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Abstract: A hierarchical control architecture for the integration of scheduling decisions,
dynamic real-time optimization and tracking control is proposed. It is shown how the discrete-
continuous problem of simultaneous scheduling and trajectory optimization on a receding
horizon can be integrated within the upper control layer of a two-layer architecture. On the upper
layer, the optimal plant strategy defined by a sequence of control objectives and optimal control
moves is computed on a long time horizon. The lower control layer consists of a state observer and
a fast-acting tracking controller which operates on a short time horizon. The properties of this
architecture are illustrated by a case study in which a wastewater treatment plant is operated
under the influence of external disturbances. Conflicting operational objectives may be valid,
depending on the state of the plant and the expected disturbances. By calculating an optimal
sequence of operational strategies and control moves on the receding horizon, economically

optimal operation of the plant can be achieved.
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1. INTRODUCTION

Traditionally, control methods have focused on achieving
stable process operation, using fast-acting controllers to
reject disturbances and maintain the controlled variables
close to their setpoints. Linear MPC algorithms are being
used for this purpose in the process industries (Qin and
Badgwell, 2003).

Online optimization methods such as real-time optimiza-
tion (RTO) and its extension to transient operation, dy-
namic real-time optimization (DRTO), have expanded the
scope of process control beyond disturbance rejection, to
include economic optimization of process operation (Hel-
big et al., 2000). This drives the process to its economical
optimum while regarding operational constraints. How-
ever, due to the computational effort in solving the related
nonlinear, dynamic and constrained optimization prob-
lems, a re-computation of the optimal solution on the time
scale of the fastest disturbances is very demanding and
may not be feasible. Time-scale separation concepts are
being employed as an alternative, resulting in hierarchical
architectures (Tatjewski, 2008).

Control architectures designed for RTO or DRTO usually
include distinct units on hierarchical levels. On an up-
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per control layer, economically optimal steady-state set-
points or setpoint trajectories are computed by solving
the (D)RTO optimization problem. On a lower layer, fast-
acting controllers are employed to track these trajectories
and to reject disturbances.

Recent contributions by Busch et al. (2007) and Prata
et al. (2008) have introduced the concept of dynamic
predictive scheduling (DPS) in the context of DRTO.
Scheduling here refers to the planning of an economically
optimal sequence of production campaigns or operational
strategies on a prediction horizon. The term operational
strategy denotes here the choice of an objective function,
the specific process variable to be considered as degrees of
freedom, the choice of bounds on the process variables in
the optimization problem, and possibly also the choice of
the process model itself.

DPS is an extension of DRTO integrating discrete de-
cisions and optimal control on a receding horizon: The
upper control layer optimization problem integrates the
choice of the operational strategy and the calculation of
control moves to realize optimal transitions between the
operational strategies or production campaigns. This way,
the decision on the objective, the degrees of freedom, and
on the constraints to impose on the solution becomes part
of the optimization problem itself. The resulting mathe-
matical problem is a mixed-integer dynamic optimization
(MIDO) problem which must be solved by appropriate
methods.
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Busch et al. (2007) applied this method to the optimal
operation of a wastewater treatment plant. In this case
the scheduling task is concerned with the planning of a
sequence of control strategies that would minimize (in
the order of importance) energy cost, buffer tank holdup
and pollutant emissions. Each of these control objectives
requires its own operational strategy. Flores-Tlacuahuac
and Grossmann (2006) and Prata et al. (2008) investigated
optimal polymer production problems, where an optimal
production schedule with transition periods for the contin-
uous production of polymer grades had to be determined
for given quality specifications and production rates. They
considered quality specifications and due dates for different
polymer grades as well as economic costs caused by the
transition between polymer grades. Flores-Tlacuahuac and
Grossmann discretized the dynamic equations describing
the grade transitions, and solved the MIDO problem using
mixed-integer nonlinear programming. Prata et al. on the
other hand apply a solution method proposed by Olden-
burg et al. (2003), using a discretization based on single
and multiple shooting. All three works have dealt with the
open-loop problem only. For further examples, the reader
is referred to the recent overview by Harjunkoski et al.
(2009).

