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ABSTRACT 

A model for the prediction of pseudo-binary Maxwell-Stefan diffusivities in binary 
systems with association and solvation effects has been developed. In analogy to the 
chemical theory this model is based on a multicomponent approach for the Maxwell-
Stefan diffusion coefficients. To reduce the number of multicomponent diffusivities a 
correlation factor has been developed depending on the mole fractions and the 
acentric factor. The reaction equilibrium constants for the association and solvation 
reaction have been computed from the UNIQUAC association model. For first model 
assessment the results obtained from this approach are compared with experimental 
findings for the system ethanol-cyclohexane gathered from Taylor dispersion 
experiments. This comparison reveals an accurate description of the diffusivities in 
the diluted regions whereas larger deviations are to be expected in the middle 
concentration range. These deviations can be explained with the shape of the 
thermodynamic correction factor computed from gE-models where their influence on 
the prediction accuracy of diffusion coefficients has been additionally examined. It 
can be shown that the UNIQUAC association model is superior to the Wilson 
equation in describing the VLE data of the system investigated, especially in the 
diluted concentration ranges. From this it can be concluded that the correction factor 
computed with this model yields diffusivities of higher accuracy for this type of 
system. 

INTRODUCTION 

Diffusion plays an important role in all kinds of separation processes, e.g. distillation 
or absorption. Since the increasing usage of nonequilibrium (NEQ) stage modelling 
[1] a deeper insight into mass transfer has become more important in order to allow 
accurate and reliable predictions of e.g. concentration profiles in any kind of 
equipment. Fundamental knowledge on various physical and thermodynamic 
properties, e.g. diffusion coefficients, is required. Especially in highly non-ideal 
systems, thermodynamic non-idealities – caused by different sizes, shapes, and 
interaction energies as well as association and solvation of molecules – strongly  
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influence the diffusional behaviour. Even for binary systems these effects usually 
result in large deviations between experimental data and predicted values since 
neither the Maxwell-Stefan-diffusivity models (MS) nor the gE-models commonly 
used, e.g. UNIQUAC or Wilson, account for chemical interactions. 

Diffusion problems are tackled with the Fick’s law or the Maxwell-Stefan equation. 
The relation between the two has been given by Taylor and Krishna [2]. For a binary 
mixture this yields: 
 D Ð= Γ  (1) 
As can be seen from this equation the Fick diffusivity, D , equals the MS diffusion 
coefficient, Ð , times the thermodynamic correction factor, Γ . The main difference 
between both models is that the MS-approach separates diffusional effects from 
thermodynamic non-idealities while the Fick diffusion coefficients must also account 
for the non-idealities in the mixture. 

Several investigators have attempted to develop models to predict diffusivities. 
Satisfactory results can be obtained for ideal and slightly non-ideal binary mixtures 
whereas these approaches fail for highly non-ideal systems, e.g. systems with an 
alcohol or ketone as solute. At first sight, only two constituents are present in such 
mixtures, namely the monomer molecules of a solute ( A ), e.g. alcohol, and a solvent 
(B ). In reality these mixtures consist of several components due to association and 
solvation effects between the various species formed. Therefore, it is straightforward 
to model such systems in terms of a multicomponent approach. A first attempt was 
conducted by Mc Keigue and Gulari [3] who predicted Fick diffusivities. Later, 
another attempt has been made by Rutten [4] who developed a model to predict MS-
diffusivities in an associating system, where only solute-solute interaction effects are 
considered. A different model was also derived by him that describes the situation of 
a solvating system in which only A , B  and the solvated species AB  are present. 

The multicomponent models derived are only of limited use since in most systems 
solute-solvent interaction effects do also occur. Therefore, the main goal of this work 
is to present a model that accounts for both effects simultaneously. Due to the 
separate treatment of non-idealities and the diffusional process itself, the MS-
diffusivity approach is preferred throughout this work. Based on Rutten’s ideas his 
association model has been further developed to account also for solvating effects. 
Additionally, the reaction equilibrium constants required for the association and 
solvation reactions will be computed from an extension of the commonly used 
UNIQUAC model which also accounts for these effects.  

