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ABSTRACT

The prediction method of the isobaric vapor-liquid-liquid equilibria (VLLE) data for the
system ethanol-water-1-butanol and ethanol-2-butanol-water was studied. The
parameters for the activity coefficients models were determined from the constituent
binary VLE data. With the parameters, the isobaric ternary VLLE data were predicted
and compared with the experimental ones obtained in our previous study.
Furthermore, a prediction method based on successive calculations of LLE at boiling
point and VLE was studied. For this method, the two sets of the parameters were
independently determined for LLE and VLE calculation. The VLLE data predicted by
this method were in good agreement with the experimental ones.

INTRODUCTION

The phase equilibrium data is one of the basic and important physical properties for
design and analysis of phase separation processes. For vapor-liquid equilibrium
(VLE) and liquid-liquid equilibrium (LLE), a number of measurements and predictions
have been reported in literature and they seem to be successful. On the contrary,
vapor-liquid-liquid equilibrium (VLLE) data, which are significantly important for the
heterogeneous separation processes, have been reported scarcely due to the
difficulty of their measurements. The static method and the dynamic method have
been mainly used for the measurements. The static method, which is said to be the
most accurate method for the measurement of phase equilibria and is widely used for
the isothermal measurements, requires long time for settling the system. On the
contrary, the dynamic method can achieve the equilibrium quickly and has been
generally used for the isobaric measurements. However, when it comes to the
measurements of VLLE, there is a problem of the recirculation of two liquid phases
that appear in an apparatus for the VLLE measurements. So far, treatments of these
two liquid phases in the VLE measurement apparatus have been studied by some
researchers. For example, a dynamic VLE still equipped with an ultrasonic
homogenizer in order to mix two liquid phases in the boiling flask was proposed by
Gomis et al. [1]. In their apparatus, LLE measurements at boiling points are done
independently in the water bath that is controlled at the boiling temperature. Also in



our previous study [2], a simple dynamic VLE still has been developed for both VLE
and VLLE measurements. Although the still is very similar to the ordinary Gillespie
type VLE still, VLE and VLLE measurements can be done in the same apparatus.

Another problem concerned with VLLE is its prediction. It is well known that the
prediction of VLLE is not as precise as those of VLE and LLE. As studied by Lee et
al. [3], the selection of the parameters for the VLLE prediction is very important since
the parameters obtained from VLE data are very different from those obtained by LLE
data. The predicted VLE or VLLE with the parameters determined by LLE data are
sometimes poor. There seem to be no good indices to tell which parameters are
better for prediction. In order to explore the cause, the accurate VLLE measurements
are indispensable.

The purposes of this study are to predict the VLLE precisely. In our previous study,
isobaric VLE and VLLE for binary and ternary systems have been measured at
atmospheric pressure. In this paper, the parameters for the activity coefficients
models are determined from the constituent binary VLE data. With the parameters,
the isobaric ternary VLLE data are predicted and compared with the experimental
ones Furthermore, a prediction method of ternary VLLE for these systems, and a
parameter estimation method for LLE calculation are studied. The prediction method
is based on successive calculations of LLE at boiling point and VLE. For each
calculation, the different sets of parameters of activity coefficients models are
independently determined and used. The predicted vapor phase compositions at
VLLE are compared with the experimental ones.

PARAMETER ESTIMATION FOR ISOBARIC BINARY VLE AND VLLE DATA

Parameters of activity coefficient models, NRTL [4] and UNIQUAC [5], are
determined by minimizing the following objective function.
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where OF is the objective function, and γi,k,exp and γi,k,cal are experimental and
calculated activity coefficient of component i of the data number k, respectively, m is
number of the data and n is number of components. The objective function was
minimized by Marquardt method [6] and Simplex method proposed by Nelder and
Mead [7]. If the two sets of parameters determined by both methods are different with
each other, the one whose objective function is smaller than the other was taken. In
this study, the non-randomness parameter, α, of the NRTL model was fixed at 0.2,
and the values for van der Waals volume and surface parameter, r and q
respectively, were taken from the literature [8].

The parameters determined from the binary VLE data for the system ethanol (1) –
water (2) are shown in Table 1. Predicted VLE for the system with the parameters in
Table 1 are compared with the experimental ones in Fig. 1. In the figure, the VLE
data for the system in the literature [9-11] are also plotted. As can been seen in the
figure, the experimental and the predicted VLE for the system are in good agreement
with each other.