In this work, we consider the closed loop problem of
an optimal operation of a wastewater treatment plant
model. A hierarchical control architecture involving a
DPS on the upper control layer, as shown in Figure
1, is proposed. The operation of the plant is disturbed
by fluctuations of the wastewater feed rate and of the
pollutant feed concentrations. Nominal operation of the
plant is disturbed and recalculation of the plant schedule
is performed.

2. WASTEWATER TREATMENT PROCESS

The type of wastewater treatment plant considered is
depicted schematically in Fig. 2. The plant consists of a
buffer tank of 3000 m® capacity, a denitrification basin
and a nitrification basin with a submerged membrane
filter unit. The purpose of the process is to degrade the
pollutants in the wastewater, i.e. to reduce their concen-
trations through biochemical reactions. In the denitrifica-
tion and nitrification basins (both with a volume of 1350
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Fig. 1. Schematic of the realized process control architec-
ture
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Fig. 2. Schematic flowsheet of the wastewater treatment
plant

o

m?), biomass is suspended in water at a concentration of
several grams per liter. The denitrification basin is kept
at anaerobic conditions, while in the nitrification basin
aerobic conditions are established by means of intensive
air injection (aeration).

Clear water is separated from the biomass-water suspen-
sion (the “activated sludge”) in the nitrification basin by
means of a membrane filter, and is drawn off in the effluent.
The activated sludge is recirculated to the denitrification
tank. Since there is ongoing biomass growth in both basins,
excess sludge is drawn off to stabilize the biomass concen-
tration.

The process is modeled by a continuous-time differential-
algebraic model consisting of mass balances for all sub-
stances in all tanks and rate equations for the biochemical
reactions. The biological reactions are modeled according
to the Activated Sludge Model No. 3 by Gujer et al. (1999).
This model is derived from biochemical understanding of
the process and is usually regarded as the state-of-the-art
for modeling municipal waste water treatment processes.
All tanks are modeled as ideally mixed vessels. It is as-
sumed that no biochemical reactions take place in the
buffer tank. The oxygen transfer rate into the nitrification
basin is assumed to be controllable by the aeration rate
Ugqir. Also, the membrane filter is assumed to retain all
suspended matter in the nitrification basin, while soluble
matter passes the membrane unhindered. The complete
index-1 process model consists of 55 differential equations
and 246 algebraic equations.

2.1 Control problem

Due to varying feed flow rates and pollutant concentra-
tions, the wastewater treatment process is always transient
and does not settle into a steady state. Both the feed
flow rate and the concentrations of major pollutants follow
daily, weekly and yearly patterns influenced by human do-
mestic activities, industrial activities, weather conditions
and other environmental factors. The main pollutants are
organic substrate, nitrate and ammonium. Their degrada-
tion depends on the residence time in the biological basins,
and the availability of oxygen and organic substrate.

Nitrate is degraded in the denitrification basin at low
oxygen concentrations, while ammonium is degraded in
the nitrification basin at high oxygen concentrations. Since
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nitrate is also produced as a byproduct of the nitrification
reaction, setting the recycle too low will give high nitrate
content in the effluent. However since oxygen can be car-
ried over from the nitrification back to the denitrification,
process operation must at the same time prevent a desta-
bilization of the process by excessive recycling or aeration.

The manipulated variables (Fig. 2) are

e plant throughput flow rate up,
e recycle flow rate ug, and
e aeration intensity uqq- in the nitrification basin.

The controlled variables are

e buffer tank holdup,
e ammonium concentration in the effluent, and
e nitrate concentration in the effluent.

2.2 Operational strategies for the wastewater plant

Stable operation of the plant means reducing effluent pol-
lutant concentrations as much as possible and stabiliz-
ing the buffer tank holdup at a low level, while keeping
the power consumption below a critical level u¢ié. This
corresponds to keeping power consumption within utility
contract levels, which is a real concern in many industrial

operations.

