame-
ters for the system equation in (45):

xn+1(t + 1) = Axn(t) + Bu(t) + Knεn(t)
y(t) = Cxn(t) + Du(t) + εn(t)

(46)
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From the notation, you may deduce that the above rep-
resents a non-steady-state Kalman filter started at t− n
with zero initial estimate and initial covariance set equal
to the system’s open-loop covariance. Successful iden-
tification of the above equation yields system matrices
(A,B, C, D) for (45). In addition, with a large n, it gives
a good approximation for stochastic part of the system
in (45) since Kn → K∞ and Cov{εn} → Cov{ε∞} as
n →∞. Here n is assumed to be higher than the intrin-
sic system order.

For the simplicity of discussion, we will assume from
hereafter that u(t) is an independent (temporally uncor-
related) sequence.

The key to subspace identification is the following
multi-step prediction equation:


y(t)

y(t + 1)
...

y(t + n − 1)

 =


C

CA
...

CAn−1

 xn(t)

+


D 0 · · · 0

CB D
. . .

...
...

. . .
. . .

...
CAn−2B · · · CB D




u(t)
u(t + 1)

...
u(t + n − 1)



+


εn(t|t − 1)

εn(t + 1|t − 1)
...

εn(t + n − 1|t − 1)

 (47)

εn(t + j|t− 1) represents the j +1-step-ahead prediction
error (based on the Kalman estimate xn(t)). The above
will be denoted by

Y0+
n (t) = Γo

nxn(t) + Hf
nU0+

n (t) + E0+
n (t) (48)

A key point is that E0+
n (t) is orthogonal to both xn(t)

and U0+
n (t). Now, since the Kalman filter is linear with

respect to the measurement and the input, we can ex-
press

xn(t) = M1Y
−
n (t) + M2U

−
n (t) (49)

where

Y
−
n (t) =


y(t − n)

y(t − n + 1)
...

y(t − 1)

 ; U
−
n (t) =


u(t − n)

u(t − n + 1)
...

u(t − 1)


(50)

Substituting (49) into (48) gives

Y0+
n (t) = Γo

n

[
M1 M2

]︸ ︷︷ ︸
Hp

n

[
Y−n (t)
U−n (t)

]
+Hf

nU0+
n (t)+E0+

n (t)

(51)
By arranging the data for y and u appropriately based
on the above equation, one can obtain estimates for Hp

n

and Hf
n through linear least squares. The least squares

estimation yields consistent estimates of Hp
n and Hf

n as
residual E0+

n (t) is orthogonal to regressors Y−n (t),U−n (t)
and U0+

n (t).
Using estimate Ĥp

n, one can determine the system or-
der (by examining its rank) and obtain estimates for
Γo

n,M1 and M2 (within a coordinate transformation). Fi-
nally, data for the Kalman state xn can be constructed
from the estimates as

x̂n(t) =
[

M̂1 M̂2

] [
Y−n (t)
U−n (t)

]
, t = n, · · · , N−n

(52)
The whole calculation can be done by performing some
matrix projections with appropriately arranged data ma-
trices, which can be implemented in a computationally
efficient and robust way (Van Overschee and De Moor,
1996).

By following a similar procedure, one can also obtain
data for xn+1(t + 1), t = 1, · · · , N − n.

After the data for xn(t) and xn+1(t + 1) are obtained,
the system matrices are estimated based on the following
equation:[

xn+1(t + 1)
y(t)

]
=

[
A
C

]
xn(t) +

[
B
D

]
u(t) +

[
Kn

I

]
εn(t)

(53)
Again, since εn(t) is orthgonal to xn(t) and u(t), lin-
ear least squares gives consistent estimates of A,B, C,
and D. One can also obtain consistent estimates of Kn

and Pn(∆= Cov{εn(t)}) using the residuals from the least
squares.

In overall, one obtains consistent estimates of the
Kalman filter matrices in (46) since the first least
squares yields a consistent estimate of Hp

n and there-
fore of xn(t) (within a coordinate transformation), and
the second least squares yields a consistent estimate
of (A,B,C, D, Kn, Pn) provided consistent estimates of
xn(t) and xn+1(t + 1) are used.

