Distillation and Absorption 2006

Institution of Chemical Engineers, Rugby, UK

Distillation and Absorption 2006

Orders for this publication should be directed as follows:

Institution of Chemical Engineers, Davis Building, 165–189 Railway Terrace, RUGBY, Warwickshire CV21 3HQ, UK

Tel: +44 1788 578214 Fax: +44 1788 560833 Website: www.icheme.org/shop

Copyright © 2006 Institution of Chemical Engineers A Registered Charity Offices in Rugby (UK), London (UK), Melbourne (Australia) and Kuala Lumpar (Malaysia)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any forms or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without permission in writing from the copyright owner. Opinions expressed in the papers in this volume are those of the individual authors and not necessarily those of the Institution of Chemical Engineers or of the Organizing Committee.

Distillation and Absorption 2006

This book contains the papers presented at the 8th Distillation and Absorption conference held in London, UK, 4-6 September, 2006.

National Organising Committee

Claire Adjiman	Imperial College London, UK
Richard Darton	Oxford University, UK (Chair of EFCE Working Party)
Stuart Fraser	BP, UK
Megan Jobson	The University of Manchester, UK
Eva Sorensen	University College London, UK (Chair)
Rafic Traboulssi	Sulzer Chemtech UK Ltd, UK
Malcolm Woodman	BP, UK

INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES No. 152 ISBN-10 0 85295 505 7

Sponsors

This conference is sponsored by:

BP Sulzer Koch-Glitsch Process Vision Services

Printed by Antony Rowe Ltd, Chippenham, UK

Preface

It is now nearly 50 years since the first Distillation & Absorption conference was held in Brighton in 1960. The first meetings were held in Brighton at approximately ten-year intervals and therefore became know as 'the Brighton Conferences'. In 1987, it was recognized that more frequent meetings were needed, so the next conference was in 1992 in Birmingham (UK), then 1997 in Maastricht (Netherlands) and then in 2002 in Baden-Baden (Germany).

Distillation and Absorption are hugely important industrial separation technologies. They are used to produce the world's petroleum fuels; to treat most of our natural gas; and are a critical element in a host of processes making the chemicals and other products that the world needs. Large in scale, and heavy in energy usage, there are enormous incentives to introduce new and improved methods and equipment to improve the sustainability of these operations.

These proceedings present the collected papers of the 8th International Symposium on Distillation & Absorption held in London in September 2006 and include 100 papers selected from over 180 submitted abstracts. Of these contributions, 4 were plenary lectures, 64 scientific lectures and 32 were posters. A number of exhibitors also presented their contributions at the conference.

The papers cover a broad range of topics from the estimation of physical properties to the design and performance of contacting trays and packing, and demonstrate a remarkably high rate of advance in the technology. Our understanding of the behaviour of distillation and absorption processes is continuing to improve rapidly, resulting in new methods of control, better process integration, more effective equipment, novel schemes for reactive and extractive distillation as well as for hybrid processes, and in the many other developments described in the papers in these proceedings.

We would like to record our thanks to everyone who submitted a paper for contributing to an outstanding programme. We received a large number of excellent contributions and the Scientific Committee had a difficult task selecting the most outstanding ones from these and, inevitably, many worthy contributions did not make it through to the final programme. Equally, we would like to thank the theme

leaders and international referees who worked tirelessly to reduce a large number of abstracts down to the final papers detailed here. We would also like to acknowledge the essential contribution of the IChemE team at Rugby. These Proceedings are our distilled product – we hope you enjoy them and find them useful and absorbing.