However, the operational strategies that are needed to
fulfill these objectives simultaneously are in conflict with
one another: To reduce the effluent concentrations as low
as possible, the plant needs to operate at a low throughput
rate, high recycle rate and medium aeration intensity,
resulting in a high residence time and consequently the
highest possible elimination of pollutants. On the other
hand, when the feed rate to the plant is large or the
buffer tank holdup close to its maximum, the throughput
flow rate has to be set high, the recycle rate low, and
the aeration to the upper tolerable limit to ensure that
ammonium and nitrate can still be eliminated, despite a
low residence time in the biological basins. Lastly, when
the pollutant concentration in the wastewater cannot
be reduced below effluent limits using only the critical
aeration, the aeration is increased beyond uS7 causing
contract costs. The control objective is then to keep the
excess power consumption as low as possible while still
reaching the effluent limits. This is achieved by setting the
throughput as low as possible while balancing aeration and
recycle flow. Ammonium has to be degraded fully in the
nitrification basin, but without carrying too much oxygen
over into the denitrification basin.

In order to manage these conflicts, the DPS method is
applied such that the best operational strategy can be de-
termined by solving the discrete-continuous optimization
problem. A hierarchy of control objectives is defined as
follows, from the highest (1) to the lowest priority (4):

(1) Off-spec strategy: If ammonium and/or nitrate efflu-
ent concentrations are beyond the allowed effluent
limits, then reduce ammonium and nitrate effluent
concentrations below the limit as quickly as possible.

(2) Economic strategy: If ammonium and nitrate con-
centrations cannot be reduced below a given limit
using less than a critical aeration intensity u¢%%, then
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reduce the square of the excess energy consumption

A= (tgir — U5,

(3) Flexibility strategy: If aeration can be set below the
critical limit; and if ammonium and nitrate effluents
can be reduced below their effluent limits, then reduce
the buffer tank holdup to its lower limit as quickly as
possible.

(4) Ecological strategy: If the buffer tank holdup is at its
lower level, if aeration can be set below the critical
level, and if the nitrate effluent can be reduced below
its efluent limit, then reduce the ammonium effluent

to the lowest possible value.
2.8 Simulation scenario

The optimal trajectories are calculated on a receding
horizon of three days, based on a prediction of the feed
rate and the feed concentrations, which are assumed to
be available to the DPS controller. This includes the
prediction of a rain event that causes the feed volume to
the plant to peak on day 5. Fig. 3(a) shows the predicted
and actually realized feed rates, while Fig. 3(b) shows the
ammonium and nitrate concentrations realized in the plant
simulation. The concentrations are adapted from typical
municipal wastewater compositions, with CSB between
600 and 800 g/m>®and total nitrogen between 30 and 60
g/m3. The actual feed rate realized in the plant simulation
will differ slightly, by having the rain event take place
4 hours later than anticipated, lasting 12 hours longer
but causing 10% less total rainfall. Also, the simulation
includes an unpredicted pollution event which causes a
peak in the ammonium and nitrate concentrations on day
2.

3. HIERARCHICAL CONTROL ARCHITECTURE

Motivated by the control problem outlined in the previous
section, the properties of the control architecture in Fig. 1
can be explained in more detail. The plant is operating
under the influence of some external disturbances d. Mea-
sured outputs y and y. are available, with y. being the
subset of controlled variables. On the upper control layer,
the plant disturbances (feed rate and feed concentrations)
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Fig. 3. (a) Feed rate to the plant: Predicted rate (-) and
actually realized rate (—). (b) Feed concentrations
of ammonium (—), nitrate (-), and their predicted
patterns on day 2 (---).
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are predicted by the disturbance prediction model d. A
sequence of operational strategies and optimal transitions
have to be found which lead to ecological and economic
plant operation on the control horizon. The DPS controller
performs this task by a solution of the associated discrete-
continuous optimization problem, using the current state
estimate & as initial value vector. The (open-loop) problem
formulation is described by Busch et al. (2007) and will not
be repeated here.