With the obtained estimates denoted hereafter by(
Â, B̂, Ĉ, D̂, K̂, P̂

)
, one can form the state-space model

x(t + 1) = Âx(t) + B̂u(t) + K̂e(t)
y(t) = Ĉx(t) + D̂u(t) + e(t)

(54)

where e is assumed to be a white noise process of covari-
ance P̂ . The deterministic part of the model is unbiased
and the stochastic part is slightly biased due to mismatch
between Kn and K∞ as well as that between Pn and P∞.
Note: If the input u is not white, the assumed initial-
ization of the non-steady-state Kalman filter should be
altered slightly in order to make E0+

n uncorrelated with
xn(t) and U0+(t). In this case, the proper initial esti-
mate to assume for the Kalman Filter is not zero, but a
function of U−n (t) and Y−n (t). This creates a slight incon-
sistency between the assumed initialization of the under-
lying Kalman filter for xn(t) and that for xn+1(t + 1),
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and complicates the procedure somewhat. The details
of the modifications needed to save the nice asymptotic
property are worked out in (Van Overschee and De Moor,
1994, 1996). This is mostly a theoretical concern, how-
ever. Since the effect of initialization on the Kalman
estimate becomes negligible as n → ∞, the basic algo-
rithm works well with a large n, even when the input is
not white.

Problem with Closed-Loop Data. With closed-
loop data, consistency for the first least squares estima-
tion breaks down. This is because E0+

n (k) is no longer
uncorrelated with U0+. For example, u(t) is a function
of y(t) and therefore of εn(t|t − 1), which is correlated
with εn(t+1|t−1). Note that u(t) appears in the regres-
sor for the two-step-ahead prediction model of y(t + 1).
Hence, the regressor becomes correlated with its residual
εn(t + 1|t− 1). Since Ĥp

n is biased, the whole argument
for convergence breaks down.

The Modifications. Since in the indirect approach,
system input is an external perturbation signal which
has no correlation with system noise, the standard sub-
space method can be used to obtain a closed-loop sys-
tem model. Given a state-space representation of the
controller, a state-space model for the open-loop system
can easily be extracted from it.

Van Overschee and De Moor (1997) discuss a way
to modify the projection algorithm they use in their
N4SID algorithm to account for closed-loop nature of
data. Though this method does not belong to the in-
direct approach, the method requires knowledge of the
controller as is the case for the indirect approach.

The joint input-output approach can also be inte-
grated seamlessly with the subspace method. The sub-
space method can be used to identify a joint system and
then an open-loop system model can be conveniently ex-
tracted from it, as shown in (Verhagen, 1993).

In addition, the two-step method and the projection
method discussed earlier in the context of PEM should
be applicable here. Since the steps for applying these
methods would be essentially the same as before, just
with PEM replaced by a subspace method, they are not
discussed here.

Finally, Ljung and McKelvey (1996) proposed an al-
ternative way to construct state data. Instead of picking
the state basis from the projected data matrix, which
poses a consistency problem in the case of closed-loop
data, they suggested to identify a high-order ARX model
and use it to calculate the n-step predictions. Note that
identifying a high-order ARX model amounts to identi-
fying just the first of the n-step predictor in (51) with
a very large n. The reason for identifying only the first
of the n-step predictor is that consistent estimates of
the one-step-ahead predictor can be obtained even with
closed-loop data, since the regressor is uncorrelated with

the residual. The identified ARX model is used succes-
sively to construct the n-step predictions of y, which are
obtained with all the future inputs set equal to zero (i.e.,
u(t) = · · · , u(t+n−1) = 0). Denote the resulting n-step
predictions by

Ŷ0+
n (t) =

[
ŷT (t|t− 1) ŷT (t + 1|t− 1)

· · · ŷT (t + n− 1|t− 1)
]T

. (55)

From here on, Ŷ0+
n (t) is treated an object equivalent to

Ĥp
n

[
Y−n (t)

U−n (t)

]
in the standard method. Hence, the state is

created as x̂n(t) = LŶ0+
n (t), where L contains the basis

picked by examining the data matrix for Ŷ0+
n (t).