Dr Eva Sorensen Chair, Organising Committee

Professor Richard Darton Chair, EFCE WP on Distillation, Absorption and Extraction

Contents

Plenary Lectures

Paper 1 Page 1	(Di)Still Modeling After All These Years: A View of the State of the ArtR. Taylor (<i>Clarkson University, USA</i>)
Paper 2 Page 21	Challenges and Opportunities for the Suppliers of Technologies, Equipment and Services for Separation Towers U. Fankhauser (<i>Sulzer Chemtech Ltd</i>)
Paper 3 Page 28	The Dos and Don'ts of Distillation Column Control S. Skogestad (<i>Norwegian University of Science and Technology, Norway</i>)
Paper 4 Page 44	Industrial Absorption – Current Status and Future Aspects R. Thiele and JM. Löning (<i>BASF</i> <i>Aktiengesellschaft, Germany</i>)

Modelling and Simulation

Paper 5	Synthesis, Design and Retrofitting of Energy
Page 63	Efficient Separation Processes
	A. Lucia, A. Amale (University of Rhode Island,
	USA) and R. Taylor (Clarkson University, USA)
Paper 6	Selectivity Engineering with Reactive Distillation:
Page 73	Determination of Attainable Region
-	V. Agarwal, S. Thotla and S.M. Mahajani (Indian
	Institute of Technology, India)
Paper 7	Shortcut Evaluation of Absorption for Synthesis of
Page 88	Gas Separation Networks
c	M. Martin, M. Jobson, N. Zhang and P.J. Heggs
	(The University of Manchester, UK)

Paper 8	Thermodynamic Analysis of Multicomponent
Page 100	Distillation-Reaction Processes for Conceptual
	Process Design
	O. Ryll, S. Blagov and H. Hasse (University of
	Stuttgart, Germany)
Paper 9	Experimental Column Profile Maps with Varying
Page 111	Delta Points in a Continuous Column for the
	Acetone Methanol Ethanol System
	C. Wilson, D. Hildebrandt and D. Glasser
	(University of the Witwatersrand, South Africa)
Paper 10	Combining Shortcut Methods and Rigorous MINLP
Page 122	Optimization for the Design of Distillation
	Processes for Homogeneous Azeotropic Mixtures
	S. Kossack, K. Kraemer and W. Marquardt
	(Lehrstuhl für Prozesstechnik, Germany)

Energy Efficiency and Sustainability

Paper 11 Page 132	Selection and Pilot Plant Tests of New Absorbents for Post Combustion Carbon Dioxide Capture R. Notz (<i>University of Stuttgart, Germany</i>), N. Asprion, I. Clausen (<i>BASF AG, Germany</i>) and H. Hasse (<i>University of Stuttgart, Germany</i>)
Paper 12 Page 142	Biodiesel Production, Lubricant Fractionating and Development of a New True Boiling Point Curve Through Molecular Distillation R. Maciel Filho, N. Lima Silva, C.B. Batistella, M.R. Wolf Maciel, A. Winter, P. Sbaite (<i>State</i> <i>University of Campinas, Brasil</i>) and L. Medina (<i>CENPES/PETROBRAS, Brazil</i>)
Paper 13 Page 152	Separation of Methanol/Butene/MTBE Using Hybrid Distillation-Membrane Processes M. Peters, S. Kauchali, D. Hildebrandt and D. Glasser (University of the Witwatersrand, South Africa)
Paper 14 Page 162	Thermal Integration of a Distillation Column Through Side-exchangers S. Bandyopadhyay (<i>Indian Institute of Technology</i> , <i>India</i>)

Energy-saving Characteristics of Heat Integrated
Distillation Column Technology Applied to
Multi-component Petroleum Distillation
K. Horiuchi (Maruzen Petrochemical Co., Ltd,
Japan), K. Yanagimoto (E&E Planning Co., Ltd,
Japan), K. Kataoka (Kansai Chemical
Engineering Co., Ltd, Japan) and M. Nakaiwa
(National Institute of Advanced Industrial
Science and Technology, Japan)
Heat and Mass Transfer Characteristics of an
Annular Sieve Tray
A. de Rijke, W. Tesselaar, M.A. Gadalla, Ž. Olujić
and P.J. Jansens (Delft University of Technology,
The Netherlands)

