Index

Α

absorption absorption column acid acid gas activity coefficient alcohol amine	<u>2.1-6, 4-8, 6-9, 6-25</u> <u>6-22</u> <u>3.1-2</u> <u>6-20</u> <u>6-2, 6-23</u> <u>6-5</u> <u>1-5, 6-20</u>	aqueous systems aromatics assurance azeotrope azeotropic distillation azeotropic mixtures	<u>3.2-5</u> <u>5-6</u> <u>1-2</u> <u>6-19</u> <u>1-1, 3.2-1, 5-5, 6-28</u> <u>1-3, 5-2, 5-4, 6-19</u>
В			

batch	
batch distillation	
batch regime	
binary entrainer	

	<u>6-31</u>
<u>5-2</u> , <u>5-3</u> ,	<u>5-4, 6-24</u>
	<u>6-3</u>
	<u>3.1-2</u>

boundary crossing	<u>3.2-1</u>
bubble column	<u>6-3, 6-4, 6-11</u>
bubbly flow	<u>6-11</u>

С

<u>1-1</u>
<u>2.1-3, 2.2-7</u>
<u>1-5</u>
<u>6-5</u>
<u>3.1-6</u>
<u>3.4-3, 4-4</u>
<u>4-5, 6-29</u>
<u>2.2-3, 2.2-5, 2.2-6, 6-8,</u>
<u>6-11, 6-12, 6-13</u>
<u>2.1-2</u>
<u>5-5, 6-4</u>
<u>PL2</u>

column	<u>2.1-4, 4-4, </u>	<u>4-7, 5-1, 6-30</u>
component efficience	cies	<u>3.2-1</u>
computational fluid	dynamics	<u>PL2, 6-10</u>
computer aided solv	/ent design	<u>1-1</u>
conceptual design		<u>3.2-2</u>
continuous distillation	on	<u>6-19</u>
continuous regime		<u>6-3</u>
control		<u>3.4-3</u>
correlations		<u>6-12</u>
COSMO-RS		<u>PL3, 6-23</u>
crude oil		<u>3.3-1</u>

D

Danckwert decanter-distillation hybrid dehydration delayed boiling design desulfurization diffusion	<u>6-4</u> <u>5-4</u> <u>4-8</u> <u>2.1-7</u> <u>3.1-3, 6-30</u> <u>6-25</u> <u>1-4</u>	dimethyl sulfoxide dismutation DISQUAC distillation <u>PL</u> <u>2.1-1, 2.1-6, 2</u> <u>3.2-4, 3.2-5, 3.3-6-12, 6-14, 6-16</u>	<u>6-1</u> <u>4-1</u> <u>6-1</u> <u>1, PL3, PL4, 1-1,</u> <u>.2-2, 3.1-3, 3.1-4,</u> <u>5, 3.4-1, 5-7, 6-9,</u> <u>6-21, 6-27, 6-31</u>
---	---	---	---

distillation boundary distillation column <u>3.3-4</u> , <u>3.4-2</u> , distillation control distillation modeling distillation regions distillation surface	6-19distillation synthesi6-18divided-wall colum6-28driving force6-23dualflow6-19dynamic behaviour3.2-1dynamic simulation	s $3.1-1$ ns $3.4-1, 5-6$ 3.1-3 2.1-4 h $6-18$ n $3.4-2$
---	--	---

Ε

effective area	<u>6-12</u>	equipment	<u>PL4</u>
efficiency	<u>3.2-4, 3.2-5</u>	ethanol dehydration	<u>6-28</u>
empirical model	<u>2.2-6</u>	excess enthalpy	<u>6-1</u>
energy integrated distillation	3.3-2	experimental Investigation	<u>5-2</u>
energy efficiency	<u>3.3-1</u>	experimental validation	<u>6-24</u>
energy integration	<u>3.3-3</u>	experimental verification	<u>3.3-4</u>
entrainer	<u>1-3, 5-5</u>	experiments	<u>4-5</u>
entrainment	<u>2.2-4</u>	extractive	<u>6-31</u>
equilibrium diagram	<u>6-25</u>	extractive distillation	<u>PL3, 1-1, 1-3,</u>
equilibrium stage	<u>3.2-1, 4-7</u>		<u>3.2-2, 5-2, 5-6</u>

F

factorial design	<u>6-28</u>	flue gas	<u>6-25</u>
fatty acids esterification	<u>5-5</u>	foam fractionation	<u>5-1</u>
feasibility	<u>3.1-1, 6-30, 6-31</u>	formaldehyde	<u>6-26</u>
feasible separation region	<u>6-19</u>	fouling	<u>2.1-4</u>
feed inlet	<u>2.2-3</u>	froth density	<u>PL2</u>
film thickness	<u>2.2-6</u>	froth height	<u>PL2</u>
flood	<u>2.2-7</u>	full thermal coupling	<u>6-27</u>
flooding	<u>4-7, 6-15</u>	future trends	<u>2.1-1</u>
flowsheet	<u>3.1-4</u>		

