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ABSTRACT

Determination of interfacial areas in absorption processes have been experimentally
investigated in a bubble column using a physical method (photographic method) and
a chemical method (Danckwerts´ method). Experiments were conducted in a vertical
column 11.3 cm in diameter and 108.6 cm in height. The range of variables used is
common for both methods. All experiments were carried out in batch regime. All
values of area were correlated with variables grouped in dimensionless modules that
reproduce experimental values with deviations below 9%, and these values obtained
by the photographic method are of the same magnitude as those obtained by the
chemical method, maximum deviation of these values being 10 %.

INTRODUCTION

For the experimental determination of the mass transfer coefficient (kL) it is inevitable
to first know the gas-liquid interfacial area of the contact system. One could think that
knowing the value of the product kLa would be sufficient for the calculation and
design of gas-liquid absorbers and reactors. However, the knowledge of the area can
be so important as the knowledge of the mass transfer coefficient to analyse
thoroughly the mass transfer process and the influence of the different variables.
Interfacial area can be determined of different ways depending on the gas-liquid
contact system employed. In many cases it is possible to determine it by geometric
considerations, while in other cases, it is necessary to determining it experimentally.
The determination of interfacial areas is possible by one of the existing methods [1-
5].

If the absorption process is accompanied by a fast chemical reaction, the interfacial
area becomes the principal design criteria. The area can vary in a wide range,
depending on the type of contact equipment, physical and chemical properties of the
gas-liquid system, and on the operation conditions. Thus, specific techniques are
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necessary for its determination, numerous methods being proposed, each one with
its advantages and disadvantages. The different methods used in the determination
of interfacial areas can be classified as physical [6-11] or chemical methods [12-14].
The first methods are based on modifying some physical property, while the second
methods are based on carrying out a chemical reaction of known kinetics, in such a
way that the absorption rates be proportional to the area. The results obtained using
different methods, physical and chemical, have sometimes given contradictory
results [12, 15].

In the present study, the interfacial area is determined by two different methods, the
Danckwerts´ method and the photographic method, analysing the influence of the
different variables on the area and obtaining the corresponding correlations.

MATERIAL AND METHODS

Mass transfer measurements
The absorption experiments were carried out in the set-up that, with the exception of
the contact device, has been described in detail in previous studies [16]. The bubble
column, (Fig. 1), made of methacrylate, 108.6 cm high and 4 mm thick. The internal
and external diameters of the column are 11.3 cm and 14.8 cm, respectively. The
gas distributor was a porous plate, 4 cm in diameter. The size of the bubbles is
modified by using porous plates of different equivalent pore diameter, allowing an
important variation in the interfacial area. Table 1 shows the relation between
porosity and the equivalent pore diameter for each of the porous plates employed.
The liquid phase enters the column through the top via a vertical glass tube that is
slightly bent at the lower end to avoid gas leakage.

Table 1. Relation between porosity and the equivalent pore diameter
for each of the porous plates employed

Plate Equivalent pore diameter · 106

(m)

0 150-200

1 90-150

2 40-90

The gas, pure CO2, is led through a humidifier, where, by bubbling, is saturated
water vapor at 25 ºC. Once saturated, it passes through a bubble flow-meter, where
the flow into the column is measured. The gas not absorbed, after making contact
with the liquid phase, exits the column, passes to a second bubble flow-meter
determining the gas flow at the exit. The amount of gas absorbed is determined by
the difference of flow entering and exiting the column. In our experiments, we used
inflow between 3 and 8.5 10-4 mol/s. The liquid, previously thermostated to 25 ºC, is
introduced into the column in loadings of 10.3 l.



Photographic method
This method consists in photographing different zones of the column during the
absorption process and determining the diameter and number of bubbles in this
zone. Once this is known, we can calculate the total number of bubbles and area
occupied by these that would correspond to the gas-liquid contact area. This method
was employed by several authors to determine interfacial areas in a column of
spheres and cylinders [17], or to study the reaction of carbonic gas with carbonate-
bicarbonate solution in the presence of hypochlorite as catalyst [18].

Figure 1. Bubble column scheme: 1. Bubble column; 2. Thermometer; 3. Inflow of liquid ; 4.
Outflow of gas; 5. Porous plate; 6 and 7. Outflow of liquid

Danckwerts´ method
The method proposed by Danckwerts requires that the gas absorbed undergo a
moderately fast pseudo-first order reaction with some of the solutes of the liquid
phase. The value of interfacial area (A) is obtained from the slope of the straight line
that results from the graphic representation of absorption flux per volume (N2) versus
pseudo-first order kinetics constant (k1), while the value of kL is calculated from the
ordinates at the origin. This method has the advantage that appreciable differences of
k1 are obtained using very small catalyst concentrations thereby not affecting the
physical properties of the absorbent liquid [19].



RESULTS AND DISCUSSION

Photographic method
Upon application of the photographic method experiments were designed in advance
to analyse the influence of the different variables on contact area and to determine
the minimum number of experiments needed.

In the last few years, several investigators have used factorial designs to cover
problems of this type in other research fields [20, 21]. We have employed a two-level
factorial design, 23, for the determination of area by the photographic method. We
have focused the study on three independent variables of greater influence over
interfacial area, superficial gas velocity (X1), pore size (X2) and surfactant
concentration (X3), whose maximum and minimum values are: Superficial gas
velocity: 0.8·10-3 - 1.8·10-3 m/s; Porous plate: 0 - 2; Concentration of sodium lauryl
sulphate (SLS): 5·10-5 – 5·10-4 % mass. For mathematical studies it is necessary to
use normalised independent variables. The correlation of the variables will be given,
depending on the mathematical model, in the following form:

322331132112332211o XXbXXbXXbXbXbXbby ++++++= (1)

where: y is the dependent variable; Xi are the normalised independent variables; bi
and bii are the model coefficients.