Modelling and Simulation

On the Track to Understanding Three Phases in One Tower JU. Repke, A. Hoffmann, I. Ausner, O. Villain and G. Wozny (<i>Technische Universtität Berlin</i> , <i>Germany</i>)
A Non-linear Wave Model with Variable Molar Flows for Dynamic Behaviour and Disturbance Propagation in Distillation Columns N. Hankins (<i>University of Oxford, UK</i>)
Separation Performance of Structured Packed Columns: A Comparison of Two Modelling Approaches A. Shilkin and E.Y. Kenig (<i>University of Dortmund,</i> <i>Germany</i>)
Prediction of Temperature and Concentration Distributions of Distillation Sieve Trays by CFD R. Rahimi, MR. Rahimi, F. Shahraki and M. Zivdar (<i>Sistan and Baluchistan University</i> , <i>Iran</i>)

Equipment Design and Operation

Paper 21	Mixed-phase Feeds in Mass Transfer Columns and
Page 230	Liquid Separation
	M. Wehrli, P. Schaeffer, U. Marti (Sulzer Chemtech
	Ltd, Switzerland), F. Muggli (Sulzer Markets &
	Technology AG, Switzerland) and H. Kooijman
	(Shell Global Solutions International BV,
	The Netherlands)
Paper 22	How to Surpass Conventional and High Capacity
Page 241	Structured Packings with Raschig Super-Pak
0	S. Chambers and M. Schultes (Raschig GmbH,
	Germany)
Paper 23	Liquid Distribution Behaviour of Conventional and
Page 252	High Capacity Structured Packings
-	Ž. Olujić, R. van Baak and J. Haaring
	(Delft University of Technology,
	The Netherlands)
Paper 24	Three-phase Distillation in Packed Columns:
Page 267	Guidelines for Development, Design and Scale-up
-	R. Meier, J. Leistner and A. Kobus (Degussa AG,
	Germany)

Modelling and Simulation

Paper 25	Rate-based Modelling and Simulation of Reactive
Page 273	Stripping
	I. Mueller, E.Y. Kenig, M. Kloeker (University of
	Dortmund, Germany), T.J. Schildhauer, F. Kapteijn
	and J.A. Moulijn (Technical University of Delft,
	The Netherlands)
Paper 26	A Modified Model of Computational Mass
Page 282	Transfer for Distillation Column
	Z.M. Sun, X.G. Yuan, C.J. Liu and K.T. Yu
	(Tianjin University, People's Republic
	of China)

Application of the Penetration Theory
for Gas-Liquid Mass Transfer without
Liquid Bulk – Differences with Systems with
a Bulk
E.P. van Elk (Procede Twente BV, The
Netherlands), M.C. Knaap (Shell Research and
Technology Centre Amsterdam, The Netherlands)
and G.F. Versteeg (Twente University of
Technology, The Netherlands)

Equipment Design and Operation

Paper 28 Page 311	High-performance Trays: Getting the Best Capacity <i>and</i> EfficiencyJ. Penciak, I. Nieuwoudt and G. Spencer (<i>Koch-Glitsch, USA</i>)
Paper 29 Page 317	The Use of Directional Momentum Devices on Fractionation Trays M. Pilling, D. Summers (<i>Sulzer Chemtech USA</i> , <i>Inc.</i> , <i>USA</i>) and M. Fischer (<i>Sulzer Chemtech AG</i> , <i>Switzerland</i>)
Paper 30 Page 327	 Distillation Trays that Operate Beyond the Limits of Gravity by Using Centrifugal Separation P. Wilkinson, E. Vos, G. Konijn, H. Kooijman (Shell Global Solutions International B.V., The Netherlands), G. Mosca and L. Tonon (Sulzer Chemtech, Italy)

Integrated, Hybrid and Novel Processes

Paper 31	Development of a New Distillation Based Process
Page 336	for Trioxane Production
	T. Grützner (University of Stuttgart, Germany),
	N. Lang, M. Siegert, E. Ströfer (BASF AG,
	Germany) and H. Hasse (University of Stuttgart,
	Germany)