The present work is outlined as follows. First, the derivation of the MS-diffusivity 
model is given followed by a brief introduction to the UNIQUAC association model. In 
order to validate the proposed diffusivity model the computed diffusion coefficients 
will be compared with experimental data for the binary system ethanol-cyclohexane 
obtained from a Taylor dispersion unit. Since the gE-model chosen plays a decisive 
role in the prediction of Fick diffusivities the thermodynamic correction factor will also 
be computed from the Wilson equation and the results compared with the ones 
obtained from the UNIFAC association model. 



 
THEORY 

Theoretical Derivation of the MS-Diffusivity Model 
Diffusion processes in binary systems with association and solvation effects can be 
treated in two ways. From a macroscopic point of view the mass transfer in such a 
system can be described in terms of the monomer species A  (solute) and B  
(solvent) which form this binary mixture. In contrast, it can also be characterised as a 
multicomponent mixture regarding associates and solvates formed by H-bondings as 
distinct chemical species. Since both points of view describe the same chemical 
system the findings obtained from the two approaches must be equal. This is a 
prerequisite for the model derivation below. 

The theoretical part is divided as follows. First, the mass transfer in the 
multicomponent mixture will be derived, afterwards the same mixture will be treated 
as a pseudo-binary system. Finally, both mass transfer relations will be equated to 
deduce the pseudo-binary MS-diffusivity as a function of the multicomponent MS-
diffusivities. 

Modelling of the system as a multicomponent mixture 
As mentioned in the introductory part of this work a mixture consisting of associated 
or solvated species can be regarded as a multicomponent mixture. The reactions 
taking place to form associates and solvates are considered as equilibrium reactions 
whereas association and solvation must be treated separately. 
Association: 
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From these equations it can be seen that 2 1n −  chemical species are present in the 
mixture: 

• 1n −  associates (incl. monomer A ), i.e. 2 1, ,..., nA A A −  
• 1n −  solvates, i.e. 2 1, ,..., nAB A B A B−  
• 1 monomer B  

Here, n  describes the number of associates formed including the two monomer 
components, e.g. 23 , ,n A A B= ⇒ . For the model derivation the mole fractions of 
these components are ordered as follows: 

1 2 2 1 1 2 2 1 2 1, ,..., , ,..., ,n n n n n nx A x A x A x AB x A B x B− − − − −= = = = = =  
The same indices apply to other variables, too. 



Diffusional fluxes in the multicomponent system 
The diffusion fluxes of the various species can be easily written in terms of the 
Maxwell-Stefan-equations. Hence, the fluxes of 2 2n −  components are given by: 
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whereas ijA  is an element of the inverse matrix of [ ]B  with dimension (2 2)n − and jd  
equals the driving force of j . The elements of matrix [ ]B  are defined according to 
the derivation of the MS-model [2]. 
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The additionally introduced variable δ  in (4) denotes solvation effects. For 1δ =  
solvation effects occur, if 0δ =  only association effects are considered and the 
equations can be simplified. The flux of the last constituent ( 2 1n − ) is defined with 
respect to the bootstrap relation 
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Driving forces 
Due to the Gibbs-Duhem restriction only 2 2n −  driving forces are independent: 
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The dimensionless driving force if  is defined by: 

 ( )1 1 lni i i if x
RT RT

µ γ= ∇ = ∇  (9) 

Combining these equations with the equilibrium reactions gives relations between the 
various driving forces of the species formed and those of the monomers. Here must 
also the two cases be discerned. 
Assocation ( 1... 1i n= − ): 
The driving force on the associated species can easily be derived in terms of the 
driving force on the monomer species A . From (2) and (9) the following equation can 
be obtained 
 1 1i if f f −= +  

or 
 1if i f=  (10) 

which results in: 
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Solvation ( ...2 2i n n= − ): 
The same can be applied to the second set of reaction equations which finally results 
in: 
 1 2 1i i n nf f f− + −= +  

Together with (10) the relation can be rewritten to give 
 1 2 1( 1)i nf i n f f −= − + +  (12) 

or: 
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Combining the relations derived thus far yields an expression for the driving forces of 
the monomer species in the multicomponent mixture, i.e. insertion of (10) and (12) in 
(8) gives 
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or: 
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Modelling of the system as a ‘pseudo’-binary mixture 
Now the same amount of mixture is considered as a pseudo-binary, in which solely 
the monomer species A  and B  occur. In order to distinguish between pseudo-binary 
and multicomponent variables, capital letters are used to denote the former case. 