Control-Oriented Process Identification

The term control-oriented process identification refers to
a tailoring of an entire identification process to require-
ments of intended control. It points directly to the much
needed integration between model development and con-
troller design. The term perhaps was born in the midst
of a debate on the apparent disparity between system
identification methodologies and robust controller design
methodologies. It was pointed out that, since most ro-
bust controller designs require both a nominal model and
error bounds, more than just a nominal model should be
passed from the identification step to the controller de-
sign step.

Over the course of time, the term has come to mean
much more than simply providing a model description
suited to robust controller design. Since achievable per-
formance of a model-based controller, regardless of de-
sign strategy one employs, depends on the model quality,
it is beneficial to shape the whole identification process
based on the ultimate goal of achieving the best possible
closed-loop performance. For example, the data genera-
tion step has a direct bearing on the size and distribution
of model error, which in turn influence the closed-loop
performance achievable with a particular controller de-
sign strategy. Hence, rather than using some univer-
sal testing procedure that ignores the characteristics of
underlying plant dynamics and control objective, one
should tailor-design the procedure to befit the plant char-
acteristics.

Integration of identification and control design has
been presented by many authors going back to Ziegler
and Nichols (1942) and Åström and Hägglund (1984)
who aimed at model free tuning of simple controllers.
The desire for development of identification for robust
control was indicated by Andersen et al. (1991)at CPC-
IV. Theoretical interest in identification for control de-
sign has grown significantly during the past decade and
the intensive research has yielded some useful insights
and methodologies.

One fundamental understanding that emanated from
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the research is the necessity of iteration. For exam-
ple, control-oriented design of a data-gathering experi-
ment demands that one relates the design parameters to
model error and then ultimately to the closed-loop per-
formance. Under well-defined assumptions on the prior
model set and data set (or prior probability distribu-
tions on the model parameters and measurement errors),
it is possible to relate design parameters (e.g., test sig-
nals) to model error. The more complicated half of the
puzzle is how model error degrades closed-loop perfor-
mance. This degradation depends on the nominal model
as well as the controller design method employed (i.e.,
how the nominal model and possibly model error infor-
mation gets translated into a controller). Even though
the controller design method may be known a priori, the
nominal model is not. This leads to the necessity of ap-
proximating it through iteration (Cooley and Lee, 2001).

Even though the complex relationship between model
error and closed-loop performance is the challenging as-
pect of the problem from a theoretical viewpoint, the
issue of how design parameters influence model quality
is by no means simple and in fact may be a more seri-
ous barrier to practical use of most available approaches.
This is because the question inherently requires prior
information on plant and measurement error (as deter-
ministic bounds or probability distributions), which are
not readily available or easily expressed in the required
mathematical terms.

The problem of control-oriented identification can also
be posed in the context of closed-loop identification, and
in fact most research in this area has followed this route.
The main result is that, to minimize the closed-loop error
that will ultimately result from a model-based controller,
the identification of the model should use closed-loop
data produced with the very controller (Gevers, 2000).
However, the controller is not known prior to an actual
experiment and therefore iteration (between controller
design and closed-loop identification) is performed with
the hope that the controller converges through the iter-
ation.

The following section presents key issues and results
regarding identification of models with the aim of achiev-
ing the best possible closed-loop performance. First, we
present some preliminaries related to tradeoffs between
two types of identification errors. Understanding of how
model error arises from different sources plays an im-
portant role during the development of identification for
control. Thereafter control designs and model approxi-
mations are explained before development of identifica-
tion for control is described and a methodology for joint
optimization of modelling and control is presented.

