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ABSTRACT

The overall process of desulfurization was divided into three partial processes
(reactions). The mass balances of the partial processes of the industrial spray
scrubbing process were presented in the equilibrium diagram for the Ca2+–SO2–H2O
system.
The mass transfer analysis of the partial processes was made and its results were in
good agreement with the results based on the overall mass balance equation and the
overall reaction.
Cases considering changes in input process parameters were also studied. A
modification of some process parameters had to be made to satisfy the proper
operation of the absorption unit.



INTRODUCTION

The sulfur dioxide emissions from power plants and other sources are harmful to the
environment and to humans as well. Large amounts of sulfur dioxide are released
into the air by combustion of fossil fuels for power generation. The most common flue
gas desulfurization technology is the absorption of SO2 in a limestone slurry [1].
The overall reaction for this process can be written as [2]:

SO2(g) + CaCO3(s) + 1/2O2(g) + 2H2O(l)  →  CaSO4⋅2H2O(s) + CO2(g) (1)

There has been considerable work done in the field of SO2 absorption.  The
equilibrium diagram for the MgO–SO2–H2O system showing the concentrations of
total SO2 (ctot), of combined SO2 (ccom), of true free SO2 (Y) and the pH value of the
solution was constructed. A solubility curve for MgSO3 was also presented [3]. An
analogous model was applied to the Ca2+–SO2–H2O system, which enabled the
construction of the equilibrium diagram for this system as well [2].
Some studies divide the desulfurization process into partial processes (reactions) [1,
4], the same approach was used in our previous work [2].  On the assumption that
mass transfer is diffusion controlled a mass transfer analysis of the partial processes
was also made.
The aim of the present work is to study the operation of the industrial spray scrubber
under normal operating conditions and if the input conditions (parameters) are
changed. In the latter case a possible change in some process parameters had to be
considered in order to satisfy the mass balance of the scrubber.

PRESENTATION OF THE PARTIAL PROCESSES

The overall reaction (1) can be divided into three partial processes (reaction steps)
[2];
– absorption of SO2, sulfite – bisulfite reaction (occurs at constant ccom)

SO2(g) + H2O(l) + CaSO3(l) —→ Ca(HSO3)2(l) (2)
– dissolution of CaCO3 and its reaction with Ca(HSO3)2 (occurs at constant ctot)

CaCO3(s) + Ca(HSO3)2(l) —→ 2CaSO3(l) + CO2(g) + H2O(l) (3)
– oxidation of CaSO3 and crystallization into gypsum (occurs at constant Y)

CaSO3(l) + 1/2O2(g) + 2H2O(l) —→ CaSO4⋅2H2O(s) (4)
The division into partial processes is an idealized assumption, they are also assumed
to take place in series. These three partial processes are presented as a triangle in
the equilibrium diagram (Figure 1).



Figure 1: Idealized presentation of the partial processes of the spray scrubbing process
in the equilibrium diagram (at 25oC)

M1M2 – absorption of SO2, sulfite – bisulfite reaction
M2M3 – limestone dissolution, reaction with Ca(HSO3)2
M3M1 – absorption of O2, oxidation of CaSO3, gypsum crystallization

The process data for the triangle points M1, M2 and M3 are taken from the industrial
spray scrubbing plant (Figure 2), which removes SO2 from the flue gas from the
275MW power plant in Sostanj, Slovenia, using coal powder as the fuel. The flue gas
enters the absorption unit, the limestone slurry is distributed in six levels, collected in
the holding tank and recycled to the sprayers. Air is blown into the holding tank to
ensure the oxidation of  CaSO3 into sulfate. Calcium sulfate  leaves the process as
gypsum, which is separated from the recycle flow in hydrocyclones.
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Figure 2: Schematic flow diagram of the industrial spray scrubbing plant

MASS TRANSFER CALCULATIONS

The mass transfer analysis of the three processes was based on the industrial
process data (Table 1), using the assumption that mass transfer is the rate
determining process (the mass transfer is diffusion controlled).

Table 1: Basic process and triangle points data

Process data
G=1.1*106m3/h l 0.125mmol/c in,SO2

= climestone=6g/l
L=5*104m3/h  /l0.0041mmolc out,SO2

= Goxid=1.7*104m3/h

Triangle points
measured calculated

M1 ctot,in=6.20mmol/l, pHin=5.8 ccom=3.40mmol/l
M2 / ctot,out=8.86mmol/l, pHout=2.5, ccom=3.40mmol/l
M3 / ctot,3=8.86mmol/l pH3=5.6, ccom,3=4.73mmol/l

All three partial processes were modeled by the equation
cAKW ∆⋅⋅=& (5)

The data for the calculation were taken from the industrial plant, some data and the
appropriate correlations were taken from the up to date literature.  The results of the
calculation of the overall mass transfer coefficient K, the area A available for the
mass transfer, the concentration potential ∆c and the molar flow rate W&  for the three
partial processes are  presented in Table 2.



