The dos and don'ts of distillation column control

Will mainly consider (indirect) composition control

Sigurd Skogestad

Norwegian University of Science and Technology – NTNU N-7491 Trondheim, Norway

Plenary lecture Distillation'06, London, 05 Sep 2006

DISTILLATION CONTROL

• Studied in hundreds of research and industrial papers over the last 60 years

Objectives of this work

- Apply general plantwide control procedure (Skogestad, 2004) to distillation
- From this derive (if possible) simple recommendations for distillation control
- Is the latter possible? Luyben (2006) has his doubts:
 - "There are many different types of distillation columns and many different types of control structures. The selection of the ``best" control structure is not as simple as some papers* claim. Factors that influence the selection include volatilities, product purities, reflux ratio, column pressure, cost of energy, column size and composition of the feed" + prices products

Outline

- 1. Introduction
- 2. General procedure plantwide control
- 3. Primary controlled variables distillation
 - Usually compositions
- 4. Stabilizing control distillation
 - Secondary controlled variables (levels, pressure)
- 5. Control "configurations" (level control)
- 6. Myth of slow composition control
- 7. Temperature control
- 8. Indirect composition control
- 9. Other: Logarithmic compositions
- 10. Conclusions

2. General procedure plantwide control

Step I. "Top-down" steady-state approach to identify active constraints and primary controlled variables (y₁)

- Self-optimizing control
- Step II. Bottom-up identification of regulatory ("stabilizing") control layer.
 - Identify secondary controlled variables (y₂)

Step I. Top-down steady-state approach

Step II. Regulatory control layer

- Main objectives
 - "Stabilize" = Avoid "drift"
 - Control on fast time scale
 - Simple (PI)
- Identify secondary controlled variables (y₂)
 - pressures, levels, selected temperatures and pair with inputs (u_2)

3. Primary controlled variables distillation

S. Skogestad: Distillation control

Expected active constraints distillation

- Valueable product: Purity spec. always active
 - Reason: Amount of valuable product (D or B) should always be maximized
 - Avoid product "give-away" ("Sell water as methanol")
 - Also saves energy
- Control implications valueable product: <u>Control purity</u> at spec.

cheap product (byproduct) water + max. 0.1% methanol

Cheap product

- Over-fractionate cheap product? Trade-off:
 - Yes, increased recovery of valuable product (less loss)
 - No, costs energy

Control implications cheap product:

- 1. Energy expensive: Purity spec. active
 - \rightarrow <u>Control purity</u> at spec.

2. Energy "cheap": Overpurify

(a)Unconstrained optimum given by trade-off between energy and recovery.

In this case it is likely that composition is selfoptimizing variable

 \rightarrow Possibly control purity at optimum value (overpurify)

- (b) Constrained optimum given by column reaching capacity constraint
 - \rightarrow Control active capacity constraint (e.g. V=V_{max})

cheap product (byproduct) water + max. 0.1% methanol

S. Skogestad: Distillation control

Conclusion primary controlled variables

- Product purities are very often the primary controlled variables (y₁) for distillation columns
- Assume in the following "two-point" composition control:

 $y_1 = x_D, x_B$ (impurity key component)

4. Stabilizing control distillation

Secondary controlled variables (y₂)

- 5 dynamic degrees of freedom with given feed: u = L, V, D, B, V_T
- To "stabilize": Control levels and pressure:

 $y_2 = M_D, M_B, p$

- Choice of input u_2 (to be paired with y_2):
 - V_T is usually used to control p
 - See part 5 (control configuration) for input for M_D and M_B
- Additional y₂: Temperature is usually controlled to "stabilize" composition profile: See part 7

5. Control "configurations" (level control)

XY-configuration

X: <u>remaining</u> input in top after controlling top level (M_D): X= L (reflux), D, L/D,...

Y: <u>remaining</u> input in bottom after controlling M_B:

Y = V (boilup, energy input), B, V/B, ...

Similar in bottom... XV, XB, XV/B

S. Skogestad: Distillation control

How do the configurations differ?