Preliminaries

Identification. In identification for control, it is pre-
ferred to identify low order models, which subsequently
may be used for robust controller design. Given that

such low order models cannot represent the true plant
over the entire relevant frequency range they will have
a systematic error, a bias error, in addition to the in-
evitable noise-induced variance error. The relative con-
tributions of the two types of error may be expressed
in the frequency domain, by defining a model error T̃ ,
where the model T (q) = [P (q) H(q)] contains a pro-
cess and a noise transfer function y(t + 1) = P (q)u(t) +
H(q)e(t). Thus a performance objective J̄ may be for-
mulated as

T̃ (eiω) = T̂ (eiω)− T0(eiω) (56)

J̄(T̃ ) =
∫ π

−π

E
{

T̃ (eiω)C(ω)T̃T (e−iω)
}

dω (57)

where the Hermitian 2x2 block matrix weighting function
C(ω) describes the relative importance of a good fit over
the frequency range of interest as well as the relative
importance of the fit of P and H respectively. Note that
the expectation is due to the randomness of T̃ . Using a
first order approximation of the model error gives:

T̃N (eiω,Θ) =

= T̂N (eiω,Θ)− T0(eiω)

' T (eiω,Θ∗)− T0(eiω) + (Θ̂N −Θ∗)T T ′(eiω,Θ∗)

= B(eiω,Θ) + (Θ̂N −Θ∗)T T ′(eiω,Θ∗)
(58)

where

T ′(eiω,Θ) =
dT (iω,Θ)

dΘ
(59)

B(eiω) = T (eiω)− T0(eiω) (60)

and Θ∗ is the parameter estimate as N →∞.
Substituting this into (57) gives the following approx-

imate expression Ljung (1999):

J̄ ' JB + JP (61)

with

JB =
∫ π

−π

B(eiω)C(ω)BT (e−iω)dω (62)

JP =
1
N

∫ π

−π

tr[P (ω)C(ω)]dω (63)

where

P (ω) = T ′T (e−iω)[NCov(Θ̂N )]T ′(eiω) (64)

The bias contribution JB is mainly affected by the model
set as well as by signal power spectrum. The variance
contribution JP on the other hand decreases with in-
creasing amount of data and signal power, whereas it in-
creases with the number of parameters estimated. Min-
imizing the objective function in (61) clearly involves
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Figure 2: Representation of model perturbation
by upper Linear Fractional Transformation (LFT)
Fu(Q, ∆).
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Figure 3: Feedback connection T(P0, C) around a
plant P0.

making a tradeoff between bias and variance, i.e. be-
tween the model set and the number of parameters used.
A proper decision on the tradeoff is key to success of
any process identification scheme. The tradeoff is a fac-
tor through the design of an entire process identification
process, including selection of model set and its parame-
terization, experimental design (e.g., test signals’ power
spectra), etc. The development of identification meth-
ods for control design has also exploited this tradeoff in
various ways as described in the sequel.

Representation of Model Approximations.
Knowledge of the nominal plant to be controlled is
generally incomplete for robust controller design. Model
error can be represented by a set of models. Such a set
can be built up from a nominal model P̄ along with a
model perturbation ∆ (Doyle et al., 1992) as illustrated
in Figure 2. This Linear Fractional Transformation
(LFT) model framework can represent additive as well
as multiplicative uncertainty, each of which requires a
different Q. In addition Q will contain the necessary in-
formation to characterize a set of models, P. In Hansen
and Fanklin (1988), a fractional model representation is
described by a quotient of two stable factors parameter-
ized via the dual Youla-Kucera parameterization. This
approach is able to deal with estimation of a model set
that includes both stable and unstable plants, even when
operating under feedback controlled conditions. This
approach is further explored by introducing a separate
coefficient matrix Q (Zhou et al., 1996), where the

entries depend on the nominal model P̄ and the way in
which the allowable perturbation ∆ affects the nominal
model. The set of models P may be characterized as

P = {P |P = Fu(Q,∆)} , with ||∆||∞ < 1 (65)

where the upper LFT Fu(Q,∆) ≡ Q22 + Q21∆(I −
Q11∆)−1Q12 assuming the inverse exists. With this rep-
resentation the nominal model is P̄ = Q22.

