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Abstract: Batch-to-batch iterative learning control of a fed-batch fermentation process using batchwise 
linearised models identified from process operation data is presented in this paper. Due to model-plant 
mismatches and the present of unknown disturbances, off-line calculated control policy may not be 
optimal when implemented to the real process. The repetitive nature of batch process allows information 
from the previous batches being used in modifying the control policy of the next batch in the framework 
of iterative learning control. In order to cope with nonlinear behaviour of batch fermentation processes, 
the model is lineariesed using the immediate previous batch as a reference batch and the model is 
updated from batch to batch. The control policy (feed rates) at different batch stages are generally 
correlated as the overall control policy is obtained to maximize the amount of product at the end of a 
batch. To address the colinearity issue of the control variable, principal component regression and partial 
least squares regression are used in estimating the linearised model parameters. Application results on a 
simulated industrial scale fed-batch fermentation process demonstrate that the proposed strategy is 
effective.  
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1. INTRODUCTION 

Fermentation is an important process in pharmaceutical and 
biochemical industry. Process optimisation is important in 
improving product quality and production efficiency. In fed-
batch fermentation process, the glucose feed rate is usually 
obtained by solving an optimisation problem based on a 
process model such as a mechanistic model (Park and 
Ramirez, 1988) or an empirical model (Tian et al., 2002). 
The off-line calculated control policies (recipes) for batch 
fermentation processes may not be optimal when 
implemented on the processes due to model plant 
mismatches and/or the presence of unknown disturbances 
(Zhang, 2004). Utilising the repetitive nature of batch 
processes, fermentation operation recipes can be modified 
from batch to batch in order to overcome the detrimental 
effect of model-plant mismatches and unknown disturbances.  

Recently, iterative learning control (ILC) has been used in 
the run-to-run control of batch processes to directly update 
input trajectory (Gao et al., 2001; Chin et al., 2000; Lee et 
al., 2000; Alvarez et al., 2009). The basic idea of ILC is to 
update the control trajectory for a new batch run using the 
information from previous batch runs so that the output 
trajectory converges asymptotically to the desired reference 
trajectory. Refinement of control signals based on ILC can 
significantly enhance the performance of tracking control 
systems. Zhang (2005) proposes a neural network based 
batch to batch control strategy where a linearised model is 

obtained from the neural network model. Xiong and Zhang 
(2005) present a recurrent neural network based ILC scheme 
for batch processes where filtered recurrent neural network 
prediction errors from previous batches are added to the 
model predictions for the current batch and optimisation is 
performed based on the updated predictions. Xiong and 
Zhang (2003) propose a batch to batch ILC strategy using 
linearised time variant perturbation models that are identified 
from process operational data. In (Xiong and Zhang, 2003), 
the linearised models are identified using multiple linear 
regression (MLR). In many batch processes, the control 
actions at different stages of a batch can be correlated since 
they are such determined to optimize the final product 
quality at the end of the batch. In such situations, models 
obtained using MLR may not be appropriate. 

This paper presents an iterative learning control strategy for a 
batch fermentation process using linearised models identified 
from process operational data. The control policy updating is 
calculated using a model linearised around a reference batch. 
In order to cope with process variations and disturbances, the 
reference batch can be taken as the immediate previous 
batch. In such a way, the model is a batch wise linearised 
model and is updated after each batch. The newly obtained 
process operation data after each batch is added to the 
historical data base and an updated linearised model is re-
identified. In order to overcome the colinearity among the 
predictor variables, this paper proposes that the linearised 
model can be identified from principal component regression 
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(PCR) and partial least square regression (PLS) (Geladi and 
Kowalski, 1986).  

The paper is organised as follows. Section 2 presents a batch 
to batch control strategy based on linearised model. Section 3 
presents application results on a simulated fed-batch 
fermentation process. Some concluding remarks are given in 
Section 4.  