Photographs were taken of the column during the absorption process, for different
operating conditions, gas flow, liquid phase, and pore size. Several photographs
were taken for each system and in different zones of the column. For each
photograph, a count of the bubbles was taken in a prefixed interval, and their
diameters were determined (see fig 2). Contact area was calculated with these data.
Each experiment was performed five times.

Figure 2. Photograph of bubbles of porous plate 2 and 0.



The data obtained from the photographs is collected, along with those of calculation
of the gas-liquid interfacial area. The proposed equation is the following:

323121321 XX100.0XX310.0XX513.0X470.0X095.1X690.4520.11y +−+−++= (2)

Pareto Chart is shown in figure 3, it is a histogram showing the influence of each
independent variable over the dependent. The principal effects are presented
standardised (effects divided by standard error). All those effects that possess a
value superior to level 0.05 (value indicated on the graph) are significant at that level.
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Figure 3. Pareto chart.

Another way of analysing the influence of the three variables is by response
surfaces, in which the influence of two variables over the parameter of study is
analysed simultaneously. Next, the response surfaces are presented as a function of
superficial gas velocity and of plate, of superficial gas velocity and SLS
concentration, and of plate and SLS concentration (Fig. 4). In these graphs, we
observe that as we increase the levels of the variables, yield becomes greater,
becoming pronounced when one of the variables is superficial gas velocity.

Figure 4. Response plots



Danckwerts´ method
For its application, experiments  in sodium carbonate-bicarbonate buffer solutions
(0.5 M-0.5 M) with different surfactant concentrations were made. We observe that
interfacial area decreases with increasing concentration of sodium lauryl sulphate
and with pore diameter, and increases with gas flow. This behaviour being the same
as that observed in the photographic method. In figure 5, as an example, interfacial
area versus surface tension is shown. The variation indicates a decrease with SLS
addition; this behaviour is due to that when surfactant is present in the medium,
turbulence decreases and therefore area is lower. Interfacial area varied
proportionally with gas flow; this behaviour is similar for all solutions and porous
plates employed. In figure 6 this variation is manifested:

767472706866

20.0

18.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

σ· 103 (N. m -1)

A
 ·
 1
0
2
 (
m

2
)

Figure 5.  Dependence of interfacial area, A, on surface tension, pore diameter and gas flow
rate: ( ) 1.81·10-3 m/s, plate 0; ( ) 0.87·10-3 m/s, plate 0; ( ) 1.81·10-3 m/s,

 plate 2; ( ) 0.87·10-3 m/s, plate 2.
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Figure 6. Dependence of A on superficial velocity of gas and surfactant concentration for
plate 0, ( ) 0 % mass SLS; ( ) 0.5·10-4 % mass SLS; ( ) 1·10-4 % mass SLS;



( ) 1.5·10-4 % mass SLS.

To complement this analysis, we have undergone a fit for interfacial area as a
function of dimensionless numbers. The equation obtained is the following:
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where K1 has a fixed value equal to 6.12·10-2 m2 for all solutions and plates. The
values calculated using Eq. (3) for the three plates, reproduce experimental values
with deviations below 8.6 %.

The results obtained by both methods were compared, finding better results in the
reproduction of experimental values of area from the chemical method equation than
from the photographic method, as shown in figure 7. In this figure we observe that
small area values have lower concordance between the values obtained by the
physical method and those obtained by the chemical method, these differences
being more pronounced for smaller pore size.
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Figure 7. Interfacial area calculated with photographic method against interfacial area
calculated with chemical method. ( ) plate 0, ( ) plate 1, ( ) plate 2.

CONCLUSIONS

Interfacial areas were determined by the photographic method and a chemical
method. A non-linear regression statistical analysis was performed to analyse the
influence of distinct variables on interfacial area, superficial gas velocity being the
most significant variable in the values obtained by the physical method. The values
for area obtained by the chemical method were correlated by means of an equation
based on dimensionless modules.

The presence of surfactants significantly decreases mass transfer and, therefore,



interfacial area values. The decrease in area was more pronounced for smaller pore
size. In comparing the obtained area by the Danckwerts´ method with respect to the
photographic method, maximum deviations below 10 % result.

NOTATION

A Effective interfacial area, (m2)
dc Column diameter, (m)
dp Pore diameter, (m)
D Gas diffusivity in the liquid phase, (m2 s-1)
g Gravitational constant, (m s-2)
K1 Parameter in Eq. (3), (m2)
k1 Pseudo-first order kinetics constant, (s-1)
kL Mass transfer coefficient in the liquid phase, (m s-1)
kLa Volumetric mass transfer coefficient, (s-1)
N Absorption flux per volume, (mol l-1 s)
qg Gas flow rate, (mol s-1)
uG Superficial gas velocity, (m s-1)

Dimensionless numbers

Bo Bond number, 
σ
ρ2dg

Fr Froud number, 
g

dug
2

Re Reynolds number, 
µ

ρ dug

Sc Schmidt number, 
Dρ

µ

Greek symbols
µ Viscosity of liquid phase, (kg m-1 s)
ρ Density of liquid phase, (kg m-3)
σ Surface tension of liquid phase, (mN m-1)
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