Table 2: The results of the mass transfer analysis for the three partial processes

K (m/s) A (m2) ∆c (mol/m3) W& (kmol/h)
absorption
of SO2

2'
g 10*80.2K −= 4

SO 10*67.6A
2
= 2

(ln)SO 10*02.2c
2

−=∆ 136W 2SO =
⋅

dissolution
of CaCO3

3
s 10*95.2k −= 6

CaCO 10*73.4A
3
= 3

dissol 10*51.2c −=∆ 126W 3CaCO =
⋅

absorption
of O2

4
)O(L 10*81.3k
2

−= 5
O 10*96.1A
2
= 1

(ln)O 10*61.2c
2

−=∆ 70W 2O =
⋅

The results of the mass transfer analysis were verified by the basic mass balance
( ) ( )in,totouttot,out,SOin,SO ccLccG

22
−=− (6)

and the overall reaction (1), and the results were within a 10% margin, which
confirms that the calculation procedure is satisfactory.

VARIATIONS IN INDUSTRIAL PLANT OPERATION

The industrial plant should be able to operate at changed input conditions and still
ensure the same SO2 removal. Therefore the following cases were studied;
Case 1: The increase in the input gas flow rate and in the input SO2 concentrations.
The input gas flow rate and the input gas SO2 concentration were increased by 20%.
This case illustrates the increase in power plant operation. The spray scrubber can
ensure the demanded SO2 removal if some process parameters (climestone, Goxid, L)
are reset. The process data are listed in Table 3.
Case 2: The increase in the input SO2 concentration, whereas the input gas flow rate
remains unchanged
The increase in gas SO2 concentration was 20%. Such a case would happen if a
different kind of coal with larger sulfur content was used in the power plant. Again the
spray scrubber met the demands if the relevant process parameters (climestone, Goxid)
had been changed (Table 3).
Case 3: Use of a limestone with a different particle size distribution
In this case the input process parameters remained the same, however the limestone
concentration had to be smaller (Table 3) since this limestone has much smaller
particles which dissolve faster. The d90 of this limestone is 31.2µm compared to the
d90=63µm for the primary limestone.
The suspension flow rate, limestone concentration, and air flow rate, respectively,
had to be modified in order to satisfy the new condition of the overall mass balance of
the absorption process. As for the mass transfer: First for the partial process of the
absorption of SO2 this is ensured by increasing the interfacial area and the
concentration potential, for the partial process of limestone dissolution the adequate
interfacial area is achieved by a greater  (cases 1 and 2)  or smaller (case 3)
limestone concentration. In case 3 the limestone particles are smaller which also
increases interfacial area. The interfacial area for the partial process of absorption of
O2 is enlarged through a larger air flow rate. The capacity of the mechanical
equipment is oversized to higher capacity conditions, thus no special rearrangements
of pumps, compressors and hydrocyclones is necessary.



Table 3: Basic process data – cases 1–3

G=1.32*106m3/h  /l0.150mmolc in,SO2
= climestone=8.5g/l

ca
se

 1
L=6*104m3/h /l0.0041mmolc out,SO2

= Goxid=2.2*104m3/h

G=1.1*106m3/h  /l0.150mmolc in,SO2
= climestone=7g/l

ca
se

 2

L=5*104m3/h  /l0.0041mmolc out,SO2
= Goxid=1.9*104m3/h

G=1.1*106m3/h  /l0.125mmolc in,SO2
= climestone=1.5g/l

ca
se

 3

L=5*104m3/h  /l0.0041mmolc out,SO2
= Goxid=1.7*104m3/h

The triangles representing the partial processes for the case 1 and case 2 can be
presented in the equilibrium diagram (Figure 3). For both cases the measured point
M1 has the pH=5,8. For the case 3 the presentation of the partial processes in the
equilibrium diagram would be the same as for the normal operating conditions.

Figure 3: The presentation of the partial processes for the case 1 and case 2
in the equilibrium diagram (at 25oC).

Also presented is the triangle for the normal spray scrubber operation.
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CONCLUSIONS

The process of the industrial desulfurization spray scrubbing process was divided
into partial processes – absorption of SO2 and sulfite to bisulfite reaction, limestone
dissolution and its reaction with Ca(HSO3)2, absorption of O2, oxidation of CaSO3 and
gypsum  crystallization. Their mass balances were presented in the equilibrium
diagram for the Ca2+–SO2–H2O system.
The values obtained by the mass transfer analysis of the partial processes were in
good agreement with the values calculated by the basic mass balance and the
overall reaction.
The operation of the spray scrubber under changed operating conditions was also
studied. The proper process parameters had to be changed in order to satisfy the
mass balance and the mass transfer of the process and to ensure the demanded
SO2 removal.

NOMENCLATURE

c concentration, mmol/l
climestone steady-state limestone concentration, g/l
A interfacial area, m2

∆c concentration potential, mol/m3

G flue gas flow rate, m3/h
Goxid air flow rate for absorption of O2, m3/h
K overall mass transfer coefficient, m/s

'
gK overall mass transfer coefficient for absorption of SO2, m/s

)O(Lk
2

 liquid–side mass transfer coefficient for absorption of O2, m/s
kS liquid–side mass transfer coefficient for dissolution of CaCO3,

m/s
L suspension flow rate, m3/h
⋅

W molar flow rate, kmol/h
Y   concentration of true free SO2, mmol/l

subscripts
com combined SO2
dissol dissolution
tot total SO2
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