Paper 32	Pressure Optimisation of an Original System of
Page 344	Pressure Swing with a Reactive Column J. Bonet (University of Barcelona, Spain and
	Laboratoire de Génie Chimique, France), M.I. Galan, J. Costa (University of Barcelona, Spain), R. Thery, X. Meyer, M. Meyer (Laboratoire de Génie Chimique, France) and J.M. Reneaume (UPPA/LATEP, France)
Paper 33 Page 353	Methyl Acetate Hydrolysis in a Reactive Divided Wall Column S. Sander, C. Flisch (<i>Sulzer Chemtech Ltd,</i> <i>Switzerland</i>), E. Geissler, H. Schoenmakers (<i>BASF AG, Germany</i>), O. Ryll and H. Hasse (<i>University of Stuttgart, Germany</i>)
Paper 34 Page 364	Conceptual Design of Reactive Dividing Wall Columns G. Daniel, P. Patil, R. Dragomir and M. Jobson (<i>University of Manchester, UK</i>)
Paper 35 Page 373	Experimental Investigation of Reactive Distillation in Combination with Membrane Separation C. Buchaly, P. Kreis and A. Górak (<i>University of</i> <i>Dortmund, Germany</i>)

Process Troubleshooting and Handling Operational Problems

Paper 36	Troubleshoot Packing Maldistribution Upset Part 1:
Page 384	Temperature Surveys and Gamma Scans
	H.Z. Kister, W.J. Stupin and J. Ernst Oude
	Lenferink (Fluor Corp., USA)
Paper 37	Foaming Effect on Random Packing Performance
Page 392	G.X. Chen, T.J. Cai (Fractionation Research, Inc,
	USA), K.T. Chuang and A. Afacan (University of
	Alberta, Canada)
Paper 38	Structured Packing Flooding: Its Measurement and
Page 400	Prediction
	M.J. Lockett, R.A. Victor and J.F. Billingham
	(Praxair, Inc., USA)

Paper 39	Troubleshoot Packing Maldistribution Upset Part 2:
Page 409	Boiling and Flashing in Packed Tower Distributors
	H.Z. Kister, W.J. Stupin and J. Ernst Oude
	Lenferink (Fluor Corp., USA)
Paper 40	A New Method to Predict the Susceptibility to Form
Page 418	Maldistribution in Packed Columns Based on
	Pressure Drop Correlations
	M. Duss (Sulzer Chemtech Ltd, Switzerland)

Basic Data

Paper 41	The Experimental Simulation of the Saddle Point
Page 431	Region in a Distillation Column Profile Map by
	Using a Batch Apparatus
	T. Modise, S. Kauchali, D. Hildebrandt and D.
	Glasser (The University of the Witwatersrand,
	South Africa)
Paper 42	New Method for the Determination of Batch
Page 440	Heteroazeotropic Distillation Regions
-	G. Modla and P. Lang (Budapest University of
	Technology and Economics, Hungary)
Paper 43	Miniplant in Modelling Distillation for an Isooctene
Page 450	Process
	K. Jakobsson, T. Ouni, P. Lievo, P. Uusi-Kyyny,
	C. Dell'Era (Helsinki University of Technology,
	Finland), A. Pyhälahti (Neste Jacobs Oy, Finland)
	and J. Aittamaa (Helsinki University of Technology,
	Finland)

Control and Operation

Paper 44	Retrofit Design for Gas Sweetening Processes
Page 460	P. Patil, Z. Malik and M. Jobson (The University of
	Manchester, UK)
Paper 45	Design of Industrial Reactive Absorption Processes
Page 469	in Sour Gas Treatment Using Rigorous Modelling
	and Accurate Experimentation
	R. Thiele, R. Faber, JU. Repke (Technical
	University of Berlin, Germany), H. Thielert
	(Uhde GmbH, Germany) and G. Wozny
	(Technical University of Berlin, Germany)