G

gas capacity	<u>6-17</u>	gas/vapour flow	<u>2.2-6</u>
gas flow rate	<u>6-4</u>	genetic algorithm	<u>5-3</u>
gas liquid flow	<u>6-10</u>	graphical conceptualising techniques	<u>3.1-2</u>
gas maldistribution	<u>2.2-5, 6-14</u>	graphical tool	<u>6-30</u>

Η

hardware	<u>4-7</u>
heat exchanger network	<u>3.3-1</u>
heat integration	<u>3.3-1</u>

heterogeneous azeotropic distillation	<u>3.1-2,</u>
<u>3.2-3,</u>	<u>5-4, 6-28</u>
heterogeneous catalysis	<u>4-5</u>
hexyl acetate	<u>4-5</u>

high performance	<u>2.1-2</u>	hydraulics of packed columns	<u>2.1-3, 6-7</u>
highspeeed tray	<u>6-6</u>	hydrodesulfurization	4-6
hybrid	<u>4-8</u>	hydrodynamics	<u>4-7, 6-17</u>
hybrid column	<u>6-30</u>	hyperbranched polymers	<u>PL3, 1-3</u>
hybrid processes	<u>4-9, 5-4</u>		

I

ideal mixtures	<u>6-16</u>	interfacial area	<u>6-4, 6-11</u>
inclined plate	<u>6-13</u>	internals	<u>4-4</u>
integrated process	<u>3.4-1</u>	ionic liquids	<u>PL3, 1-3</u>
integrated system	<u>3.1-3</u>	isopropylbenzene	<u>3.1-4</u>
integration of design and control	<u>3.3-2</u>	воргорушениене	<u>0.1-4</u>

L

limestone	<u>6-25</u>	liquid distributors	<u>2.2-5</u>
liquid circulations	PL2	liquid film flow	2.2-6
liquid collectors	<u>2.2-5</u>	loading	<u>6-15</u>

Μ

maldistribution	<u>2.1-5, 2.2-2, 2.2-3</u>	minimum energy	<u>6-27</u>
malfunctions	<u>PL1</u>	model	<u>3.1-3</u>
manifold	<u>3.1-1</u>	model predictive control	<u>3.4-1</u>
mass transfer	<u>1-5, 4-7, 6-7, 6-20</u>	modeling	<u>3.2-5, 3.4-3, 4-4,</u>
mass transfer coefficients	<u>6-3</u>		<u>4-5, 6-24, 6-25</u>
mass-transfer internals	<u>6-6</u>	multicomponent	<u>1-4, 3.1-1, 6-16</u>
mathematical modelling	<u>6-21</u>	multi-effect	<u>3.3-3</u>
Maxwell-Stefan equations	<u>1-4, 3.2-1, 4-7</u>	multiplicity of steady states	<u>6-18</u>
measurements	<u>6-2</u>	multivessel batch column	<u>5-4</u>
methyl acetate	<u>4-7</u>	MVG tray	<u>6-8</u>
middle vessel column	<u>5-2</u>		

Ν

network pinch neural network nitric acid non linear data regression	<u>3.3-1</u> <u>6-22</u> <u>6-22</u> <u>1-2</u>	nonequilibrium stage novel process NTSM	<u>3.2-1, 3.2-3, 4-7</u> <u>5-1</u> <u>2.1-2</u>
non mical data regioeolon	<u></u>		

0

olefin isomer	<u>4-2</u>	optimal solution	<u>3.1-3</u>
optimal design	<u>5-3</u>	optimisation	<u>3.3-4, 3.4-3, 6-28</u>
optimal operation	<u>5-3</u>	oxygenate	<u>3.1-2</u>