Table 1 Binary parameters of the NRTL and UNIQUAC models

System Model ∆A12 ∆A21 OF ∆y1,avg ∆y1,max ∆Tavg ∆Tmax

Ethanol-Water NRTL -460.030 1791.37 0.0137 0.0044 0.0136 0.1507 0.4686
UNIQUAC -70.1587 398.992 0.0066 0.0029 0.0122 0.1123 0.3362

Water-1-Butanol NRTL 3409.83 -426.999 0.3818 0.0129 0.0289 1.1576 2.8259
UNIQUAC 498.762 183.167 0.2616 0.0100 0.0425 0.9634 2.3324

2-Butanol-Water NRTL -552.206 3344.64 0.6257 0.0202 0.0479 0.5278 0.9990
� UNIQUAC 79.2739 516.5409 0.4319 0.0165 0.0641 0.4177 2.6441

∆Aij = (gij-gjj) / R for NRTL, (uij-ujj) / R for UNIQUAC

Fig. 1 Boiling and dew point for the system ethanol (1) - water (2) with those predicted by
activity coefficient models

The parameters for the systems water (1) – 1-butanol (2) and 2-butanol (1) – water
(2) are also shown in Table 1. The comparison of boiling and dew points between the
experimental and the predicted ones for these systems are shown in Figs. 2 and 3,
respectively. In these figures, the VLE data in the literature [12-20] and those
predicted by ASPEN Plus are also plotted. For both systems, the predicted
compositions of water in the�organic liquid phase at VLLE are richer than the
experimental ones. In order to investigate the cause of these deviations, various
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types of the objective functions were tested. However, the results showed the same
tendency. From these results of predictions, the sizes of two liquid phases regions at
boiling points predicted by the parameters determined with VLE data for these two
binary systems tend to become larger than the experimental ones.

Fig. 2 Boiling and dew point for the system water (1) – 1-butanol (2) with those predicted by
activity coefficient models
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Fig. 3 Boiling and dew point for the system 2-butanol (1) – water (2) with those predicted by
activity coefficient models

PREDICTION OF ISOBARIC TERNARY VLLE WITH THE PARAMETERS
DETERMINED BY BINARY VLE DATA

Predictions of isobaric ternary VLLE for the systems ethanol (1) – water (2) – 1-
butanol (3) and ethanol (1) – 2-butanol (2) – water (3) were done with the parameters
determined by the isobaric constituent binary VLE and VLLE data. Since isobaric
VLE data for the system ethanol – 1-butanol and ethanol – 2-butanol were not
measured in this study, the parameters for those systems were taken from literature
[8]. The result for the system ethanol – water – 1-butanol is shown in Fig. 4.  As can
be seen in the figure, the predicted two liquid phase region at boiling point is larger
than the experimental one. Experimental boiling points are compared with the
predicted ones in Fig. 5. Although the predicted boiling points seems to be in good
agreement in the figure, the liquid phase compositions are very different from the
experimental ones. Thus, these parameters cannot predict the isobaric VLLE data for
this system accurately.
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Fig. 4 Comparison between experimental and predicted compositions at VLLE for the system
ethanol (1) – water (2) – 1-butanol (3)
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Fig. 5 Comparison between experimental and predicted boiling points at VLLE for the system
ethanol (1) – water (2) – 1-butanol (3)

The comparison for the system ethanol-2-butanol-water is shown in Fig. 6. Similar to
ethanol-water-1-butanol system, the predicted two liquid phases region at boiling
points is different from the experimental one, especially for the organic phase.
Furthermore, the predicted boiling points for the region are about 15 K higher than
the experimental ones, as shown in Fig. 7.

From the results of the predictions for these two ternary systems, the parameters
determined with the constituent binary VLE data cannot be used for the prediction of
the ternary VLLE data for these systems. In particular, the predictions of the
compositions of the organic liquid phase are significantly poor. It seems that the
parameters for LLE calculation is necessary for better prediction.

90 91 92 93 94 95
90

91

92

93

94

95

Texp [
oC]

T c
al
 [o C

]

+1.0oC

-1.0oC

Predicted from aqueous phase
Predicted from organic phase



Fig. 6 Comparison between experimental and predicted compositions at VLLE for the system
ethanol (1) – 2-butanol (2) – water (3)
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Fig. 7 Comparison between experimental and predicted boiling points at VLLE for the system
ethanol (1) – 2-butanol (2) – water (3)

DETERMINATION OF THE PARAMETERS WITH THE ISOBARIC TERNARY VLLE
DATA

Determination of the Parameters for LLE Calculation
Based on the discussion above, the parameters for LLE calculation are
independently determined from the LLE data of the isobaric ternary VLLE data,
namely the liquid�compositions. Though there are six parameters to be determined
for a ternary system, it was hard to determine all of them at the same time. Recently,
a regression method of the parameters with ternary LLE data was proposed by
Katayama [21]. In the method, the parameters for the immiscible binary pair are
preliminary determined from the binary LLE or solubility data. By fixing these
parameters, the rest of the parameters are determined from the ternary LLE data by
using the modified Marquardt method proposed by Katayama [21]. In this study, this
Katayama method was used to determine the parameters for LLE calculation.