Paper 46	Theoretical and Experimental Study of the
Page 481	Absorption Rate of H ₂ S in CuSO ₄ Solutions: The
	Effect of Enhancement of Mass Transfer by a
	Precipitation Reaction
	H. ter Maat (Procede Group BV, The Netherlands),
	M. Al-Tarazi, J.A. Hogendoorn, J.P.M. Niederer
	and G.F. Versteeg (University of Twente, The
	Netherlands)

Basic Data

Paper 47	Prediction of CO ₂ and H ₂ S Solubility in Aqueous
Page 498	MDEA Solutions Using an Extended Kent and
	Eisenberg Model
	P. Patil, Z. Malik and M. Jobson (The University of
	Manchester, UK)
Paper 48	Solvent Properties of Functionalized Ionic Liquids
Page 511	for CO ₂ Absorption
-	L.M. Galán Sánchez, G.W. Meindersma and A.B.
	de Haan (University of Twente, The Netherlands)
Paper 49	Standardisation of Mass Transfer Measurements -
Page 523	A Basis for the Description of Absorption Processes
-	B. Hüpen, A. Hoffmann, A. Górak (University of
	Dortmund, Germany), JM. Löning, M. Haas
	(BASF Aktiengesellschaft, Germany), T. Runowski
	and K. Hallenberger (Bayer Technology Services
	GmbH, Germany)

Equipment Design and Operation

Paper 50	Wetting Performance and Pressure Drop of
Page 534	Structured Packings: CFD and Experiment
	A. Ataki (TU Kaiserslautern, Germany), P. Kolb,
	U. Bühlmann (Kühni AG, Switzerland) and
	HJ. Bart (TU Kaiserslautern, Germany)
Paper 51	Modeling and Measurement of Macroscopic Flow
Page 544	Fields in Structured Packings
	B. Mahr and D. Mewes (University of Hanover,
	Germany)

Paper 52	Experimental Investigation of Reactive Distillation
Page 554	Packing Katapak [®] – SP 11: Hydrodynamic Aspects
	and Size Effects
	E. Brunazzi and A. Viva (University of Pisa, Italy)

Basic Data

Paper 53 Page 563	Phase Transitions in Quaternary Reacting Systemswith Esterification ReactionM. Toikka (<i>St. Petersburg State University, Russia</i>)
Paper 54 Page 574	Liquid–Liquid Equilibrium in Binary Mixtures of 1-Ethyl-3-Methylimidazolium Ethylsulfate and Hydrocarbons M. Bendová (<i>Academy of Sciences of the Czech</i> <i>Republic, Czech Republic</i>)
Paper 55 Page 581	Absorption of Carbonyl Sulphide in Aqueous Piperazine P.J.G. Huttenhuis, A. Mohan, S. van Loo (<i>Procede</i> <i>Group BV</i> , <i>The Netherlands</i>) and G.F. Versteeg (<i>University of Twente, The Netherlands</i>)

Control and Operation

Paper 56	Self-optimizing Control Configurations for
Page 590	Two-product Distillation Columns
	E. Shigueo Hori, S. Skogestad (Norwegian
	University of Science and Technology, Norway) and
	M.A. Al-Arfaj (King Fahd University of Petroleum
	and Minerals, Saudi Arabia)
Paper 57	Distillation Column Control Using the Whole
Page 600	Temperature Profile
	M. Chew, W.E. Jones and J.A. Wilson (<i>University</i> of Nottingham, UK)
Paper 58	Control Properties of Alternative Schemes to
Page 610	Thermally Coupled Distillation Columns for
	Ternary Mixtures Separations
	R. Alcántara-Ávila, J. Cabrera-Ruiz, V.E. Tamayo-
	Galván, J.G. Segovia-Hernández and S. Hernández
	(Universidad de Guanajuato, Mexico)

