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In the daily production of chemical industry numerous plant and units are operated

to satisfy product requirements. Following the optimal operation planning, predefined

steady state operating points for continuous processes are assigned to a process

control system. However, a closed-loop control involves online measured values

of controlled variables. Consequently, the non-measurable variables are then open-

loop even though they have to be constrained. Yet to guarantee the product quality,

particularly conservative set-point values are selected in industrial practice which

inevitably leads to unnecessary high costs. In this work, we propose a chance-

constrained optimization approach in which the objective function will be improved

while satisfying constraints to enforce product quality restrictions with a desired prob-

ability (confidence) level. This result in a new concept of control: to control open-loop

processes by closed-loop control. Unlike the definition where controls are decision

variables, in the proposed closed framework the set-points of the measurable

outputs are defined as decision variables. Moreover, the controller performance

based on the minimum variance control can be regarded as a random input, and

thus is also included in the chance-constrained formulation of the model-based sto-

chastic optimization problem. Consequently, the result is a cyclic adjustment of the

operating point which guarantees the compliance with the product quality restrictions

and assures the controller performance under parametric uncertainty, uncertain

boundary conditions, and the random regulatory deviation. To demonstrate its effi-

ciency, the approach is applied to the optimal operation and control of one column

embedded in a coupled two-pressure column system for the separation of an azeotropic

mixture.
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INTRODUCTION
Process industries in today’s highly competitive market and needs for product quality must
reconsider their production control policies and strategies if they are to achieve sustainable
production and increase their competitiveness. Therefore, it is necessary to take a holistic
view of process management. This can only be accomplished by integrating product
quality and process economy impact in process control and optimization system. Thus,
there have been a lot of efforts in optimizing existing plants and using their full application
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potential. The generation and implementation of optimal control strategies can be
achieved through a hierarchical system of layers. In the optimization upper layer decisions
about the optimal process state with respect to various objectives are made. The results are
then sent in form of set-points to the regulatory control layer where the optimal strategies
are implemented keeping the system state at the optimal operating point. However, the
inherent plant disturbance spectrum leads inevitably to controller performance deviations
from their optimal set-points. This causes a significant detrimental effect on plant profit-
ability. Moreover, if the optimal operating point lies on active constraints, violation of
process limitations seems to be unavoidable. Overstepping the constraints makes the oper-
ation infeasible, which not only means a loss of quality but also a safety risk. Accordingly,
the challenge of plant operation optimization lies in reducing the conservative distance to
the constraints and pushing the plant to its limits without exceeding critical limitations. To
guarantee robust implementation of optimal decisions, the controller deviations and uncer-
tainties are required to be part of the control structure i.e. to integrate implementation
errors and stochastic parameters in the process model. By this means, effects of disturb-
ances and model uncertainties can be compensated and robust set-points for the regulatory
control layer are then obtained.

PROBLEM STATEMENT
A high-pressure column embedded in a coupled two-pressure column system for the sep-
aration of an azeotropic mixture (Acetonitril-Water) is considered to demonstrate the effi-
ciency of the proposed approach which is applied to guarantee an optimal robust operation
and control. Due to the operational characteristics of the pressure swing system the con-
sideration of the individual high-pressure column does not imply a loss of general validity
with regard to the operability of the whole system. The operating point is defined by the
distillate and bottom product specifications, cooling outlet temperature limitations, as well
as the maximum pressure of the considered high-pressure column. Figure 1 shows the indi-
vidual high-pressure column and the control loops corresponding to the regulatory control
layer. A binary homoazeotropic mixture consisting of acetonitril/water is fed into the
column. Here, the feed has a higher acetonitril concentration than the azeotropic point.
The increase of the operating pressure causes a movement of the distillation boundaries
in the composition space. Operating the illustrated high-pressure column above the azeo-
tropic point results in pure acetonitril as bottom product. The complete separation task is
carried out by means of pressure swing distillation. By this means, the distillate of the
high-pressure column is fed to the low-pressure column where water is obtained from
the bottom.

Using a validated rigorous model based on physical and thermodynamics principles,
nominal optimal decisions are determined by solving an optimization problem. The objec-
tive function is defined as the minimization of the total energy required subject to product
quality as well as safety related constraints. This yields a large-scale NLP problem which
is solved via SQP following the sequential strategy. The deterministic optimization
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problem can be formulated as follows,

min
Qbottom,r,mcw,Lcond

_Qbottom

s:t: model equations

xdest
Ac � xdest

Ac;spec

xbottom
Ac � xbottom

Ac;spec

)
product quality restrictions

ptop � pmax

Tout
cw � Tmax

cw

�
safety restrictions

(1)