Control Design. The performance of a feedback
connection T(P0, C), where

(
y
u

)
= T(P0, C)

(
r2

r1

)
(66)

T(P0, C) =

(
P0

C

)
(I + CP0)

−1

(
C
I

)
(67)

which is constructed from a plant P0 and a controller C
as shown in Figure 3, can be characterized by a norm
value of J(P0, C), which is a closed-loop-relevant oper-
ator. Minimization of this norm may be done through
controller design directly, provided that measurements
from the plant can provide information on the control ob-
jective function J(P0, C). If this norm can be assessed di-
rectly on the plant, then the controller may be tuned op-
timally iteratively. This approach may be termed model-
free controller tuning. This idea has been used by several
researchers. Hjalmarsson. et al. (1994) developed an it-
erative procedure where two to three batch experiments
are performed at each iteration. This procedure has been
further developed to the multivariable case by Hjalmars-
son and Birkel (1998), and reviewed by Gevers (1998).
The direct iterative tuning is restricted to those control
objective functions that can be assessed directly from ob-
servations. However, this methodology originated from
studying the interplay between identification and con-
trol. This interplay is further discussed in the following
sections, where the key aspect is to relate the purpose of
identification, i.e., achieving control performance, to the
identification procedure.

Identification of Model for Control

The nominal model P̂ within a model set plays an impor-
tant role. Since the nominal model is the sole basis for
many controller designs, its quality is very important. In
this section, we review the work on identifying a nominal
model that leads to a good control performance when a
controller design based on nominal performance is used.
The importance of the nominal model has been recog-
nized by many researchers, (e.g., Rivera and Gaikwad,
1992; Scharma and Bosgra, 1993; Zang et al., 1995; Lee
et al., 1995).

Problem Formulation. A key idea in identifica-
tion for control is to tune the bias and variance er-
ror for control design. Such a tuning may be achieved
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by bounding the actual control performance ||J(P0, C)||
through utilization of the nominal control performance
||J(P̂ , C)|| and the performance degradation due to ap-
proximate modelling ||J(P0, C)−J(P̂ , C)||. The bound-
ing is achieved through exploitation of the triangular in-
equality:

||J(P̂ , C)|| − ||J(P0, C)− J(P̂ , C)|| ≤ ||J(P0, C)||
≤ ||J(P̂ , C)||+ ||J(P0, C)− J(P̂ , C)|| (68)

Thus a tight upper bound may be achieved by minimiz-
ing the performance degradation ||J(P0, C)− J(P̂ , C)||.
For a given controller C, this minimization constitutes a
“control relevant identification problem” (Gevers, 1993;
Van den Hof and Scharma, 1995), where a nominal model
P̂ is found by minimizing the difference between the
performance of the feedback connections T(P0, C) and
T(P̂ , C). From the triangular inequality it is clear that
both the nominal model P̂ and the controller C may be
used to minimize the performance cost ||J(P0, C)||.

Alternating between minimizing the performance
degradation ||J(P0, C) − J(P̂ , C)|| as an identification
problem and minimizing the nominal performance
||J(P̂ , C)|| as a control design problem provides an iter-
ative scheme for subsequent identification and control
design. By such a scheme it is hoped that ||J(P0, C)||
decreases. The development of these schemes is briefly
reviewed below as they have led to several interesting
identification schemes.

Exact Modeling. Some of the first attempts to-
wards investigating the interaction between identifica-
tion and control in case of exact modelling, i.e. without
bias error, were presented by Åström and Wittenmark
(1971) and Gevers and Ljung (1986). The latter au-
thors mentioned that, in the case of exact modelling, to
minimize norm-based performance degradation, a pre-
diction error based estimation method can be devised
that uses closed-loop experiments and appropriate data
filters. However the data filters contain knowledge about
the controller to be designed, and therefore an itera-
tive procedure of identification and control design can
be used to gain knowledge of the data filters. This was
confirmed by Hjalmarsson et al. (1996) and Forssell and
Ljung (2000b). The latter authors investigated partic-
ular experimental design issues involved in minimizing
the performance degradation due to variance errors in
the identified model with constraints on a linear combi-
nation of input and output variance. For the case where
penalty is only upon the misfit in P , they show that the
optimal controller is given by the solution to a standard
LQ problem. Also the optimal reference signal is deter-
mined.