Integrated, Hybrid and Novel Processes

Paper 59 Page 619	Industrial Experience with Hybrid Distillation – Pervaporation or Vapour Permeation Applications M. Roza and E. Maus (<i>Sulzer Chemtech AG</i> , <i>Switzerland</i>)
Paper 60 Page 628	Optimal Configuration, Design and Operation of Continuous Hybrid Distillation/Pervaporation Processes T. Barakat and E. Sørensen (<i>University College</i> <i>London</i> , <i>UK</i>)
Paper 61 Page 638	Stabilizing Operation of a 4-Product Integrated Kaibel Column J. Strandberg and S. Skogestad (<i>NTNU</i> , <i>Norway</i>)
Paper 62 Page 648	Enrichment of Natural Products Using an Integrated Solvent-free Process: Molecular Distillation L.V. Fregolente, E.B. Moraes, P.F. Martins, C.B. Batistella, M.R. Wolf Maciel, A.P. Afonso and M.H.M. Reis (<i>State University of Campinas, Brazil</i>)
Paper 63 Page 657	Riser Design in Foam Fractionation P.J. Martin, M. Swain and R.C. Darton (<i>University</i> of Oxford, UK)

Control and Operation

Paper 64	Production of Propyl Acetate by Reactive
Page 667	Distillation: From Experiments to Simulation
	M. Brehelin, D. Rouzineau, F. Forner (ENSIACET/
	Laboratoire de Génie Chimique, France),
	JU. Repke (Technical University of Berlin,
	Germany), M. Meyer (ENSIACET/Laboratoire de
	Génie Chimique, France) and G. Wozny (Technical
	University of Berlin, Germany)
Paper 65	Entrainer Selection for the Synthesis of Fatty Acid
Page 678	Esters by Entrainer-based Reactive Distillation
	M.C. de Jong (University of Twente, The
	Netherlands), A.C. Dimian (University of
	Amsterdam, The Netherlands), N.J.M. Kuipers
	and A.B. de Haan (University of Twente, The
	Netherlands)

Posters

Paper 66 Page 689	Functionalised Solvents for Olefin Isomer Purification by Reactive Extractive Distillation N.J.M. Kuipers, A.E. Wentink, A.B. de Haan (<i>University of Twente, The Netherlands</i>), J. Scholtz and H. Mulder (<i>Sasol Technology,</i> <i>South Africa</i>)
Paper 67 Page 699	Separation of Maximum Azeotropes in a MiddleVessel ColumnB. Kotai, P. Lang and T. Balazs (<i>Budapest</i> University of Technology and Economics, Hungary)
Paper 68 Page 709	Pressure Swing Batch Distillation for Homogenous Azeotropic Separation JU. Repke, A. Klein (<i>Technical University of</i> <i>Berlin, Germany</i>), D. Bogle (<i>University College</i> <i>London, UK</i>) and G. Wozny (<i>Technical University</i> <i>of Berlin, Germany</i>)
Poster 69 Page 719	Study of the Thermally Coupled Distillation Sequences Using a Nonequilibrium Stage Model E.F. Abad-Zarate, F.I. Gómez-Castro, J.G. Segovia-Hernández and S. Hernández (Universidad de Guanajuato, Mexico)
Paper 70 Page 728	Dynamic Analysis of Distillation with Thermal Coupling for Different Operating Conditions E.A. Hernández-Vargas, J.G. Segovia-Hernández, S. Hernández (<i>Universidad de Guanajuato</i> , <i>Mexico</i>) and A. Jiménez (<i>Instituto Tecnológico de</i> <i>Celaya, Mexico</i>)
Paper 71 Page 737	Internal Column-to-column Heat Transfer Characteristics for Energy-saving Distillation System H. Noda, T. Mukaida, M. Kaneda, K. Kataoka (<i>Kansai Chemical Engineering Co., Ltd, Japan</i>) and M. Nakaiwa (<i>National Institute of Advanced</i> <i>Industrial Science and Technology, Japan</i>)