Where xdest
Ac;spec and bottom xbottom

Ac;spec are the product purity specifications concerning the
high-pressure column, pmax and Tcw

max are the maximal allowable system pressure and
cooling outlet temperature, respectively. The decision variables are the reboiler duty
_Qbottom, the reflux rate, the cooling flow rate _mcw as well as the level in the condenser
Lcond. The system pressure is kept at its operating value by adjusting the energy balance
in the condenser i.e. varying the heat transfer through manipulation of the condenser
level Lcond and the cooling flow rate. The heat flux in the overhead condenser is carried
out through variation of cooling water temperature and effective surface area. The operat-
ing range is though limited by the product specifications and the maximal system pressure
as well as the cooling outlet temperature. Thus, at the nominal optimal solution all

Figure 1. Left: Regulatory control layer of the high pressure column; top right: VLE diagram

acetonitril/water; down right: operational conditions
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constraints are active. This means that an energy-optimal operation is defined by means of
covering the minimal requirements for product quality and driving the plant at its upper
safety limits. For this specific problem, the column efficiency of the right side of the azeo-
tropic point is favored with increasing pressure, decreasing the relative volatility (here the
relative volatility is minor than one). Also the system pressure reduces the vaporization
heat. For the specific separation problem discussed here, the higher the pressure the
more is the azeotropic point shifted towards lower concentrations of acetonitril supporting
the separation in the rectifying section of the column. High pressure is crucial for the for-
mulated separation problem and leads to less energy requirements. Furthermore, in order
to keep the cooling water temperature at its maximum value and the condenser level Lcond

small, the temperature of the reflux is then also maximal. However, from the energetic
point of view this effect plays a minor role.

ROBUST OPERATION OF THE HIGH-PRESSURE COLUMN
As stated before, operation with a minimal amount of energy is determined by the bound-
ary conditions of the quality specifications and the maximal allowable pressure. However,
operating the plant at these boundaries results inevitably in constraint violations. The pre-
sence of disturbances, parametric uncertainties and implementation errors may provoke
infeasibility and a quality loss.

To overcome these problems, one straightforward way is to introduce a back-off
from the nominal optimum in order to avoid infeasibility. However, the key idea is here
to define the optimal operational range in the optimization layer and to send the results
as set-points to the regulatory control layer. The basis controllers will stabilize the plant
continuously and closed-loop variances will then be determined and sent back to the
upper layer (Figure 2 left). By using this information in the optimization layer, implemen-
tation errors and model uncertainties are determined in order to compute the optimal and

Figure 2. Left: Two-layer control for robust operation; right: constrained optimization

problem and back-off for robust operation
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robust set-points. Thus, a cyclic adjustment of the set-points guarantees feasible and
optimal operation in the presence of changing plant conditions. The difference between
nominal and adjusted operating point is here called back-off. To illustrate the principle
of adjusting nominal decisions, Figure 2 right shows exemplarily a constrained optimiz-
ation problem of two independent process states. At the nominal result two constraints
are active and the state variables are to be kept at their operating point by the regulatory
control layer. To account for the dynamic region around the nominal optimum, the set-
points have to be adjusted. The dimension of the dynamic region can be obtained by con-
troller quality metrics, like the closed loop variance. It only depends on the controller per-
formance as a function of the plant disturbance spectrum at the current steady state. In
order to operate as close as possible at the optimum, the back-off has to be minimized
while still satisfying all constraints.

ACCOUNTING FOR UNCERTAINTIES AND CONTROLLER VARIANCE
In the presence of variations of state variables, robust and optimal decisions can be
obtained accounting for these stated deviations. Deviations from set-point are also
called implementation error dc (Govatsmark, 2005) and in the following assumed to be
known by measuring the closed loop variance of the state variable. Usually constrained
variables are measured and controlled directly, in particular, if the respective constraints
are safety related. At the operation stage, processes are usually run with an operating point
defined by worst case estimation of the variability. For the example discussed here, the
constraints corresponding to the maximum allowable system pressure and the cooling
water outlet temperature are transient constraints which have to be satisfied at any time.
The constraints can simply be adjusted by tightening the maximal value.

xmax ¼ xmax
nominal � dc (2)