Has been a lot of discussion in the literature (Shinskey, Buckley, Skogestad, Luyben, etc.).
Probably over-emphasized, but let us look at it

- 1. Level control by itself (emphasized by Buckley et al., 1985)
- 2. Interaction of level control with composition control
- 3. "Self-regulation" in terms of disturbance rejection (emphasized by Skogestad and Morari, 1987)
- 4. Remaining two-point composition control problem (steady-state RGA emphasized by Shinskey, 1984)

- General rule level control: Use largest flow to avoid saturation
 → Prefer D to control top level ("standard") if L/D<1
- Liptak (Instrument Engineers' Handbook 2006):
 - Use D to control top level ("standard") if L/D < 0.5
 - Use L to control top level ("reversed") if L/D > 6
 - May use L <u>or</u> D for 0.5 < L/D < 6</p>

2. Interaction of level control with remaining composition control

- Desired: Tuning of level controllers does not affect the remaining control system (composition control)
 - May want slow ("averaging") level control
- Clearly favors the "standard" LVconfiguration
- Other configurations (DV, LB, L/D V/B etc.) depend on tight level control

Example DV-configuration:

Figure 10: Tuning of the condenser level controller has a strong effect on the "open-loop" response for the DV-configuration. (Responses are for a 1% increase in V with condenser level controller $\Delta L = K \Delta M_D$)

innovation and creativity

3. "Self-regulation" for disturbances

Disturbances in F, L, V and feed enthalpy:

- LV is usually worst
- DV and LB are better
- L/D V/B usually best (especially for high reflux)

Fixed flows (configuration)	Composition deviation $\Delta \mathbf{X}$
L/D - V/B	15.8
L/F - V/B	18.6
L - B	21.1
D - V	21.2
L/D - V	23.1
L - V	63.4

Data for column A

Innovation and Creativity

4. Remaining "two-point" composition control problem

- Distillation is generally interactive: Increasing both L and V (internal flows) at the same time counteract each other
- Interactions in terms of steady-state RGA (want ≈1):

Summary: How do configurations differ?

- 1. Level control by itself
- 2. Interaction of level with composition control
- 3. "Self-regulation" for disturbances
- 4. Remaining composition control problem

Conclusion: LV promising only for no. 2 BUT: This is without temperature loop

LV not for L/D>6

LV best!

LV not good

LV not good

BUT....

1. Level control with LV much better with T-control:

Another BUT:

3. "Self-regulation" with LV much better with T-control:

Innovation and Creativity

Yet another BUT:

4. Remaining two-point composition control: **RGA with LV much better with T-control**

Conclusion configurations

- Normally use LV-configuration, because it is
 - simplest
 - level tunings do not matter for column behavior
 - can get smooth variations in product rates D and B

6. Myth of slow distillation control

- Let's get rid of it!!!
- Compare manual ("perfect operator") and automatic control for "column A":
 - 40 stages,
 - Binary mixture with 99% purity both ends,
 - relative volatility = 1.5
 - First "one-point" control: Control of top composition only
 - Then "two-point" control: Control of both compositions

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

S. Skogestad: Distillation control

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

S. Skogestad: Distillation control

Myth about slow control Two-point control

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

Myth about slow control

Conclusion:

- Experience operator: Fast control impossible
 - "takes hours or days before the columns settles"
- BUT, with feedback control the response can be fast!
 - Feedback changes the dynamics (eigenvalues)
 - Requires continuous "active" control
- Most columns have a single slow mode (without control)
 - Sufficient to close a single loop (typical on temperature) to change the dynamics for the entire column

7. Temperature control

Benefits of closing a temperature loop:

- 1. Stabilizes the column profile (and thus keeps disturbances within the column)
- 2. Indirect level control: Reduces the need for level control (as a result of benefit 1)
- 3. Indirect composition control: Strongly reduces disturbance sensitivity
- 4. Makes the remaining composition problem less interactive (e.g. in terms of the RGA) and thus makes it possible to have good two-point composition control