Paper 72 Page 745	 A High-efficiency Distillation System for Batch or Semi-batch Chemical Reactors H. Noda, T. Mukaida, M. Kaneda, H. Yamaji and K. Kataoka (<i>Kansai Chemical Engineering Co.</i>, <i>Ltd, Japan</i>)
Paper 73 Page 754	Comparison of the Effective Surface Area of Some Highly Effective Random Packings Third and Forth Generation N. Kolev, S. Nakov, L. Ljutzkanov and D. Kolev (<i>Bulgarian Academy of Sciences,</i> <i>Bulgaria</i>)
Paper 74 Page 764	 Modeling of Mixture Separation in a Column with Structured Packing. Effects of Liquid Maldistribution Y. Trifonov (<i>Institute of Thermophysics, Russia</i>), S. Sunder and P. Houghton (<i>Air Products and Chemicals, Inc., USA</i>)
Paper 75 Page 773	CFD Simulation and Experimental Validation of Fluid Flow in Liquid Distributors M. Heggemann, S. Hirschberg (<i>Sulzer Markets</i> & <i>Technology AG, Switzerland</i>), L. Spiegel and C. Bachmann (<i>Sulzer Chemtech AG,</i> <i>Switzerland</i>)
Paper 76 Page 786	The Sandwich Packing – a New Type of Structured Packing to Increase Capacity and Mass Transfer of Distillation Columns M. Jödecke, T. Friese, G. Schuch (<i>BASF</i> <i>Aktiengesellschaft, Germany</i>), B. Kaibel and H. Jansen (<i>Julius Montz GmbH</i> , <i>Germany</i>)
Paper 77 Page 790	Rigorous Method of Minimum Energy Calculation for a Fully Thermally Coupled Distillation System I. Malinen and J. Tanskanen (<i>University of Oulu,</i> <i>Finland</i>)

Paper 78 Page 800	Distillation Startup of Fully Thermally Coupled Distillation Columns: Theoretical Examinations G. Niggemann, S. Gruetzmann and G. Fieg (<i>Hamburg University of Technology, Germany</i>)
Paper 79 Page 809	On Thermodynamics of Evaporation Processes in Nonequilibrium Systems A. Toikka (<i>St Petersburg State University,</i> <i>Russia</i>)
Paper 80 Page 820	MINLP Optimization of Catalytic Distillation Columns Using a Rate-Based Model J.M. Gomez, J.M. Reneaume (<i>ENSGTI, France</i>), M. Meyer and X. Meyer (<i>ENCIACET, France</i>)
Paper 81 Page 830	 Industrial Application of a New Batch Extractive Distillation Operational Policy P. Lang, Gy. Kovacs (<i>Richter Gedeon Ltd</i>, <i>Hungary</i>), B. Kotai (<i>BUTE</i>, <i>Hungary</i>), J. Gaal-Szilagyi (<i>Richter Gedeon Ltd</i>, <i>Hungary</i>) and G. Modla (<i>BUTE</i>, <i>Hungary</i>)
Paper 82 Page 840	Continuous Three Phase Distillation: A Process for Separating Thermally Instable Substances M. Ottenbacher and H. Hasse (<i>University of</i> <i>Stuttgart, Germany</i>)
Paper 83 Page 851	Method of Design for Packed Column Type HIDiC T. Nakanishi, K. Aso, T. Takamatsu (<i>Kimura</i> <i>Chemical Plants Co., Ltd, Japan</i>), K. Matsuda, M. Nakaiwa (<i>National Institute of Advanced</i> <i>Industrial Science and Technology, Japan</i>) and S. Hasebe (<i>Kyoto University, Japan</i>)
Paper 84 Page 854	Development of a Hybrid Solvent Recovery Process (Combination of Distillation and Vapour Permeation) A. Ohligschläger (Siemens AG A&D Sp IPD Process Design, Germany)