The product specifications are considered to be steady constraints. They may be violated
during transients but not at steady state or in average. Besides, the concentration in the
stripping section is controlled by keeping the temperature constant on the sensitive tray.
Thus, the implementation error concerns the temperature since the product specifications
can not be adjusted directly. Perkins and co-workers show for linear model predictive
control how to determine the co-variances of constrained input and output variables and
use this information to find out the required back-off from process limitations. This
approach assumes a linear system where the constraints are hold with a defined prob-
ability. However, methods of solving chance-constrained optimization problems for non-
linear processes under uncertainty is a challenging task. The main challenge lies in the
difficulty in determining the probability of the output constraints and its sensitivity.
Furthermore, in most of the practical relevant applications, the relation between measured
variable and constrained variable depends on nonlinear physical relations expressed by the
model equations. To account for the measured closed loop variance of the temperature and
pressure, respectively, uncertainties have to be explicitly taken into consideration in the
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model equations. Like other disturbances or model uncertainties, they can be expressed as
uncertain parameters. In the following sections, the feed concentration is assumed to be
stochastic Gaussian noise defined by mean and standard deviation. To demonstrate the
influence of stochastic parameters on the model equations, Figure 3 shows the probability
density functions of temperature and concentration of acetonitril, respectively. For this
purpose, a simple VLE model is used with constant pressure and Gaussian noise is
added to the known temperature. Solving the equations many times by stochastic sampling
(Monte-Carlo-simulation), the spectrum of the concentration is obtained as the output
deviation. It can be seen that the nonlinear relationship between both variables affects
also the distribution of the uncertain constrained output variable.

OPTIMIZATION UNDER UNCERTAINTY – THE SOLUTION APPROACH
Generally, a nonlinear optimization problem under uncertainty can be formulated as
follows:

min f(x, u, j)

s:t: g(x, u, j) ¼ 0

h(x, u, j) � 0

x [ X, u [ U, j [ J

(3)

where f is the objective function, g and h are the vectors of the equality and inequality con-
straints, while x # <n, u # <m and j # <S are the vectors of state, decision and uncertain
variables, respectively. One way of handling the uncertainties is to transform the inequality
constraints to chance constraints with a user predefined probability level. However, in non-
linear systems, the type of the probability density function (PDF) of the uncertain input is
not the same as the one of the constrained output. Unlike linear systems, a multivariate

Figure 3. Left: Gaussian probability distribution of the temperature; right: effect on the

concentration of acetonitril using VLE (p ¼ 3.85 bar)
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normal distribution of the input never causes a multivariate normal distribution of the
output. The PDF of the output is mostly not even known. Thus a transformation per-
formed for linear systems is not possible. The chance constraints can be either computed
through efficient sampling techniques or numerical integration techniques. The latter one
has been accomplished (Arellano-Garcia et al. 2003) in the case of a monotone relation
between the constrained output and at least one uncertain input. This method is appli-
cable to all stochastic optimization problems where uncertainty can be described by
any kind of joint correlated multivariate distribution function. In this method, an equiv-
alent representation of the probability is derived by mapping the output feasible region to
a integration region of the uncertain inputs. This implies that the probability of holding
the output constraint can be computed by integration in the corresponding region of the
uncertain variable. It should be noted that all uncertain variables, which have an impact
on the constrained output variables, are taken into account when computing the prob-
ability. In addition, the values of the decision variables have also an impact on the pro-
jected region. Furthermore, in order to link this method to a NLP framework, the
gradient computation of the output constraint probability to the decision variables is
required (Arellano-Garcia et al., 2004). In this work, for the numerical integration col-
location on finite elements is used.

To solve the optimization problem under uncertainty, special treatments to the
objective function, the equality and inequality constraints have to be made in order to
relax the stochastic optimization problem to an equivalent NLP problem and solve it
with an standard NLP solver such as SQP. For the evaluation of the objective function,
the inequality constraints and their sensitivities to the decision variables, a multivariate
integration is required. For instance, if y(u, j) represents a constrained output variable
e.g. the product concentration in the bottom, it can be seen that due to the uncertainties
j, it is impossible to hold its limitations for sure. Hence, since the constraint is affected
by the uncertain parameters, it should be reformulated to chance constraints. Conse-
quently, a probability level will be defined to represent the reliability of being feasible.
This leads to the formulation of a single chance constraint:

Pr{y(u, j � yspec} � a (4)

where Pr represents the probability measure and a the probability level defined by the
process operation requirements. Since the uncertain parameters also have an impact
on the objective function, the usual way is to reformulate it to its expected value.
However, for practical application, it is more convenient to assure a certain reliability
of the realization of the calculated objective value. This can be achieved by minimizing
an upper bound b, which is independent of the uncertain parameter space J, and the
compliance of it can be guaranteed with a certain reliability by formulating an
additional chance constraint (Arellano-Garcia et al., 2004). Besides, minimizing b

means, in this case, to tighten the respective constraint and the feasible optimization
region (see Equation 5).