The idea of minimizing the parameter covariance ma-
trix is also pursued by Cooley and Lee (2001) in an
open-loop identification’s context. The control oriented

design here takes the form of a weighted trace optimal
(L-optimal) design, where the weighting matrices depend
on desired loop shapes as well as the estimate from the
last iteration. The optimal design was originally formu-
lated as a nonconvex optimization for the sampled data
values of test inputs directly, but was later reformulated
by Samyudia and Lee (2000) as a Linear Matrix Inequal-
ity problem cast in terms of the covariance of the inputs.
The procedure was shown to perform much superior to
the conventional PRBS tests on several ill-conditioned
multivariable processes, which served as the main moti-
vation for their development.

Although most of the above results are useful in point-
ing out the desire for iterative experiments, they suffer
from the requirement of exact modelling of the plant P0.
This requirement inevitably leads to the requirement of
estimating a high order nominal model (e.g., FIR model
used in Cooley and Lee (2001)).

Approximate Modeling. Analysis of the more re-
alistic situation, where P̂ is considered to be an approx-
imation of P0 was presented by Wahlberg and Ljung
(1986). These authors showed that a norm based ex-
pression can be used to characterize the bias of a model
P̂ , and that this bias could be tuned provided a suit-
able model structure was used. Liu and Skelton (1990)
proposed closed loop experiments to provide the proper
weighting filters in an explicitly tunable bias expression
from Wahlberg and Ljung (1986). However, the con-
troller to be used for closed loop experiments is still un-
known. The possibility of using closed loop experiments
was proposed by Liu and Skelton (1990) and developed
by Zang et al. (1995), Hakvoort et al. (1994) and Tay
et al. (1997).

Gevers (2000) in his recent review discusses an ap-
proach based on the idea that minimization of the per-
formance degradation caused by model error can be for-
mulated as a prediction error minimization (weighted by
the sensitivity function) with closed-loop data. How-
ever, for the equivalence to hold, the closed-loop data
must be generated by the very controller, which is to be
determined later and therefore unknown before the ex-
periment. This naturally brings up an iterative scheme
where the controller design with nominal model and the
prediction error minimization with closed-loop data are
alternated. Even though this approach has been applied
with promising results on several examples, the conver-
gence has been shown to fail.

The idea of providing proper weighting filters in a tun-
able bias expression during identification was also used
by Rivera et al. (1993) and Rivera and Gaikwad (1992),
where it is assumed that prefiltering of open-loop data
from the plant can replace the benefits from closed-loop
experiments. The variance error was not considered.

Although the model bias during the approximate iden-
tification is tuned towards the intended model applica-
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tion in the above works, the model plant mismatch is
not taken into account during the control design. In
order to be able to account for both bias and variance
errors in control design and also to judge the quality of
the model against the performance requirement, estima-
tion of a model set rather than just a nominal model is
needed.

Identification and Robust Control Design

Estimating Model Sets. A set of models can be
used to represent the incomplete knowledge of the plant
P0. The incompleteness is due to the limited availabil-
ity of possible disturbed observations of the plant be-
haviour. Such a set of models can be considered to con-
sist of all models that are validated by the data (Ljung,
1999). However, Smith et al. (1997) pointed out that it
is never possible to validate models solely on the basis
of finite number of experiments. Thus a set of mod-
els will consist of models that cannot be invalidated by
the data from the plant P0. The available data along
with the prior assumptions give rise to a set of feasi-
ble models F (Hakvoort et al., 1994). If the prior as-
sumptions are correct, then P0 ∈ F. However, the set F

can be unstructured, and therefore estimation of a struc-
tured set P should be done such that P outer-bounds F.
Performance and robustness are conflicting requirements
(Doyle et al., 1992), and in case of conservative control
design, this conflict causes the performance of a designed
controller to deteriorate. Thus P should be estimated in
such a way that the performance degradation of a con-
troller designed based upon P is as small as possible.