Diffusion flux in the ‘pseudo’ binary mixture 
Setting up the MS-equation for total A yields: 
 1 2 1 1 1 2 1T n nC ÐD X N X N− −− = −& &  (16) 

The indices used have been adopted from the derivation of the multicomponent 
system. 

Relation between both descriptions 
As aforementioned the goal is to find a relation between the two different 
approaches, i.e. to express the pseudo-binary diffusivity in terms of the 
multicomponent MS-diffusivities which are hidden in the matrix [ ]A . 

In order to relate the two approaches the variables, i.e. mole fractions, driving forces, 
and diffusivities, of the pseudo-binary model must be expressed as functions of the 
multicomponent variables. 

Mole fractions 
First, the real (multicomponent) mole fractions are related to the overall (pseudo-
binary) mole fractions of A  and B  in the following way 
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with the pseudo-number of moles 1N  and 2 1nN −  defined by: 
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From these equations the relation between the mole fractions can be deduced: 
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Driving forces 
Compared to the multicomponent mixture the number of moles in the pseudo-binary 
system is larger by a factor r . 
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With this, the driving forces of the two systems are linked as follows: 
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Introducing the definition of r  and (18) in (20) yields the following expression for 
monomer species A : 
 1 1F f=  (21) 
The same is true for component B: 
 2 1 2 1n nF f− −=  (22) 

Pseudo-binary diffusivity 
On the basis of the equations derived the relation between the pseudo-binary and the 
multicomponent diffusivities can be deduced. Starting point is (16) whose variables 
are consecutively substituted. In the following the derivation is given step by step, 
starting with the right-hand side of this equation. Combining with an analogous 
definition to (17) for fluxes and (7) yields: 
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With (4): 
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Before continuing with the insertion of new terms, the summation terms over j  are 
derived first. The driving forces are related to the driving forces of the monomer 
species by introducing (11) and (13) and afterwards (15): 
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  (25) 
With (25) introduced in (24) the right-hand side can be written as: 
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By defining 
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and making use of (18) and (19) the following expression can be obtained for the 
right-hand side of (16): 
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 (28) 
The left-hand side of (16) is easier to develop. First, the pseudo-binary driving force 

1D  can be substituted by the dimensionless one: 
 1 1 1T TrC ÐD C ÐrX F− = −  (29) 
Using (20) leads to: 
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With /T tr C c=  both sides can be linked again and the expression for the pseudo-
binary MS-diffusivity can finally be written 
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whereas β is then defined by: 
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The model derived here incorporates both multicomponent models derived by 
Rutten. For 0δ =  and 2n >  the association model is obtained while for 1δ =  with 

2n =  the solvation model can be found.  

In respect to a first model validation presented below the derivation of the diffusivities 
at infinite dilution will be given for the case of an associating system, i.e. 0δ = . Then, 
(31) reduces to the following expressions in which the left hand sides can be either 
determined from experimental diffusivity data at infinite dilution or from an 
appropriate model, e.g. Wilke-Chang [5]: 
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Following Rutten’s derivation values for the multicomponent diffusivities of the 
associated and solvated species have been estimated by relating them to the 
multicomponent diffusivity of the monomers using a “correlation factor”, ijC . 
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whereas the van der Waals volumes, vdWV , of the associates are taken as multiples of 
the volume of the monomer solute. Values for the van der Waals volumes have been 
listed by Edward [6] and Bondi [7]. As will be shown later this type of diffusivity 
relation can be further improved to allow predictions with higher accuracy. 

The monomer pair diffusivity may now be computed as follows. (32) yields the 
diffusivity at infinite dilution in pure solvent which is equal to the binary experimental 
value. In order to obtain the infinite dilution diffusivity in pure solute (33)-(35) must be 
combined which yields a value depending on the mixture composition, i.e. equilibrium 
constants. At intermediate composition the multicomponent diffusion coefficient of the 
monomer pair is computed from the infinite dilution diffusivities using a mixing rule, 
e.g. Vignes [8]. Once these diffusivities have been calculated the computation of the 
binary diffusivity given in (31) is straightforward. 