8. Indirect composition control Which temperature to control?

• Evaluate relative steady-state composition deviation:

$$\Delta X \stackrel{\text{def}}{=} \sqrt{\mathcal{L}_{\text{max}}} = \max_{\|\mathbf{e}_{c}'\|_{2} \leq 1} \sqrt{\left(\frac{\mathbf{x}_{\text{top}}^{\text{H}} - \mathbf{x}_{\text{top,s}}^{\text{H}}}{\mathbf{x}_{\text{top,s}}^{\text{H}}}\right)^{2} + \left(\frac{\mathbf{x}_{\text{btm}}^{\text{L}} - \mathbf{x}_{\text{btm,s}}^{\text{L}}}{\mathbf{x}_{\text{btm,s}}^{\text{L}}}\right)^{2}}$$

- e_c includes:
 - disturbances (F, z_F , q_F)
 - implementation measurement error (0.5 for T)

- Have looked at 15 binary columns and 5 multicomponent (Hori, Skogestad and Al-Arfaj, D&A 2006)
- Main focus on "column A"
 - 40 theoretical stages
 - Feed in middle
 - 1% impurity in each product
 - Relative volatility: 1.5
 - Boiling point difference: 10K

Fixed variables	Х		
Τ_{b,55%} – Τ_{t,55%}*	0.530		
T _{b,70%} – L/F*	0.916		
T _{b,50%} – L/F	0.975		
T _{b,75%} - V/F*	1.148		
Т _{ь,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} — L	1.386		
T _{t,95%} – V*	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
 * Temperature optimally located ** Optimal temperature in opposite section. 			

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$)for binary column A

Fixed variables	Х		
Т _{ь,55%} – Т _{t,55%} *	0.530		
T _{b,70%} – L/F*	0.916		
T _{b,50%} – L/F	0.975		
T _{b,75%} - V/F*	1.148		
Т _{ь,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} — L	1.386		
T _{t,95%} – V*	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
 * Temperature optimally located ** Optimal temperature in opposite section. 			

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$) for binary column A

www.ntnu.no

Fixed variables	Х		
Τ _{b,55%} – Τ _{t,55%} *	0.530		
Т _{ь,70%} – L/F*	0.916		
T _{b,50%} – L/F	0.975		
T _{b,75%} - V/F*	1.148		
Т _{ь,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} – L	1.386		
T _{t,95%} – V*	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
* Temperature optimally located ** Optimal temperature in opposite section.			

stage N (t, 0%) LC stage N-1 D x_{top} L Г F stage N_F (100%) Τ_s b,70% stage 2 V stage 1 (b, 0%) B x_{btm}

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$) for binary column A

Innovation and Creativity

Fixed variables	Х		
Τ _{b,55%} – Τ _{t,55%} *	0.530		
T _{b,70%} – L/F*	0.916		
$T_{b,50\%} - L/F$	0.975		
T _{b,75%} - V/F*	1.148		
Т _{ь,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} – L	1.386		
$T_{t,95\%} - V^*$	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
 * Temperature optimally located ** Optimal temperature in opposite section. 			

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$)for binary column A

Fixed variables	Х		
Τ _{b,55%} – Τ _{t,55%} *	0.530		
T _{b,70%} – L/F*	0.916		
$T_{b,50\%} - L/F$	0.975		
T _{b,75%} - V/F*	1.148		
T _{b,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} – L	1.386		
T _{t,95%} – V*	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
 * Temperature optimally located ** Optimal temperature in opposite section. 			

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$) for binary column A

www.ntnu.no

Fixed variables	Х		
$T_{b,55\%} - T_{t,55\%}^{*}$	0.530		
T _{b,70%} – L/F*	0.916		
T _{b,50%} – L/F	0.975		
T _{b,75%} - V/F*	1.148		
Т _{ь,90%} – L*	1.223		
T _{b,70%} – L/D*	1.321		
Т _{ь,50%} – L	1.386		
T _{t,95%} – V*	1.470		
L/D – V/B	15.84		
L/F – V/B	18.59		
L – B	21.06		
D – V	21.22		
L – V	63.42		
D – B	infeasible		
* Temperature optimally located ** Optimal temperature in opposite section.			