SYMPOSIUM SERIES NO. 152 # 2006 IChemE

960



BK1064-ch95_R2_270706

FORMULATION OF THE NONLINEAR CHANCE CONSTRAINED

OPTIMIZATION PROBLEM
In the following section, the formulation of the nonlinear chance-constrained optimization
problem is presented. As described above, the system possesses 4 degrees of freedom. The
condenser level and the cooling water rate keep the pressure at the maximum defined by
the safety constraints. However, the problem is reformulated and, thus, two important
modifications are considered in comparison to the deterministic formulation. First, in
order to reduce the computational effort, pressure and cooling outlet temperature are set
constant with the necessary back-off from the nominal optimum so as to satisfy the
safety constraints (see Equation 2). By this means, the level and the cooling water rate
are computed by solving the model equations. Second, the decision variable, reboiler
duty Qreb, is substituted by the temperature of the sensitive tray in the stripping section.
In this way, the implementation error of the temperature control in the stripping section
can be expressed including only one stochastic parameter in the energy balance of the
corresponding tray. We define �j as the stochastic parameters which express the implemen-
tation error of the pressure and temperature control loop. Furthermore, deviations in the
feed concentration are treated as uncertainty or external disturbances. Finally, deviations
in the cooling water outlet temperature are neglected due to the minor effect on the energy
balances in the column. As discussed in the section above, the objective function
is replaced and an additional single chance constraint is formulated with respect to the
original objective function and included in the optimization problem. This leads to
the following formulation of the optimization problem,

min b

s:t: model equations,

direct adjusted state variables:

Tout
CW ¼ Tout

CW,ref þ bT½s(Tout
CW)�,

Ptop ¼ Ptop,ref þ bP½s(Ptop)�,

indirect adjusted constrained output variables:

Pr{xB
Ac � xB

Ac,spec} � a1,

Pr{xD
Ac � xD

Ac,spec} � a2,

originally replaced objective function as chance constraint

Pr{Q̇B � b} � a3,

Uncertainties and probability levels:
�j ¼ ½s(Ptop); s(Tsens

strip); s(xFeed);�, a ¼ ½95%; 95%; 90%�

and finally regulatory deviation variance:

(5)

The resulting nonlinear chance constrained optimization problem is relaxed to an equiv-
alent NLP problem and can then be solved using the SQP algorithm. The solution of
the optimization aims to minimize the necessary back-offs holding the product specifica-
tions with the predefined probability levels.
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NUMERICAL RESULTS
Feasible operation is obtained by explicit inclusion of closed-loop deviations and model
uncertainty in the problem formulation. This is realized in two different ways: forcing a
direct or and indirect back-off from the nominal optimal solution (see Equation 5). To
consider additional implementation errors and model uncertainties in the model equations,
the optimization problem can be reformulated. By this means, changing independent and
state variables (see closed-loop deviation of the temperature in the stripping section).
However, the result of the optimization problem are robust variables which are then
sent to the regulatory control layer defining the set-points. To assure feasible and
optimal operation under changing implementation errors and uncertainties a cyclic adjust-
ment of the set-points is proposed. Figure 4 shows the results of the robust optimization.
It should be noted that closed loop variance of the pressure, the temperature control on the
5th tray of the stripping section, as well as the uncertain feed concentrations are con-
sidered. By application of the Monte Carlo sampling method, the distribution of all vari-
ables for the known model uncertainties and deviations in the closed-loops can be
simulated. Deviations around the robust operation point in the temperature profile over
the column and the product concentrations are also shown in Figure 4.

Table 1 shows the optimal results w.r.t. a minimal reboiler duty. In comparison with
a conventional operating point with product concentrations wide beyond the product spe-
cifications, the robust operation strategy is close to the nominal optimum satisfying the
safety criterions and keeping the specifications with a probability of 95%.

CONCLUSIONS AND OUTLOOK
An approach to robust and optimal operation of a high-pressure column has been pre-
sented. In order to satisfy the operational constraints the nominal optimal decisions are
adjusted cyclical. Thus, in this work, a two-layer approach for integrating model based
online optimization and control is presented. Fast disturbances are treated in the basic regu-
latory control layer whereas in the optimization layer optimal set-points are computed.
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Figure 4. Left/middle: robust temperature/concentration profile and deviations, controlled

temperature on the 5th tray; right: distribution of the product concentrations around the

robust optimization result
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Explicit inclusion of closed-loop deviations and model uncertainty in the problem formu-
lation guarantee feasible and optimal operation. The application of the developed method-
ology will be presented by implementation of a soft-sensor in order to compute optimal set-
points for the temperature control loop. Furthermore, solving a reduced model for the strip-
ping section, robust set-points are evaluated to meet the bottom product specification.
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Table 1. Optimization results for nominal, robust and conventional operation

Operating point

Nominal Robust Conventional

xDest
Ac 0,625 0,614 0,58

xBottom
Ac 0,995 0,997 0,9999

Q̇Reb 4,53 KW 4,87 KW 6,79 KW
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