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ABSTRACT

Three hybrid separation processes are developed and recommended for solvent
recovery from highly non-ideal quaternary mixtures obtained in printing companies.
The procedures are tested on two different solvent mixtures.
The first process (ternary-cut-system) splits mixture 1 into two ternary mixtures which
are separated later in subsequent units into components of the purity needed. The
second separation process is based on two coupled distillation columns (two-column-
system) which can cope with the separation of both mixtures into two binary mixtures
that are to be separated further with common methods.
The third separation process is developed merging the extractor and distillation units
into a process based on extractive distillation using water as extractive agent
(integrated-system). This integrated-system can separate both mixtures into
components of the prescribed purity or into binary mixtures and proves to be the
simplest arrangement and consumes the lest energy among the three ones.
The separation processes are verified experimentally and the agreements between
the simulated and measured data prove to be rather favorable.

INTRODUCTION

The chemical engineers are faced with the important problems of the solvent
recovery which minimizes the burden upon the environment due to the exhaustive
use of solvents and the emission associated with the incineration of the used
solvents. The solvent recovery is also economically beneficial but the saving always
depends on the different, usually country specific, prices.

In printing companies the following typical quaternary waste mixtures of different
solvents are often produced, mixture 1: ethanol (ETOH) 30w%, ethyl acetate (EtAC)
25w%, isopropyl acetate (IPAC) 20w%, water (H2O) 20w%, and mixture 2: ethanol
23w%, ethyl acetate 32w%, methyl-ethyl-ketone (MEK) 28w%, and water 13w%.
There are some accompanying components in less than 5w%, which are neglected in
this study. The two mixtures are highly non-ideal ones and they form several binary



and ternary azeotropes making the separation to a quite complex problem (Tables 1-
4 [3]). The synthesis for possible separation processes is a complex engineering
activity but there are some powerful tools to overcome this problem.

Among several synthesis strategy, Rev et al. and Mizsey et al. [1,2] have also
recommended a framework for designing feasible schemes of multicomponent
azeotropic distillation. This procedure recommends to study in detail the vapour-
liquid-liquid equilibrium data to explore immiscibility regions, azeotropic points of
binary and ternary ones, and separatrices for ternary and quaternary regions. On the
behalf of the VLLE data the set of feasible separation structures can be explored.
This procedure is followed and new separation technologies are developed.

Table 1, Binary azeotropes of mixture 1

t H2O ETOH ETAC IPAC
[°C] [w%] [w%] [w%] [w%]

H2O - ETOH 78.17 4 96 0 0

H2O - ETAC 70.38 8.5 0 91.53 0

H2O - IPAC 76.6 10.6 0 0 89.4

ETOH - ETAC 71.81 0 31 69 0
ETOH - IPAC 76.8 0 53 0 47

Table 2, Ternary azeotropes of mixture 1

t H2O ETOH ETAC IPAC
[°C] [w%] [w%] [w%] [w%]

H2O - ETOH - ETAC 70.2 9 8.4 82.6 0
H2O - ETOH - IPAC 74.8 9.8 19.4 0 70.8

Table 3, Binary azeotropes of mixture 2

t H2O ETOH EtAC MEK
[°C] [w%] [w%] [w%] [w%]

EtAC -H2O 70.4 8.5 0 91.53 0

ETOH- EtAC 71.8 0 31 69 0

MEK-H2O 73.3 12.7 0 0 87.3
ETOH-MEK 74.1 0 39 0 61
EtAC -MEK 77 0 0 82 18
ETOH-H2O 78.1 4 96 0 0



Table 4, Ternary azeotropes of mixture 2

t H2O ETOH EtAC MEK
[°C] [w%] [w%] [w%] [w%]

ETOH- EtAC -H2O 70.2 3 8.4 82.6 0
ETOH -MEK-H2O 73.2 11 14 0 75

DISCUSSION OF THE HYBRID SEPARATION PROCESSES

After studying the complex non-ideal VLLE nature of the two mixtures to be
recovered, it becomes clear that the mixtures cannot be separated with he use of
common distillation units, a combination of different type of separation units, hybrid
separation processes are needed. Three separation processes are designed with the
help of a synthesis strategy [1,2]: the ternary-cut-system, the two-column-system,
tested already previously for mixture 2 [1,2], and the integrated system based on
extractive distillation. The simulations are completed with the ASPEN PLUS
flowsheeting package, the VLLE method used is the Uniquac thermodynamic
property package with UNIFAC estimation for the non-measured data. Its databank is
based on the DECHEMA Chemistry Data Series, Dortmund DataBank e.g. [7].