Table: Binary mixture - Steady-state relative composition deviations ($\Delta \chi$) for binary column A

S. Skogestad: Distillation control

Avoid controlling temperature at column ends

- Composition deviation:
 - 1- L/F and one temperature
 - 2- V/F and one temperature
 - 3- Two temperatures symmetrically located

S. Skogestad: Distillation control

Conclusion temperature control

- **Rule 1.** Avoid temperatures close to column ends (especially at end where impurity is small)
- Rule 2. Control temperature at important end
- **Rule 3.** To achieve indirect composition control: Control temperature where the steady-state sensitivity is large ("maximum scaled gain rule").
- **Rule 4.** For dynamic reasons, control temperature where the temperature change is large (avoid "flat" temperature profile). (Binary column: same as Rule 3)
- **Rule 5.** Use an input (flow) in the same end as the temperature sensor.
- Rule 6. Avoid using an input (flow) that may saturate.

9. Logarithmic compositions

- $X^{log} = ln (x_L/x_H)$
- $T^{log} = In (T_{H,ref} T)/(T T_{L,ref})$

The response is nonlinear....

Figure 7: Nonlinear response in distillate composition for changes in L of 0.1%, 1%, 10% and 50%.

S. Skogestad: Distillation control

The response is nonlinear.... but this can be corrected by taking log – especially dynamically

Figure 7: Nonlinear response in distillate composition for changes in L of 0.1%, 1%, 10% and 50%. Right plot: Logarithmic composition

S. Skogestad: Distillation control

10. Conclusions composition control

- Not as difficult as often claimed
- First rule: Close a tight temperature loop (P-control OK)
- LV-scheme recommended for most columns
- Use log transformations to reduce nonlinearity
- Use estimators based on temperature

Issues distillation control

- The "configuration" problem (level and pressure control)
 - Which are the two remaining degrees of freedom?
 - e.g. LV-, DV-, DB- and L/D V/Bconfigurations
- The temperature control problem
 - Which temperature (if any) should be controlled?
- Composition control problem
 - Control two, one or no compositions?

 D, x_D F, z_F T_s, V M_B

Innovation and Creativity

S. Skogestad: Distillation control

• Thanks to Eduardo Hori

(more on temperature control: see his talk Wednesday at 09.20)

50

S. Skogestad: Distillation control

Self-optimizing control

- 1. Control active constraints
- Remaining unconstrained degrees of freedom: Use <u>maximum gain rule</u> for finding the "magic" controlled variables:

Look for variables that maximize the minimum singular value of the scaled steady-state gain matrix G',

maximize
$$\underline{\sigma}(G')$$
, $G' = S_1 G S_2$
 $S_1 = diag\{\frac{1}{\text{span}(c_i)}\}$
 $\text{span}(c_i) = |\text{opt. range } c_i| + |\text{noise } c_i|$
 $S_2 = J_{uu}^{-1/2}$

Some guidelines for selecting y_2 and u_2 in the stabilizing (regulatory) control layer

Selection of measurement y₂:

- 1. "Maximum gain rule" is useful also for selecting y₂: Control variables that "drift"
- 2. Avoid "unreliable" measurements (because regulatory layer should not fail)
- 3. For dynamic reasons: Avoid variables y_2 with a large (effective) time delay. Items 2 and 3 normally exclude compositions as secondary controlled variables y_2 .

Selection of input u_2 (to be paired with y_2):

- 1. Avoid variables u₂ that may saturate
- 2. Avoid variables u_2 where (frequent) changes are undesirable, for example, because they disturb other parts of the process.
- 3. Prefer pairing on variables "close" to each other such that the effective time delay is small.