The UNIQUAC Association Model 
In 1999 Asprion has extended the commonly used UNIFAC model to account also for 
association effects [9]. In his work binary and ternary mixtures of alcohols in both 
inert and solvating solvents were investigated by spectroscopic analysis in respect to 
the structure of the associates and solvates formed. In addition to the structure 
analysis, phase equilibrium measurements were conducted in order to obtain new 
sets of interaction parameters. In the resulting UNIQUAC association model the 
molecular species are introduced as groups, similar to the commonly used UNIQUAC 
model. In the following the derivation of this model with respect to systems in which 
only association reactions occur, i.e. an alcohol as solute in an inert solvent, will be 
presented. 

In this model are associates regarded as separate chemical species with reaction 
equilibria defined by (2). The required equilibrium constants were determined from 
independent FT-IR measurements. For correlation purposes the number of 
associates considered in the model was reduced by assuming that, besides dimer 
association, only one higher associated species had been formed. This higher 
oligomer can be seen as a representative for all higher associates occurring in the 
mixture. For the calculation of the equilibrium constant the following relation is 
favoured 
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whereas the reaction enthalpy and reaction entropy for the dimer reaction are given 
by: 

Di
PoR

DiR h
n
h

h ∆−
−

∆
=∆

1

Ref.
Ref.  (38) 

Di
PoR

DiR s
n
s

s ∆−
−

∆
=∆

1

Ref.
Ref.  (39) 

Here, n  refers to the number of solute molecules in an associate. The values for the 
dimer reaction enthalpy and entropy for the alcohol–inert solvent systems 
investigated are as follows: 

kJ/mol 023.12−=∆ Dih  (40) 

K) J/(mol 031.30−=∆ Dis  (41) 

Example values for the reaction enthalpy and reaction entropy, which are assumed to 
be independent of temperature and pressure, of higher oligomers can be found in 
Table 1.  



 

Table 1: Reaction enthalpies and entropies for solvents n-hexane and cyclohexane 

Component  n 
Ref.

1
R Poh
n

∆
−

−
 

[kJ/mol] 

Ref.

1
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n

∆
−

−
 

[J/(mol K)] 

Methanol 5 27.524 51.174 

Ethanol 5 27.524 54.162 

1-Propanol 5 27.524 56.690 

Since the UNIQUAC association model does not distinguish between the interaction 
of alcohol groups in a monomer and in an oligomer with a solvent molecule, only two 
interaction parameters are needed per binary system. 

Table 2: Interaction parameters for ethanol in cyclohexane 

a12/K a21/K 

-35.719 121.78 

On the basis of this information it is possible to compute multicomponent activity 
coefficients and also the thermodynamic correction factor. Additionally, the species 
distribution crucial for the diffusivity model is also obtained. 

EXPERIMENTS 

In order to validate the model diffusion coefficients have been experimentally 
determined in a Taylor dispersion unit. The experimental set-up of this unit consists 
of standard HPLC-equipment which has been fully automated (see Figure 1). All 
experiments have been conducted isothermally at 25°C. 



The chemicals obtained from Merck Eurolab GmbH were of analytical grade and 
used without further purification. 

RESULTS 

In order to validate the model proposed here experimental data on diffusivities have 
been acquired from Taylor dispersion experiments. Validation experiments of the 
apparatus have been conducted for the systems methanol-water and ethanol-water. 
The deviation of the experimental findings from literature data are within 2% which 
equals the accuracy known for this type of apparatus. A new set of diffusivity data is 
given in Table 3 for the binary system ethanol-cyclohexane measured at 25°C. 