Paper 85 Page 858	Strategies for Identifying Multiplicities in Distillation Systems using Process Simulators S. Chokshi and R.K. Malik (<i>Indian Institute of</i> <i>Technology, India</i>)
Paper 86 Page 868	Neural Network Based Modelling and Optimisation in Batch Reactive Distillation I.M. Mujtaba and M.A. Greaves (<i>University of</i> <i>Bradford</i> , <i>UK</i>)
Paper 87 Page 877	Liquid–Liquid–Liquid Equilibrium Calculations F. Denes, P. Lang and M. Lang-Lazi (<i>Budapest</i> University of Technology and Economics, Hungary)
Paper 88 Page 891	Startup Operation of a Cyclic Middle Vessel Batch Distillation S. Gruetzmann, G. Niggemann (<i>Hamburg University</i> of Technology, Germany), Th. Kapala (Cognis Deutschland GmbH & Co.KG, Germany) and G. Fieg (<i>Hamburg University of Technology, Germany</i>)
Paper 89 Page 900	An Internally Heat-integrated Distillation Column (HIDiC) in Japan K. Iwakabe (<i>Tokyo Institute of Technology, Japan</i>), M. Nakaiwa, K. Huang, K. Matsuda (<i>National</i> <i>Institute of Advanced Industrial Science and</i> <i>Technology, Japan</i>), T. Nakanishi (<i>Kimura Chemical</i> <i>Plants Co., Ltd, Japan</i>), T. Ohmori, A. Endo and T. Yamamoto (<i>National Institute of Advanced</i> <i>Industrial Science and Technology, Japan</i>)
Paper 90 Page 912	Experimental Evaluation of Sulphur Dioxide Absorption in Water RH. Chavez (Instituto Nacional de Investigaciones Nucleares, Mexico), J. de J. Guadarrama (Instituto Tecnológico de Toluca, Mexico) and J. Klapp (Instituto Nacional de Investigaciones Nucleares, Mexico)
Paper 91 Page 920	Hydraulic Measurements of Sieve Plate K.I. Keskinen (<i>Helsinki University of Technology</i> <i>and Neste Jacobs Oy, Finland</i>), HM. Ahlfors (<i>Outokumpu Oy, Finland</i>) and J. Aittamaa (<i>Helsinki University of Technology, Finland</i>)

Paper 92 Page 928	Evaluation of Phase Equilibria for Dilute Mixtures for Design Purposes G. Ngigi, D. Hildebrandt and D. Glasser (<i>The</i> <i>University of the Witwatersrand, South Africa</i>)
Paper 93 Page 937	Extended Smoker's Equation for Calculating Number of Stages in Distillation S. Bandyopadhyay (<i>Indian Institute of Technology</i> , <i>India</i>)
Paper 94 Page 945	Startup Analysis of Mass- and Heat-integrated Two-column-systems P. Varbanov, A. Klein, JU. Repke and G. Wozny (<i>Technical University of Berlin, Germany</i>)
Paper 95 Page 954	Robust Online Optimization Based on Controller Performance Metrics for a High-pressure Distillation Column T. Barz, H. Arellano-Garcia and G. Wozny (<i>Technical University of Berlin, Germany</i>)
Paper 96 Page 964	How to Decide When and How Much to Use Reactive Distillation J.L. Mulopo, D. Hildebrandt and D. Glasser (<i>The University of the Witwatersrand,</i> <i>South Africa</i>)
Paper 97 Page 973	Variation of the Interfacial Area During CO ₂ Absorption into Alkanolamines Aqueous Solutions in a Bubble Column Reactor E. Alvarez, M.A Cancela, R. Maceiras (<i>University</i> of Vigo, Spain) and J.M. Navaza (<i>University of</i> Santiago de Compostela, Spain)
Paper 98 Page 982	A Study on an Energy-saving Tray DDV with New Structures Z.B. Zhang, Y.C. Liang, W.M. Meng and Z. Zhou (<i>Nanjing University, People's Republic of China</i>)
Paper 99 Page 991	Vapour–Liquid Mass Transfer Performance of Modular Catalytic Structured Packing M. Behrens, Ž. Olujić and P.J. Jansens (Delft University of Technology, the Netherlands)
Page 1002	Keyword and Title Index
Page 1016	Author Index