Hence, to enable incorporation of robustness into the
design of a model based controller, a set of models must
be estimated. Mainly two different approaches for esti-
mating error bounds have appeared, which differ by the
nature of underlying assumptions on the error bounds.
When the prior assumptions are stochastic, so called
‘soft’ error bounds result. Examples here of are Goodwin
et al. (1992), Bayard (1992), Rivera et al. (1993), Nin-
ness and Goodwin (1995), and Cooley and Lee (1998).
When deterministic assumptions on the data or the plant
are used, non-probabilistic error bounds result. Conse-
quently, these are called ‘hard’ bounds. Examples here of
are Wahlberg and Ljung (1992) and Böling and Mäkilä.
(1995). Combinations of both types of model error
bounding may give the combined advantages (de Vries
and Van den Hof, 1995; Hakvoort and Van den Hof,
1994). Some of the error bounding approaches take the
intended control application into account by estimating
control relevant, possibly low order, nominal models with
an additive or multiplicative bound on the modelling er-
ror, e.g. Bayard (1992).

Although the approaches referenced in the two pre-
vious paragraphs treat bias and variance aspects sepa-
rately, the estimation of a set of models P should include
both bias and variance aspects. Thus the identification
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Figure 4: Iterative identification cycle for robust con-
trol.

and construction of the Q coefficient matrix in Figure 2,
is crucial for the design of a well-performing robust con-
troller (de Callafon, 1998). Furthermore the set must
be suitable for robust control design, in order to enable
performance improvement of the controlled plant. Thus
the structure and the estimation of the set P should take
the performance cost ||J(P0, C)|| into account.

Iterative Identification and Robust Control De-
sign Procedure. The ultimate quest for joint opti-
mization of modelling and control is a very compli-
cated task, which still needs considerable research ef-
fort. A suboptimal procedure, depicted in Figure 4,
has been proposed by de Callafon and Van den Hof
(1997) and de Callafon (1998). One step in the pro-
cedure is that given a controller Ci at the ith iteration,
which together with the plant P0 forms a stable feed-
back connection that satisfies the performance specifica-
tion ||J(P0, Ci)||∞ ≤ γi, then design a controller Ci+1

that satisfies:

||J(P0, Ci+1)||∞ ≤ γi+1 ≤ γi (69)

Another key step of the model-based procedure where
the knowledge of the plant P0 is represented by a set
of models Pi is that evaluation of ||J(P0, Ci)||∞ can be
achieved by evaluating ||J(P,Ci)||∞ for all P ∈ Pi. This
enables specification of a control objective function that
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Figure 5: Progress during iterative identification cy-
cle for robust control.

cannot be measured directly from data. Thereby three
procedural steps can be outlined:

1. Initial identification: Use experimental data from
T(P0, Ci) and prior information on data or plant, to
estimate a set of models Pi such that γi is minimized
while P0 ∈ Pi, where

||J(P,Ci)||∞ ≤ γi ∀P ∈ Pi (70)

2. Control Design: Design Ci+1 such that

||J(P,Ci+1)||∞ ≤ γi+1 ≤ γi ∀P ∈ Pi (71)

3. Re-Identification: Use new experimental data
from T(P0, Ci+1) and prior information to estimate
a set of models Pi+1 such that P0 ∈ Pi+1, subject
to the condition

||J(P,Ci+1)||∞ ≤ γi+1 ∀P ∈ Pi+1 (72)

Note that in the first step, a performance assessment
is carried out to evaluate ||J(P0, Ci)||∞ for initialization
purposes. Subsequently, the second step contributes a
controller and the third step is a modelling validation
step to enforce Equation 69. Subsequent to the initial-
ization in step 1, repeated execution of steps 2 and 3 will
provide a design procedure where the upper bound γi on
a predetermined performance cost ||J(P0, Ci)||∞ can be
progressively reduced as illustrated in Figure 5.