To determine the parameters from binary LLE data, the following objective function
was employed.
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where ai,1,k and ai,2,k are the activities of the component i of the data number k in the
phase 1 and 2, respectively, and calculated as follows.
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caliii xa ,γ= (3)
To determine the parameters from ternary LLE data part of ternary VLLE data,
equation (2) can be also used as the objective function. However, the LLE data
predicted with the parameters determined from the equation (2) were not accurate.
So the following objective function for the prediction of the ternary LLE data was
employed, which is the difference of the experimental and predicted liquid
composition in each phase.
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where j is the phase 1 and 2, and m is the number of the data.

First of all, the parameters for the immiscible binary pairs are determined from the
solubility data. Since the solubility data are not measured in this study, the data in the
literature [16, 20] are used. The solubility data are smoothed by the polynomial
function of the temperature for each system and the LLE data for a temperature can
be read from this smoothed curve. Then the rest of the parameters were determined
by the modified Marquardt method proposed by Katayama [21].

Parameter estimation and Prediction for the system Ethanol-2-Butanol-Water
The resultant parameters versus the temperature for the system 2-butanol-water are
shown in Fig. 8. The parameters were correlated to the temperatures as a second
order polynomial. The coefficients for the polynomial function are shown in Table 2.
The rest of the parameters necessary for the ternary LLE prediction were determined
by Katayama’s method successfully. They are shown in Table 3. The parameters for
the VLE calculations are directly determined from the activity coefficients data for
both systems. The parameters are shown in Table 4.

Table 2 Temperature dependent parameters for LLE calculation

System Pseudo Water(1)-1-Butanol(2) 2-Butanol(1)-Water(2)
� aij bij cij aij bij cij

NRTL
∆A12 1.978x107 -1.084x105 148.5 -1981 11.81 -2.224x10-2

∆A21 -1.713x107 9.378x104 -128.3 -2367 17.64 -1.587x10-2

UNIQUAC
∆A12 1.212x107 -6.631x104 90.73 -174.7 1.655 -4.166x10-3

∆A21 -9.343x107 5.111x104 -69.91 -1261 7.486 -8.115x10-3

∆Aij = aij + bij T + cijT2



Fig. 8 Temperature dependences of the model parameters for the system 2-butanol (1) –
water (2)
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Table 3 Binary interaction parameters for LLE calculation

System Ethanol (1)-Water (2)-1-Butanol (3) Ethanol (1)-2-Butanol (2)-Water (3)
NRTL UNIQUAC NRTL UNIQUAC

∆A12 1193 485.1 -546.5 -186.3
∆A13 74.99 1447 -42.96 -385.3
∆A21 -1292 651.3 -1386 -1691
∆A31 -1741 387.9 -3073 -1095

∆Aij=(gij-gjj)/R for NRTL, (uij-ujj)/R for UNIQUAC

Table 4 Binary interaction parameters for VLE calculation

System Ethanol(1)-Water(2)-1-Butanol(3) Ethanol(1)-2-Butanol(2)-Water(3)
� NRTL UNIQUAC NRTL UNIQUAC

∆A12 2433 -303.6 -469.4 -282.3
∆A13 -178.8 6.880 -175.5 84.00
∆A21 -19.77 631.1 1315 1001
∆A22 1657 626.1 -295.4 75.78
∆A31 749.3 378.0 851.6 94.44
∆A32 -285.3 -200.0 1541 181.6

∆Aij=(gij-gjj)/R for NRTL, (uij-ujj)/R for UNIQUAC

The prediction method for the isobaric VLLE data is similar to the one proposed by
Liu et al. [22], that is, VLE and LLE data are separately calculated with the
correspondent parameters in Tables 2, 3 and 4. The procedure is as follows. Firstly,
an overall liquid composition is given and the bubble point is set as the initial
temperature. With this condition, isothermal LLE calculation is done and the
compositions of the two liquid phases are calculated. For these compositions, the
boiling points and the vapor phase compositions are independently determined by
the bubble point calculation. If these boiling points are different with each other, the
average value is used for the next LLE calculation. The procedure is repeated until
the difference of the boiling points between the former and the present iteration
becomes small enough for both liquid phases. So the predicted vapor phase
compositions and boiling points are presented for both organic and aqueous liquid
phases in this study. Since only the two liquid phases regions are studied in this
paper, the phase stability analysis was omitted.