2. ITERATIVE LEARNING CONTROL WITH 
BATCHWISE UPDATED MODELS 

2.1  Linearised models for batch processes  

Consider batch processes where the batch run length (tf) is 
fixed and consists of N sampling intervals (i.e. N=tf/h, with h 
being the sampling time). Product quality variables (outputs), 
y∈Rn (n≥1), can be obtained off-line by analysing the 
samples taken during the batch run and the manipulated 
variable, u∈Rm (m=1 in this work), can be measured at each 
sampling time on-line. The product quality and control 
trajectories are defined, respectively, as 

 
Yk=[yk

T(1), yk
T(2),…, yk

T(N)]T     (1) 

Uk=[uk(0), uk(1),…,uk(N-1)]T                                          (2) 

where the subscript k denotes the batch index. The desired 
reference trajectories of product quality are defined as 

Yd=[yd
T(1), yd

T(2),…, yd
T(N)]T                                        (3) 

A batch operation is typically modelled with a dynamic 
model, but it would be convenient to consider a static 
function relating the control sequence to the product quality 
sequences over the whole batch duration (Lee et al., 1999). 
Due to the causality, the product quality variables at time t, 
yk(t), is a non-linear function of all control actions up to time 
t, Uk(t) =[uk(0), uk(1),…,uk(t-1)]T, i.e. 

yk(t)=ft(Uk(t)) + vk(t),     t=1, 2, ..., N,      yk(0)=y0  (4) 

where ft(⋅) represents the non-linear function between Uk(t) 
and yk(t) and vk(t) is the measurement noise at time t. Eq(4) 
can be rewritten in matrix form as  
 

Yk = F(Uk) + vk                                                                (5) 

where F(⋅) represents the non-linear static functions between 
Uk(t) and yk(t) at different sampling times and vk=[vk

T(0), 
vk

T(1),…, vk
T(N-1)]T is a vector of measurement noises. 

Linearising the non-linear batch process model described by 
Eq(4) with respect to Us around the nominal trajectories (Us, 
Ys), the following can be obtained. 
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where wk=[wk
T(1), wk

T(2), …, wk
T(N)]T is a sequence of 

model errors due to the linearisation (i.e., due to negalecting 
the higher oder terms) and vk represents the effects of noise 
and unmeasured disturbances. Define the linearised model Gs 
as 
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The structure of Gs is restricted to the following lower-block-
triangular form due to the causality. 
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The linearised model can be identified from historical 
process operation data using MLR (Xiong and Zhang, 2003). 
To cope with process drift, the linearised model can be re-
identified after each batch with data from the most recent 
batch added to the historical process data. Furthermore, the 
control trajectory and quality variable trajectory from the 
most recent batch can be used as the reference trajectories. 

In many batch processes, the control policies are typically 
determined to optimise the product quality at the end of a 
batch. Therefore, the control actions during different stages 
of a batch are usually correlated. In such cases, appropriate 
linearised model may not be obtained from MLR. To 
overcome the colinearity in the regression variables, PCR or 
PLS (Geladi and Kowalski, 1986) can be used to obtain the 
linearised models.  

A brief introduction of PCR is given here. Details about PCR 
can be found in (Geladi and Kowalski, 1986). Consider the 
following linear model 

 y = x1θ1 + x2θ2 + … + xnθn     (9) 

where y is the model output, x1 to xn are model inputs, and θ1 
to θn are model parameters. 

Given a set of input and output data, X and Y, the model 
parameters can be obtained from MLR as 

 YXXXθ TT 1)(ˆ −=     (10) 

where T
n )ˆˆˆ(ˆ

21 θθθ L=θ  is a vector of the estimates of 
model parameters.  
When the model input variables are correlated, Eq(10) gives 
unreliable estimates since (XTX) is close to singular. In this 
case the model parameters can be estimated using PCR. 