The optimal control moves and the predicted outputs
computed by the DPS algorithm are passed to the MPC
tracking controller as reference control trajectories u"¢f (t)
and reference output trajectories yzef (t). The tracking
controller keeps the controlled outputs y. close to the
reference trajectories, using an input-output model derived
from a linearization of the process model around the
current state estimate Z. The tracking controller operates

in delta-mode, adding its control moves to the reference
umet (t).

All modules on the upper and lower layers were imple-
mented in Matlab for this study. The process is simulated
in gPROMS (PSE Ltd., 2004). The DPS problem is solved
in the dynamic optimization software DyOS (AVT.PT,
2009).

8.1 DPS controller

The optimal control problem is formulated as a multi-
stage, mixed-integer dynamic optimization problem which
is solved at every time t; on the receding horizon [ty,tr +
Th], ie.

Nt
min ; Z¢j (ij,xj(tfk),u(t;k),d(tij)) , (1a)

Uik Yikotyy, 521
s.t. ij = fj(ij,Ij,Ujk,d), (1b)
0> g(Yik,zj, ujk, d), (1c)
0 = h(Yje, o (th), upn(t],), d(t],)), (1d)
w1 (t) = Tk, (le)
d(t) = di(t), (1f)
0="T(2j,2511), (1g)
0=k, -, Yn.,k), (1h)

with w;, the control vector applied on stage j at time
ti, Y the integer-valued strategy choice and t;k the end
time of stage j at time t3, Ny the number of stages, ¢; the
objective function on stage j, x; the differential variables
on stage j and Iy their most current estimate, g the path
constraints, h the endpoint constraints, d(t) the time-
varying disturbances and Jk(t) their predictions at time
tk, I' the transition conditions between the stages and €2
the conditions that the strategy sequence {Yig, ..., Ynstk }
must fulfill. The details of the related open-loop formula-
tion are given by Busch et al. (2007).

Problem (1a) is solved using a MIDO strategy which com-
bines a variant of the outer-approximation method tailored
to dynamic optimization (Oldenburg et al., 2003) with the
adaptive control vector discretization method developed
by Schlegel et al. (2005). The reference trajectories are
recalculated for updated process state variables and new
disturbance predictions at the start of every day, i.e. at
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time zero and then every 24 hours. For this case study,
it is assumed that disturbance predictions are made avail-
able once per day, for example from weather forecasts or
monitoring of the sewer network.

8.2 MPC tracking controller

A linear time-variant MPC algorithm is used to track the
reference inputs and outputs u"¢f and y7¢f on the lower
control layer. A quadratic objective function is formulated,

1 1 1
min ¢ = §6yCTQ6yC + §6uTR6u + §AUTSAU, (2a)
u

0ye = yzef —Ye, (Qb)
ou=u" —u, (2¢)

with @, R and S positive definite weighting matrices. dy.
and du are vectors of the deviations at discrete times on
the prediction horizon between the plant outputs y. and
their time-varying references y7¢/, and between the control
inputs v and their time-varying reference trajectories "/
respectively. The rate of change Au from time ¢;_; to the
current time ¢; is weighted against dy. and du to prevent
excessive control movement. The sampling time of MPC
is set to one hour.

3.3 State estimation algorithm

In previous work, Busch et al. (2009) investigate state esti-
mation methods for wastewater treatment processes. Since
DRTO is inherently a state feedback control method and
thus dependant on the estimation of unmeasured states
from plant outputs, the effect of faulty state estimation
has to be investigated as well. In wastewater treatment
processes, estimating the unmeasured states is generally
not an easy task since many model states are only indi-
rectly observable by lumped measurements like the total
chemical oxygen demand, the total nitrogen concentration
or the total amount of suspended biomass. For this study,
the sensor placement determining the output variables y
was chosen such that the simulated linear system was
observable at all times, using available measurements of
ammonium, nitrate, oxygen, pH, total suspended solids
and total chemical oxygen demand. This is similar to
the approach taken by Busch et al. (2009) where an
optimization-based method for sensor placement in waste-
water treatment plants is proposed. This sensor placement
strategy does not guarantee observability of the nonlinear
system, though it yields a reasonable sensor configura-
tion resulting in satisfactory estimation performance. A
constrained EKF algorithm (Gesthuisen et al., 2001) is
implemented to prevent negative concentration estimates.