The Ternary-cut Process
The VLLE data of mixture 1 indicates that a ternary azeotrope (ethanol, ethyl-acetate,
water) of minimum boiling point is existing and can be obtained as distillate in case of
common distillation. According to the analysis of the system it is possible to cut the
quaternary mixture into two ternary mixtures (ternary-cut): ETAC-ETOH-H2O and
IPAC-ETOH-H2O. In the following the two ternary mixtures can be processed
separately in two similar cycles (Figure 1) The cycles consist of one extractor and
three distillation columns, respectively.

The VLLE data, azeotropes, separation boundaries, and the operating lines of the
two cycles are shown in Figures 2,3. It can be seen that the extractor units play a key
role in each cycles and internal recycles are also needed to improve the efficiency of
the solvent recovery.

The Two-Column System
The system has been already earlier synthesized and tested for mixture 2 [4,1,2].
Two coupled distillation columns and a three-phase flash where extra water is added
are applied in this system. With the use of the two-column system it is possible to
separate the quaternary mixtures into two binary fractions (H2O+ETOH and
ETAC+MEK) which can be further separated with common distillation tools into
components of the prescribed purity. The physical insight of this system and its
operation have been also explained [1,2] The necessity of the phase-separation is
due to a separation boundary in the VLLE and the extra water addition can help to
overcome on this boundary (Figure 4).

In this work the two-column system is tested for mixture 1 (Figure 5) and proves to be
successful again to separate the quaternary mixture into two binary ones
(H2O+ETOH and ETAC+IPAC). The separation of the two binary mixtures is not



studied in detail but to recover the individual components more separation units are
needed

The Integrated System
In the third step of this evolutionary process synthesis, the fact is utilized that water is
always used in the previous hybrid separation processes to exploit the advantage of
the immiscibility regions allowing the step over separation boundaries. As a
consequence an integrated separation technology, the integrated-system, is
designed based on extractive distillation unit with water as extractive agent. The
system integrates the distillation and the extraction or the water addition in the phase-
separator of the previous systems. The use of the extractive distillation unit proves to
be a multifunctional unit and allows a significant simplification of the previous
separation systems.

In case of mixture 1 it becomes possible to separate the quaternary mixture in four
distillation columns into the components of the prescribed purity (Figure 6). Figure 7
shows the VLLE data for columns 2 and 3 and also their splitting lines.

In case of mixture 2 an easier separation of the quaternary mixture is possible into
the two binary mixtures (H2O+ETOH and ETAC+MEK) compared to the two column-
system. Later on it will be proved that it consumes also less energy.



Figure 1. The separation scheme of the ternary-cut-system
(W, P2 = H2O, F = feed, P1 = ETOH, P3 = ETAC, P4 = IPAC)



Figure 2. The VLLE data and representation of the ETAC cycle (ternary-cut-system)

Figure 3. The VLLE data and representation of the IPAC cycle (ternary-cut-system)



FIgure 4, The VLLE of mixture 2 and the operation of the two-column system

Figure 5. Two-column-system for the separation of quaternary mixtures
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Figure 6. Integrated-system based on extractive distillation
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Figure 7, The VLLE data and representations of columns 2 and 3

COMPARISON OF THE ENERGY CONSUMPTION

The three separation systems are investigated from the points of operation and
energy consumption. The integrated-system is the simplest one and it is the easier to
realize and operate. The total energy consumption (heating and cooling) of the three
systems are also determined and compared. The new integrated solvent recovery
technology using hybrid equipment proves to be not only the simplest but also the
most attractive for the energy consumption (Table 3). Among the cost comparison it
is indicated if the costs relate only for such separation when only binary mixtures are
obtained (e.g. two-column system). In spite it can be concluded that the integrated-
system based on extractive distillation proves to be the cheapest and simplest among
the three. The separation of mixture 2 in the integrated-system into two binary
products consumes less energy than the same separation with the two-column
system, too.