Table 3: Diffusivity data for the system ethanol (1) – cyclohexane (2) 

x1 3% 10% 20% 30% 40% 50% 60% 70% 80% 90% 97% 

D12  
[m2/s 109] 0.991 0.767 0.520 0.425 0.423 0.465 0.574 0.730 0.950 1.232 1.411 

The diffusivities at infinite dilution have been determined from extrapolation of the 
data by fitting a polynomial of degree five (correlation factor = 99.9%). 
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Figure 1: Experimental set-up of the Taylor dispersion unit 



As mentioned in the introduction a thermodynamic correction factor interrelates the 
Fick and the MS-diffusivities and has, therefore, a great impact on the outcome of the 
modelling process. Hence, it is worthwhile to compare the prediction of the 
UNIQUAC association model with the Wilson equation known to be as one of the 
most accurate models in predicting VLE data. Recommended VLE data have been 
taken from the DECHEMA data series [10] for the above mentioned system together 
with the corresponding interaction parameters given for the Wilson equation. Figure 2 
depicts the activity coefficients computed from the experimental data and the 
predictions of both models. It is obvious that both models are capable of describing 
the data in the region researchers are mostly interested in, i.e. the middle 
concentration range, whereas larger differences can be seen in the highly diluted 
concentration ranges. For ethanol infinitely diluted in cyclohexane the Wilson 
equation predicts an activity coefficient noticeably smaller than the UNIQUAC 
association model does. The reason for this can be seen in the additional 
consideration of chemical interaction effects in the UNIQUAC association model 
which are remarkable in this concentration range. Comparison with literature data on 
activity coefficients at infinite dilution [11, 12] reveals that the prediction of the 
UNIQUAC association model is close to the values reported. The consequences 
become obvious in the different predictions of the thermodynamic correction factor as 
depicted in Figure 3. Especially in the diluted regions deviations between the models 
are apparent which ultimately result in different findings for the diffusion coefficients. 
Summarising, it can be presumed that computing the thermodynamic correction 
factor with the UNIQUAC association model yields diffusivities of higher accuracy for 
this system than with the Wilson equation. Nevertheless, both models have been 
used to compute MS-diffusivities from the experimental data to reveal the influence of 
the gE-model on this transport property. 
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Figure 2: Activity coefficients for an ethanol-cyclohexane mixture computed with the Wilson 
equation and the UNIQUAC association model 



As Rutten found out [13] relating the various MS-diffusivities of the associates and 
solvates to the one of the monomer species in the multicomponent mixture by means 
of van der Waals radii yields an incorrect volume correction in the diluted solute 
region. Therefore, several methods have been tried to find a new expression for the 
correlation factors ijC  which takes both the concentration dependence and the non-
roundness, i.e. deviation from a sphere, into account. For this purpose the volume 
fraction as defined in the UNIQUAC equation 
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and the acentric factor computed from the Lee-Kesler method [14] combined with the 
Joback method [15] for critical properties have been related to each other in various 
ways. The resulting correlation factors are given by the ratios of the various 
combinations, e.g. model 1b of the following tables: 
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Figure 3: Thermodynamic correction factors for Wilson and the UNIQUAC association model 

Table 4: Correlation factors and sum of least squares with Wilson 
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1/( var .)iω = (c) 3328 1899 2459 799 1754 15794 
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Tables 4 and 5 show all the combinations used together with the resulting sums of 
least squares when applying either of the gE-models. 

The tables reveal that for both gE-models the model 5a performs best. However, 
larger deviations are to be expected. In Figure 4 a comparison is given for the MS-
diffusivities computed from experimental data and the predicted values calculated 
with the best performing correlation factors and the Wilson equation. It is obvious that 
neither method can adequately represent the source data. By variation of the acentric 
factor it is possible to greatly improve the prediction accuracy in the concentration 
range 1 0.3x >  which comes at the expense of larger inaccuracies in the diluted 
alcohol regions (curve is then similar to W4c). A similar picture can be drawn for the 
UNIQUAC association model. The correlation factors used can picture only 
qualitatively the curve computed from experimental data. 