The matrix X can be decomposed as the sum of a series of 
rank one matrices through principal component analysis. 
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NN

TT ptptptX +++= ...2211    (11) 
 
In the above equation, ti and pi are the ith score vector and 
loading vector respectively. The score vectors are 
orthogonal, likewise the loading vectors, in addition they are 
of unit length. The loading vector p1 defines the direction of 
the greatest variability and the score vector t1, also known as 
the first principal component, represents the projection of 
each column of X onto p1. The first principal component is 
thus that linear combination of the columns in X explaining 
the greatest amount of variability (t1=Xp1). The second 
principal component is that linear combination of the 
columns in X explaining the next greatest amount of 
variability (t2=Xp2) subject to the condition that it is 
orthogonal to the first principal component. Principal 
components are arranged in decreasing order of variability 
explained. Since the columns in X are highly correlated, the 
first a few principal components can explain the majority of 
data variability in X.  

EptEPTX +∑=+=
=

k

i

T
ii

T
kk

1
   (12) 

where Tk = [t1 t2 ... tk],  Pk = [p1 p2 ... pk],  k represents the 
number of principal components to retain, and E is a matrix 
of residuals of unfitted variation.  

If the first k principal components can adequately represent 
the original data set X, then regression can be performed on 
the first k principal components. The model output is 
obtained as a linear combination of the first k principal 
components of X as 

 wXPwTY kk ==ˆ     (13) 
where w is a vector of model parameters in terms of principal 
components. 
The least squares estimation of w is: 

 
YTTTw T

kk
T
k

1)( −=  YXPXPXP TT
kk

TT
k

1)( −=   (14) 
 
The model parameters in Eq(9) calculated through PCR is 
then 

 
 wPθ k=  YXPXPXPP TT

kk
TT

kk
1)( −=   (15) 

 
The number of principal components, k, to be retained in the 
model is usually determined through cross-validation (Wold, 
1978).  The data set for building a model is partitioned into a 
training data set and a testing data set. PCR models with 
different number of principal components are developed on 
the training data and then tested on the testing data. The 
model with the smallest testing errors is then selected. 

 

3.2  Batch to batch iterative learning control 

The batch to batch iterative learning control strategy was 
developed by Xiong and Zhang (2003) and is briefly 
introduced here. As batch process dynamics are non-linear 
and the perturbation model is linearised around the nominal 
operation trajectories of a batch process, offsets always occur 
due to modelling errors and unmeasured disturbances. The 
perturbation model predictions of the current batch run can 
be corrected by adding model prediction residuals of 
previous batch runs.  
The prediction of perturbation model is defined as       

ksk UGY ˆˆ =       (16) 
and the absolute model prediction is defined as       

kssksk UGYYYY ˆˆˆ +=+=     (17) 
After completion of the kth batch run, prediction errors 
between off-line measured or analysed product qualities and 
their model predictions can be calculated as 

kkkkk YYYY ˆˆε −=−=   (18) 
Based on the prediction errors of the kth batch run, the 
modified prediction of perturbation model in the (k+1)th 
batch run is obtained as      

kkk εˆ~
11 += ++ YY    (19) 

The absolute modified model prediction is defined as 

kkskkk εˆεˆ~
111 ++=+= +++ YYYY  (20) 

The modified prediction error is defined as 

11111
~~ε~ +++++ −=−= kkkkk YYYY  (21) 

From the definitions in Eq(18) and Eq(19), we have  

kkk εεε~ 11 −= ++     (22) 
We assume that the prediction error of the perturbation 
model is bounded by a certain small positive constant Bm 
such that 

mk B<|ε|     (23) 
The prediction error bound Bm is a measure to represent the 

deviation of kŶ from kY or kŶ from kY . The higher the value 
of Bm is, the poorer the identified model is. The modified 
prediction error is bounded by 2Bm as follows 

|ε~| k < |ε| k + |ε| 1−k < 2Bm   (24) 
 