Ρ

packed column 2.23 packing 2.1-4, 2.1 parameter estimation PC-SAFT performance pervaporation petrochemical cuts phase equilibrium photographic method physical absorption physical methods physicochemical phenomena physicochemical properties pinch	$\begin{array}{c} 2.1-5, 2.2-2, \\ 3, 2.2-5, 6-21 \\ -5, 2.1-6, 6-9 \\ 6-2 \\ PL3 \\ 2.1-1, 2.2-1 \\ 4-3, 4-8 \\ 5-6 \\ 5-5, 6-2 \\ 6-4 \\ 6-3 \\ 6-4 \\ 3.2-5 \\ 3.2-5 \\ 3.1-4 \end{array}$	pinch point plate behaviour practical experience prediction preheat train pressure drop process design process integration process operation process simulation process synthesis product region property integration property prediction pump-arounds	$\begin{array}{r} \underline{3.2-2,\ 6-19}\\ \underline{3.2-4}\\ \underline{PL1}\\ \underline{1-4,\ 6-2}\\ \underline{3.3-1}\\ \underline{2.1-2,\ 6-14,\ 6-15,\ 6-17}\\ \underline{3.3-5}\\ \underline{3.3-5}\\ \underline{3.3-5}\\ \underline{3.3-5}\\ \underline{3.3-5}\\ \underline{4-3,\ 6-28}\\ \underline{PL4,\ 3.1-6,\ 6-30}\\ \underline{3.1-1}\\ \underline{3.1-5}\\ \underline{PL3}\\ \underline{4-7}\end{array}$
quality quaternary azeotropic distillation	<u>1-2</u> <u>3.2-1</u>	quaternary systems	<u>3.1-2</u>

R

random	<u>6-9</u>
Raschig Super-Ring	<u>2.1-6</u>
RBF network	<u>6-22</u>
reaction kinetics	<u>1-5, 4-3</u>
reactive distillation <u>PL4</u> , <u>4-1</u> ,	<u>4-3, 4-5,</u>
<u>4-6, 4-7, 6-5, 6</u>	<u>6-7, 6-29</u>
reactive extractive distillation	<u>4-2</u>
reactive packing	<u>6-7</u>
reactive separation	<u>4-4, 5-5</u>
real mixtures	<u>6-16</u>
recovery of olefins from oxygenates	<u>3.1-2</u>
rectification body method	<u>3.2-2</u>
recycle	<u>3.1-1</u>

recycle structure	<u>3.1-1</u>
recycle systems	<u>6-18</u>
redistribution	<u>2.1-5, 4-1</u>
relief	<u>3.4-2</u>
removal	<u>3.1-2</u>
residence time distribution	<u>PL2</u>
retrofit	<u>3.3-1</u>
retrofit design	<u>3.3-1</u>
reversible distillation	<u>6-27</u>
Rivulet	<u>6-13</u>
Rombopak	<u>2.1-2</u>
rotating cone	<u>2.2-6</u>

S

safety	<u>3.4-2</u>	simulation	<u>3.2-3, 3.2-4, 3.2-5, 4-4,</u>
scale effects	<u>PL2</u>		<u>4-5, 6-10, 6-21, 6-22, 6-24</u>
scale-up	<u>4-5, 6-29</u>	slurries	<u>5-7</u>
selective entrainers	<u>1-3</u>	SO2	<u>6-25</u>
selective solvents	<u>1-3</u>	solvent recovery	<u>4-9</u>
selectivity	<u>6-20</u>	solvents	<u>1-1</u>
self-optimizing control	<u>3.3-3</u>	spray scrubbing	<u>6-25</u>
separation	<u>6-26</u>	startup	<u>3.3-4</u>
separation factor	<u>1-3</u>	steady state simulat	tions <u>3.1-2</u>
shortcut models	<u>3.3-1</u>	stochastic optimisat	ion <u>5-3</u>
side reactors	<u>4-7</u>	structured packings	<u>2.1-1, 2.1-2,</u>
sieve tray	<u>6-10</u>		<u>2.1-3, 2.2-1, 2.2-5,</u>
sieve tray column	<u>3.2-3</u>		<u>6-12, 6-14, 6-15, 6-17</u>
sieve tray hydraulics	<u>PL2</u>	surfactant	<u>5-1</u>
sieve tray with stabilizer	<u>6-6</u>	synthesis	<u>3.1-3</u>
silane	<u>4-1</u>	system limit	<u>2.2-7</u>
silicon	<u>4-1</u>		
т			
thermodynamic analysis	4-6	trav columns	6-6
total reflux operation	5-2	trichlorosilane	4-1
transformed composition space	6-30	troubleshooting	PL1
transient flows	2.2-6	truncated downcom	ers <u>6-8</u>
trav	2.2-4		<u></u>

U

ultimate capacity	<u>2.2-7</u>	UNIFAC	<u>PL3, 6-1</u>
ultra-low sulfur diesel	<u>4-6</u>		

V

vacuum distillation	<u>6-26</u>	vapor-liquid equilibria	<u>1-3, 6-1, 6-2</u>
vapor liquid equilibrium	<u>1-2, 6-5</u>	vapor capacity	<u>2.2-4</u>
vapor permeation	<u>4-8</u>	viscosity	<u>5-7</u>
vapor pressure correlation	<u>1-2</u>	VOF Model	<u>6-13</u>

W

wavy films	2.2-6	wetted-wall	6-12
wavy mmo	<u> </u>		