Implementation of this model based iterative proce-
dure requires a procedure for estimating a set of models
P tuned towards robust control design application. Such
estimation of a modelling set may be carried out in a
two step procedure described in de Callafon (1998). The
set of models depend upon the nominal coprime factor-
ization (N̂ , D̂) and the weighting functions (V̂ , Ŵ ) that
bound the model uncertainty. For the estimation, the
closed loop performance based optimization

min
N,D,V,W

sup
P∈P

||J(P,C)||∞ (73)

is considered to ensure a model uncertainty set which is
suitable for robust control design. The two estimation

steps involve, (1)estimation of a nominal factorization
such that the closed loop criterion is being minimized,
subjected to internal stability of T(P̂ , C), and (2)esti-
mation of model uncertainty, which consists of charac-
terization of a frequency dependent upper bound on the
uncertainty such that the closed-loop criterion is mini-
mized using (V,W ) subject to P0 ∈ P (Hakvoort and
Van den Hof, 1997).

Discussion. A number of important identification-
related issues emerge from the above procedure:

• Identification can be performed by open-loop exper-
iments but more naturally by closed-loop experi-
ments: In order to account for the link between
identification and control, identification should be
performed with data that are representative of the
eventual closed-loop condition. Although such data
can be generated by carefully designing open-loop
test signal, they are more naturally obtained by clos-
ing a loop with a sequence of controllers that gets
progressively closer to the eventual controller.

• Need for an iterative scheme: Accounting for the
intended application requires an iterative scheme of
identification and feedback controller design. As the
iteration continues, the feedback controller’s robust
performance continues to improve and this in turn
generates information on the dynamics of plant that
is more and more relevant for the ultimately in-
tended robust control.

• Model error information: While performing itera-
tions, information is developed on the complexity
of nominal model, shape of allowable model un-
certainty, and attainable robust performance. The
characterization of modelling errors enables us to
avoid performance degradation during the itera-
tions. This also opens the possibility to formulate
invalidation criteria for refusing models and con-
trollers during iterations.

• Unstable plants: Both stable and unstable plants
can be handled using the algebraic framework of sta-
ble factorizations, where a possible unstable dynam-
ics is split into two stable factors. This split opens
the possibility of an open-loop equivalent identifica-
tion of the factors. The algebraic framework allows
possible model errors to be described in a dual-Youla
parameterization. Thus the effect of model pertur-
bations can be studied under feedback controlled
conditions. By considering a nominal stable fac-
torization perturbed by an unknown but bounded
stable operator, the set of models describe all mod-
els that are stabilized by a given feedback controller.

The above iterative procedure builds upon a large body
of literature. The proposed procedure may be too com-
plex for most applications, where the desire simply is
to retune the feedback controller to improve the plant
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performance. Simplifications of the procedure should be
considered. Such simplifications could in fact become
the standard practice of tomorrow for improving closed
loop performance when requested by the operator on a
routine basis as the need arises.

Summary

Closed-loop identification has progressed significantly
over the past decade. Sound albeit limited theories have
emerged to point out the limitations and tradeoffs for
various closed-loop identification approaches. Final anal-
ysis reveals that there is no single methodology to be
preferred on a universal basis and understanding of the
advantages and disadvantages for the various available
options is indispensable for making a right choice for a
given situation. Potential benefits of closed-loop iden-
tification are huge and multi-faceted, ranging from the
increased safety of the process and reduced harmful dis-
ruption to ongoing operation to the engineer’s ability to
collect more informative data in shorter time.

The area of identification for control holds significant
promise to enable efficient, “plant-friendly” identifica-
tion of multi-variable plants, including ill-conditioned
plants, for which the traditional open-loop SISO iden-
tification is known to fail. Shaping of an identification
process according to a specific control objective is natu-
rally iterative in that various choices involved, e.g., shape
of test signals, complexity of nominal model, shape of al-
lowable model uncertainty and attainable performance,
are highly dependent on the underlying plant. The shap-
ing can be done in an open-loop experimental context
where the data collected from previous experiments are
used to improve the design of a new experiment. How-
ever, the shaping is more naturally done in a closed-loop
experimental context, where data are made more and
more representative of the eventual closed loop applica-
tion by iteratively improving the controller. Despite the
promise, more methodological developments are needed
to address the practical issues, e.g., the requirement for
ensuring the integrity of on-going operation, before rou-
tine application can be foreseen. Potential benefits of
such methodological developments are significant in that
process identification may be substantially facilitated
when plants can be operated in their standard closed-
loop configuration.
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