The predicted VLLE for the system ethanol-2-butanol-water by this method are
shown in Fig. 9. As can be seen in the figure, the predicted LLE favorably coincides
with the experimental ones. The predicted vapor compositions are also in good
agreement with the experimental ones. Fig. 10 shows the comparison between the
predicted and experimental boiling points. Almost all of the predicted boiling points
are within ±1.0 K of the experimental ones.



Fig. 9 Comparison between experimental and predicted isobaric ternary VLLE for the system
ethanol (1) –2-butanol (2) – water (3) at 101.3 kPa
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Fig. 10 Comparison between experimental and predicted compositions at VLLE for the
system ethanol (1) – 2-butanol (2) – water (3)

Parameter Estimation and Prediction for the system Ethanol-Water-1-Butanol
For the system water-1-butanol, if the parameters determined by Katayama’s method
are used for prediction of ternary LLE at boiling points, the predicted LLE data
deviate from the experimental ones as shown in Fig. 11. In the region where the
composition of ethanol in the liquid phase is more than 0.02 mole fraction, the
solubility of the organic liquid phase for this ternary system changes a lot, while the
boiling points for this region doesn’t change so much. The binary solubility data for
this narrow temperature range changes slightly. Thus, the parameters from binary
LLE data cannot predict this big solubility change.

In this study, the�pseudo-binary LLE data are assumed by normalizing the
compositions of water and 1-butanol in ternary LLE data of VLLE data, and the
parameters for this binary immiscible pair are determined from the pseudo-binary
LLE data. The parameters determined by this method are also shown in Table 2. The
rest of the parameters necessary for the ternary LLE prediction are estimated by
Katayama’s method and shown in Table 3. The parameters for VLE calculation are
determined from the isobaric ternary VLLE data for this system. They are shown in
Table 4.
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Fig. 11 Comparison between experimental and predicted isobaric ternary LLE with the
parameters determined by Katayama’s method for the system ethanol (1) – water (2) – 1-

butanol (3)

The predicted VLLE for the system ethanol-water-1-butanol are shown in Fig. 12.
The VLLE was calculated by the same way as for the system ethanol-2-butanol-
water. The predicted compositions are in good agreement with the experimental
ones. Fig. 13 shows the comparison between the predicted and experimental boiling
points. Almost all of the predicted boiling points are within ±1.0 K of the experimental
ones.

From the results above, the isobaric ternary VLLE data for these two systems are
successfully predicted with the parameters obtained in this study.
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Fig. 12 Comparison between experimental and predicted isobaric ternary VLLE for the
system ethanol (1) – water (2) – 1-butanol (3) at 101.3 kPa
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Fig. 13 Comparison between experimental and predicted vapor phase composition of 1-
butanol at VLLE for the system ethanol (1) – water (2) – 1-butanol (3)

CONCLUSION

The predictions of the isobaric ternary VLLE data for the systems ethanol-water-1-
butanol and ethanol-2-butanol-water with activity coefficient models are studied. The
parameters determined from binary VLE data for the constituent binaries cannot be
used for the prediction since the predicted LLE data at boiling points are very
different from the experimental ones. Then the parameters for VLE and LLE
calculation were independently determined from those data. Katayama’s method was
employed to determine the parameters for LLE calculation. For the system ethanol-2-
butanol-water, the parameters were obtained by the method. For the system ethanol-
water-1-butanol, however, the parameters for the binary immiscible pair determined
from the binary LLE data were not suited for the prediction of ternary LLE at boiling
points. So the pseudo-binary system was assumed by normalizing the compositions
of binary immiscible pairs in the ternary LLE data. Using the parameters, better
predictions for the ternary LLE data at boiling points were obtained. Finally, the
isobaric ternary VLLE data are predicted by the successive calculation of the LLE
and VLE. The predicted VLLE data were in good agreement with the experimental
ones.
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NOMENCLATURE

∆Aij = binary interaction parameter for component i and j [K]
a = activity [ - ]
aij = coefficients for temperature dependent parameter [K]
bij = coefficients for temperature dependent parameter [ - ]
cij = coefficients for temperature dependent parameter [K-1]
g = binary interaction parameter of NRTL model [J mol-1]
m = number of the data [ - ]
OF = objective function [ - ]
q = van der Waals surface area parameter [ - ]
R = gas constant (=8.314 J mol-1 K-1) [J mol-1 K-1]
r = van der Waals volume parameter [ - ]
T = temperature [K]
u = binary interaction parameter of UNIQUAC model [J mol-1]
x = mole fraction in the liquid phase [ - ]
y = mole fraction in the vapor phase [ - ]

Greeks
α = nonrandomness parameter of NRTL model [ - ]
γ = activity coefficient [ - ]

Subscript
cal = calculated value
exp = experimental value
i = component i
j = component j
j = phase number, in eq. 4
k = data number
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