The tracking errors of process and perturbation model are 
respectively defined as 

kdkdk YYYYe −=−=    (25) 

kdkdk YYYYe ˆˆˆ −=−=      (26) 

where dY is the deviated desired trajectory and defined as  
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dY =Yd -Ys     (27) 
The tracking errors of modified prediction of perturbation 
model is defined as 

kdkdk YYYYe
~~~ −=−=    (28) 

From the definitions in Eq(18), Eq(25) and Eq(28), the 
following relationship among these three tracking errors can 
be obtained 

kkk ee −= ˆε      (29) 

1ˆ~
−−= kkk εee      (30) 

From Eq(26) and Eq(16), an iterative relationship for 
kê along the batch index k can be obtained as 

11
ˆˆˆ ++ −= kskk UGee Δ     (31) 

where 1+kUΔ  is defined as   

kkk UUU −=Δ ++ 11     (32) 
From the definition of perturbation variables, we can have 

kkkkk UUUUU −=−= +++ 111Δ   (33) 
Substitute Eq(29) and Eq(31) to Eq(30), we have  

111
ˆ)ˆ(ˆ~

+++ −=−−= kskkkkk UGeeeee Δ  (34) 
On the other hand, Eq(29) can be rewritten as  

kkk εˆ −= ee      (35) 
From Eq(35) and Eq(31), an iterative relationship for ek 
along the batch index k can also be obtained as 

111 ε~ˆ
+++ −−= kkskk UGee Δ   (36) 

 
Given the error transition model in the form of Eq(34) and 
Eq(36), the objective of ILC is to design a learning algorithm 
to manipulate the control policy so that the product qualities 
follow the specific desired reference trajectories. The 
following quadratic objective function based on the modified 
prediction errors upon the completion of the kth batch run is 
minimised to update the input trajectory for the (k+1)th batch 
run 

]~~[
2
1min 11111

1
+++++ +=

+
k

T
kk

T
kk

k

J URUeQe
U

ΔΔ
Δ

  (37) 

where Q and R are positive definitive matrices. Note that the 
objective function, Eq(37), has a penalty term on the input 
change 1+Δ kU  between two adjacent batch runs, the 
algorithm has an integral action with respect to the batch 
index k (Lee et al., 2000). The weighting matrices Q and R 
should be selected carefully. A larger weight on the input 
change will lead to more conservative adjustments and 
slower convergence. There are also other variants of the 
objective function. For example, the weighting matrices Q 
and R may be set as Q = diag{Q(1), Q(2), …, Q(N)}, R = 
diag{R(0), R(1), …, R(N-1)}, where Q(i) and R(j) increase 
with respect to the time intervals t in proportion to its effect 

of the final product quality. For the sake of simplicity, Q and 
R are selected in this study as Q=λq⋅IN and R=λr⋅IN. 

By finding the partial derivative of the quadratic objective 
function Eq(37) with respect to the input change 1+Δ kU  and 
through straightforward manipulation, the following ILC law 
can be obtained 

kk eKU ˆ
1 =+Δ      (38) 

where K̂ is defined as the learning rate 

QGRGQGK T
ss

T
s

ˆ]ˆˆ[ˆ 1−+=    (39) 
From Eq(33) and Eq(38), the ILC law for the control 
trajectory can be written as 

kkk eKUU ˆ
1 +=+     (40) 

 
 
 

  3. APPLICATION TO A FED-BATCH FERMENTATION 
PROCESS 

3.1 A fed-batch fermentation process 

The process considered in this paper is a fed-batch yeast 
fermentation process taken from Yuzgec et al. (2009), where 
detailed kinetic and dynamic model is presented. The kinetic 
model of yeast metabolism is based on the bottleneck 
hypothesis by Sonnleitner and Kappeli (1986) and a dynamic 
model is developed based on mass balance equations for 
glucose, ethanol, oxygen and biomass concentrations 
(Yuzgec et al., 2009). In this study, a simulation programme 
is developed in MATLAB using the kinetic and dynamic 
model given in (Yuzgec et al., 2009) and is verified with the 
results presented in (Yuzgec et al., 2009). The operation 
objective is to produce maximum amount of biomass by 
adjusting the glucose feed rate subject to operation 
constraints. 

3.2 Results 

The developed process simulator was used to generate 40 
historical batch runs to be used in the generation of the time 
variant linearised model, Gs.  MLR, PCR and PLS are used 
in estimating the model parameters. The 40 batches were 
generated by adding random perturbations to a nominal feed 
profile.  

The R and Q weighting values were decided using a trial and 
error method. The Q values were fixed at 1 while different R 