The influence of these inaccuracies on the prediction of the Fick diffusion coefficients 
is depicted in Figure 5. Here, the experimentally determined data as well as the 
predicted values computed with the correlation factors performing best are 
presented. Additionally, values calculated in accordance with Rutten’s model are 
given for comparison purposes. Due to the overprediction of the MS-diffusivities in 
the diluted region (Wilson equation) the experimental data cannot be properly 
reflected, see curve W5a. Comparison of this curve with Rutten’s model (W3a, not 
shown) shows that with the modified correlation factor predictions of higher accuracy 
can be made. As previously mentioned variation of the acentric factor yields high 
resemblance for the predicted values and the Fick data whereas the deviation in the 
diluted region increases markedly. In contrast, the values computed from the 
UNIQUAC association model perform better in the diluted region while deficiencies in 
the middle concentration range occur. Again, varying the acentric factor results in 
better agreement to the experimental data. Comparing U2a with U3a (Rutten) shows 
that the correlation factor used for U2a is superior to the ratio of the van der Waals 

Table 5: Correlation factors and sum of least squares with UNIQUAC association model 
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radii. In Table 6 the sums of least squares are given for the models presented in the 
last Figure. The results clearly demonstrate that the model performing best is U2a. 

Table 6: Sums of least squares for Fick diffusivities computed with both gE-models 

 2a 3a (Rutten) 5a 

Wilson 20 11 16 

UNIQUAC assoc 2 8 5 

CONCLUSIONS 

In this work a new model for the prediction of diffusivities in binary liquid systems in 
which association and solvation effects can occur has been presented. This model 
which is based on a previously developed association model by Rutten computes 
pseudo-binary MS-diffusivities from a multicomponent approach. The reaction 
equilibrium constants required for the computation of the association and solvation 
reaction equilibria have been adopted from the UNIQUAC association model. This 
gE-model also serves to compute the thermodynamic correction factor, a 
proportionality constant that relates the Fick and the MS-diffusion coefficient.  
Since this proportionality constant plays a decisive role in computing diffusivities the 
results for the thermodynamic correction factor obtained from the UNIQUAC 
association model and from the Wilson equation (recommended interaction 
parameters were used throughout this work) were compared. It could be shown that 
both models show excellent agreement with experimentally determined VLE data in 
the middle concentration range whereas the prediction of the Wilson equation fails at 
infinite dilution. In contrast, the UNIQUAC association model predicts this region also 
with high accuracy which ultimately results in differently shaped curves for the 
thermodynamic correction factor. This in turn affects the shape of the computed MS-
diffusivity curves. 

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
x1

Ð
 [m

2 /s
 1

09 ]
exp
W5a
W4c

 

Figure 4: MS-diffusivities predicted from the Wilson equation 



These curves have been computed on the basis of a new set of experimental data 
determined for the binary system ethanol-cyclohexane from Taylor dispersion 
experiments (T=25°C). Validation of the experimental set-up showed that an relative 
error of 2% can be expected. 

On the basis of this data a first assessment of the diffusivity approach proposed here 
has been conducted. Since the original correlation factor (a fixed ratio of van der 
Waals radii), used to decrease the number of MS-diffusivities in the multicomponent 
system, revealed erroneous volume corrections, this factor has been modified to 
account for the concentration dependence and the influence of non-roundness of the 
molecules. This has been done by using the volume ratio as defined in the UNIQUAC 
model and introducing the acentric factor computed from the Lee-Kesler method in 
conjunction with the Joback method for critical properties. Extensive testings 
revealed that the best performance (at least for this binary system) has been 
achieved with a modified correlation factor defined as ( )2 11

1 2 1 / jn i xx xx
ij n i jC φ φ φ φ−

−=  combined 
with the UNIQUAC association model. This resulted in good agreement with the 
experimental data in the diluted regions whereas larger deviations occurred in the 
middle concentration range. In contrast, the Wilson equation strongly overpredicted 
the diffusivities in the diluted regions which is caused by erroneous calculation of 
activity coefficients at infinite dilution. This also demonstrates clearly that the same 
set of interaction parameters applicable to VLE predictions does not necessarily yield 
accurate information on the second derivative of the gE-model.  

Further assessment of the proposed MS-diffusivity model is vital since only a special 
case, i.e. solely association reactions, has been investigated. In this way the 
modification of the correlation factor can be further tested. Investigation of the 
influence of gE-models is also crucial in order to obtain reliable information on MS-
diffusivities from experimental data. 
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Figure 5: Comparison of experimental data and predicted values 
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