May need additional layer for "Indirect composition control"

- Observation: The "magic" selfoptimizing variables (y_1) are often compositions
- But compositions measurements are often unreliable and delayed
- May need additional layer for "indirect composition control" (y'₁)
- Can use maximum gain rule to obtain y'₁ (steady-state)

Perry, 5th. Edition, 1973: 22-123 DISTILLATION-COLUMN CONTROL • REFLUX DISTILLATE • FEED STEAM DB BOTTOM PRODUCT 40, 22-184. / Non-regulatory level-controller arrangement with distillate and bottom-product rates as the manipulated variable for separation control. Two of the arrangements may be eliminated from consideration immediately since they will not maintain internal column inventory. An example of such a non-regulatory arrangement is shown in Fig. 22-184. Here variations in feed rate result in variations in

inventory of liquid on the column trays unless the product rates are correspondingly adjusted to satisfy the column material balance. This type of inventory control also <u>leaves one without a</u> source of manipulatable energy for control of the separation. Be careful about steady-state analysis:

 DB-configuration is "impossible" at steady-state, but works dynamically (provided both composition loops are closed)

54

 It is used in practice for columns with very high L/D (Luyben)

Conclusion configurations

- Normally use LV-configuration, because it is
 - simplest
 - level tunings do not matter for column behavior
 - can get smooth variations in product rates D and B Disadvantages:
 - interactive (but less so at high frequencies important for control)
 - sensitive to flow disturbances

Note: Disadvantages less important if we close a "fast" temperature loop even less important if we use composition control on top

- Use other configuration in top (e.g. D-, L/D-) if L/D large and small condenser holdup
- Use other configuration in bottom (e.g. -B, -V/B) if V/B large <u>and</u> small reboiler holdup

Which temperature should we control?

- Heuristic 1: Steep temperature profile
 Makes sense from a <u>dynamic</u> point of view:
 Initial slope of response is proportional to temperature difference
- 2. Heuristic 2: Small optimal variation for disturbances (Luyben, 1975)
- **3. Heuristic 3:** Large sensitivity, or more generally, large gain in terms of the minimum singular value (Moore, 1992)
- 4. Self-optimizing control (Skogestad et al.)
 - a. "Maximum scaled steady-state gain rule": Combines heuristic 2 and 3
 - b. "Exact" local method (evaluate <u>steady-state</u> composition deviation ΔX)
 - c. Brute-force steady-state evaluation of loss

Binary column

slope closely correlated with steady state gain

www.ntnu.no

S. Skogestad: Distillation control

Multicomponent column

Conclusion: Temperature slope alone OK only for binary columns

Innovation and Creativity

A/B	Х	B/C	х	C/ <u>D</u>	х	"Real" B/C nC₅/nC ₆	Х
T _{t,95%} - V/B	0.96	Т _{ь,70%} – Т _{t,75%}	1.71	T _{b,85%} – L/D	1.38	Т _{ь,30%} – Т _{t,33%}	1.07
T _{b,80%} - V/F	1.03	T _{b,90%} – L/F	1.77	$T_{b,40\%}$ – L/F	1.63	$T_{t,33\%} - V$	1.74
T _{b,80%} – L/F	1.05	T _{b,95%} – L	1.88	$T_{b,50\%} - L/F$	1.64	T _{t,33%} – L	1.78
$T_{b,80\%} - V$	1.07	T _{b,75%} – L/D	1.91	T _{b,45%} – L	1.88	T _{t,33%} – L/F	1.85
T _{b,75%} – L	1.08	T _{b,95%} - V/F	2.03	T _{b,40%} - V/F	2.07	T _{t,33%} - V/B	2.17
Т _{ь,80%} — Т _{t,100%}	1.86	T _{b,50%} – L/F	2.11	Т _{ь,95%} – Т _{t,75%}	2.26	T _{t,33%} - V/F	2.19
$T_{b,50\%}^{}-L/F$	1.98	$T_{100\%} - V$	2.22	T _{t,90%} – V	2.28	T _{b,50%} - L	2.94
$T_{b,65\%} - L/D$	2.00	T _{b,50%} – L	2.29	T _{t,80%} – V/B	4.45	$T_{t,33\%} - L/D$	2.95
T _{b,50%} – L	2.00	T _{t,90%} – V/B	2.60	L/D – V/B	31.8	T _{b,50%} – L/F	3.08
L/F – V/B	44.7	L/D – V/B	32.0				

Table: Multicomponent Columns: steady-state composition deviations.

Conclusion: Fix L and a temperature

Innovation and Creativity