values were studied. Fig. 1 to Fig. 3 show the results of batch 
to batch control with different R values with MLR, PCR, and 
PLS models respectively. It can be seen in all three cases that 
R value of 0.00001 gives good performance. Too large R 
values lead to sluggish performance while too small R values 
lead to oscillation or unstable performance.  
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Fig. 1. Batch to batch control under MLR model 
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Fig. 2. Batch to batch control under PCR model 
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Fig. 3. Batch to batch control under PLS model 

 
 
Batch to batch control based on the three types of models 
(MLR, PCR, and PLS) were tested and compared for the 
following three different cases: 

 Case 1: Constant Gs, Ys and Us 
 Case 2: Updating Gs, Ys and Us 
 Case 3: Updating Gs 
Whereby, Gs is the time variant linearised model, Ys is the 
nominal biomass output and Us is the nominal substrate feed. 

Each of the cases was run for 30 batches to investigate the 
control performance. The desired final bio-mass 
concentration value was set at 74g/L. A disturbance was 
introduced from batch 21. The initial substrate concentration, 
S0, was changed to 305g/l from its nominal value of 325g/l 
from batch 21. 

Fig. 4 shows the control performance under the MLR model 
for the three different cases. It can be seen from Fig. 4 that 
batch to batch control with fixed model and fixed reference 
trajectories does not give good performance and becomes 
unstable even without the presence of disturbances. This is 
due to the fact that the fixed nominal model becomes invalid 
when the operation trajectories shift away from the nominal 
trajectories. The control performance with updated model 
appears to be satisfactory when there is no disturbance. 
However, with the presence of unknown disturbance, batch 
to batch control based on MLR model does not give 
satisfactory performance even with updated model and 
updated reference trajectories. This could be due to that the 
MLR model is not appropriate due to the correlations among 
the control actions during different batch stages.  

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

Batch

B
io

m
as

s 
(g

/L
)

 

 

Constant Gs,Ys&Us
Updating Gs,Ys&Us
Updating Gs

 
Fig. 4. Control performance under the MLR model 
 
Fig. 5 and Fig. 6 show, respectively, the control performance 
under PCR model and PLS model. Once again, batch to 
batch control under fixed model does not give satisfactory 
performance even without disturbances. With updated 
linearised models but constant reference trajectories, batch to 
batch control under PCR model or PLS model gives 
satisfactory performance when there is no disturbance, but 
gives unsatisfactory performance when disturbance presents. 
However, with updated linearised models and updated 
reference trajectories, batch to batch control under PCR 
model or PLS model gives satisfactory performance when 
unknown disturbances are present. This remarkable 
improvement over batch to batch control under MLR model 
is due to that the PCR model and PLS model are more 
appropriate than the MLR model.  
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Fig. 5. Control performance under the PCR model 
 

 
Fig. 6. Control performance under the PLS model 
 
 

4. CONCLUSIONS 

A batch to batch iterative learning control strategy based on 
incrementally updated linearised model is presented. The 
proposed strategy overcomes the detrimental effects of 
model-plant mismatches and unknown disturbances by 
incrementally updating the control policy using information 
from the previous batches. Control policy updating is 
calculated using a linearised model identified from process 
operation data. To cope with nonlinear behaviour of 
fermentation processes, the linearised model is updated from 
batch to batch and the immediate previous batch is used as 
the reference batch. To address the colinearity among the 
control actions during different batch stages, the linearised 
model is identified using PCR and PLS. Application results 
on a simulated fed-batch fermentation process demonstrate 
that the proposed technique is very effective.  
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