According to estimations, the savings of the solvent recovery depends on the actual,
usually country specific, prices and range between 70-95%. The energy consumption
could be further minimized (Szitkai et al., 2001) if membrane separation technology is
combined with distillation for the ethanol-water separation (Figure 6, Column 4) and
this option is considered in our research group as possible further process
improvement.

Table 3. Comparison of separation technologies (Feed = 100 kmol/h)

Integrated-
system
[MW]

Two-column-
system
[MW]

Ternary-cut-
system
[MW]

Mixture 1 10.7 25.1* 23.3
Mixture 2 14.6* 23.8* 

* only binary products are obtained

EXPERIMENTAL INVESTIGATIONS

All the three separation processes are verified fully or partially by laboratory
experiments corresponding to the circumstances found by simulations. The internal
diameter of the columns are always 3 cm, the column internal is always structured
packing.

First, the core of the of the ternary-cut-system, column 1 (C1), (Fig. 1), in which the
split of mixture 1 takes place into two ternary products, is tested experimentally.
Steady-state continuous distillation is carried out for 6.5 hours controlling the column
according to the typical top temperature. The distillate and bottom products are
analyzed and compared with the simulation data (Table 4). The comparison of the
simulated and measured data shows a good agreement (Raab, 2001) which proves
both the accuracy of the selected UNIQUAC thermodynamic property package and
the simulation procedure.

Table 4. Comparison of measured and simulated data of C1 of the ternary-cut-system
for mixture 1

Feed Simulated data w% Measured data w%
w% Distillate Bottom Distillate Bottom

Water 21 8.3 26.9 8.9 29.7
ETOH 32 10.0 40.6 8.6 39.9
ETAC 26 81.3 0.6 82.1 0.2
IPAC 21 0.4 31.9 0.4 30.2

Secondly, the two-column-system is verified experimentally in two coupled laboratory
columns for mixture 2. The results are compared with the simulated ones and they
are in good agreement (Figure 5).

The third process, the integrated-system based on extractive distillation is also
verified by experiment. The most critical part of the system, the extractive distillation
is measured in the laboratory column. Three and a half hours continuous operation is



carried out and the results are compared with the simulated ones. The agreement is
good (Figure 6).

Table 5. Comparison of measured and simulated data of the two-column-system
for mixture 2

Feed Simulated data w% Measured data w%
w% Bottom 1 Bottom 2 Bottom 1 Bottom 2

Water 36 84.91 0 83.9 0
ETOH 26 14.76 0.05 13.1 0.5
ETAC 19 0.03 49.13 1.1 48.9
MEK 19 0.29 50.81 1.9 50.6

Table 6. Comparison of measured and simulated data of the extractive distillation of
the integrated-system for mixture 1

Feed Simulated data w% Measured data w%
w% Bottom 1 Bottom 2 Bottom 1 Bottom 2

Water 21 2.7 96.1 2.8 95.8
ETOH 32 0 3.9 0 4.2
ETAC 26 55.0 0 53.2 0
MEK 21 42,3 0 44,0 0

CONCLUSIONS

The successful application of the integrated-system obtained with evolutionary steps
allows significant simplification and improves economic features of the separation of
non-ideal mixtures typical for solvent recovery. By reason of the applied evolutionary
synthesis strategy a generalisation of the extractive distillation based processing is
outlined for the separation of non-ideal mixtures containing heterogeneous
azeotropes.

Experiments show good agreement between the simulated and measured data that
also supports the accuracy of the three solvent recovery processes. The developed
solvent recovery processes can realise significant saving and reduction of the burden
upon the environment.
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