4. CONTROL PERFORMANCE

In open-loop, each of the disturbances described in Sec-
tion 2.3 would lead to highly undesirable results, such as
significant violation of the ammonia effluent limits follow-
ing the feed concentration disturbance on day 2, and an
overflow of the buffer tank following the rain event on
day 5. Perfect control performance would instead reject
the feed concentration disturbance in the shortest amount
of time possible, and handle the rain event by using the
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buffer capacity for intermediate storage of the wastewater
feed. The operational strategies should be planned accord-
ingly. At optimal control performance, ecological operation
(strategy 4) should also be pursued for the maximum time
feasible.

4.1 Scheduling of operational strategies

Fig. 4 shows the controlled and the manipulated variables.
The strategies chosen by the dynamic predictive scheduler
are shown by the shaded areas. As can be seen, the optimal
strategy on the first and second day is the flexibility
strategy (3). During this time the buffer tank holdup is
reduced from 30% to 20% of its maximum capacity (3000
m?3), permitting a switch to the ecological strategy (4)
at the earliest possible time. With the recalculation of
the strategies at the beginning of day 2, the ammonium
concentrations are detected to be beyond the bound of
1 gN/m3. As a result the plant switches briefly to the
off-spec strategy (1). Following the strategy prioritization
described in Section 2.2, the off-spec strategy (which
permits intensive use of aeration and high throughput)
is applied only for the shortest possible amount of time,
followed by the flexibility strategy and then again the
ecological strategy. Control moves are computed to give
the fastest possible transition from the off-spec strategy
back to the ecological strategy. The ecological strategy
is pursued from day 2 to day 5, and the ammonium
concentration is reduced from 1 gN/m?® to 0.4 gN/m3.
This is achieved by a throughput of less than 1000 m3/d,
and a recycle flow rate of 100 m3/d. On day 5 the rain
event takes place, requiring a switch first to the economical
strategy (2) and then to strategy 3. The buffer tank holdup
rises quickly towards the upper limit of 3000 m3. The
ammonium effluent concentration is maintained near its
limit of 1 gN/m3 by adjusting the aeration rate and recycle
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(b) Controlled outputs v,
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Fig. 4. Control inputs (above) and controlled variables
(below) in the simulation of the controlled plant.
The shaded areas show where different strategies were
applied.
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flow rate accordingly. On day 8, the buffer tank holdup is
found to be below the minimum value of 300 m3. The
off-spec strategy (1) is applied again, and the plant is
temporarily operated at a lowered throughout flow rate
of 200 m3/d.

4.2 Reference tracking

Reference tracking performance is depicted in Fig. 5.
The reference trajectories consist of the setpoints for the
input and output variables that are passed from the DPS
to the MPC on the lower control layer. The actually
realized input trajectories in Fig. 5(a)-(c) are the control
values that were computed by the MPC in order to force
the output values Fig. 5(d)-(f) towards their reference
trajectories. It can be seen in Fig. 5(b)-(d) that the
MPC controller is particularly active on day 1, 5 and
6 when the recycle rate is adjusted to compensate for
the offset between the expected and measured ammonium
concentration.

In Fig. 5(d-e) the effects of the feed concentration distur-
bance on day 2 can be seen. From the reference trajectories
it is expected that neither nitrate nor ammonium should
break through, and that the aeration rate should remain
at 550 1/d throughout day 1 and 2. It can be seen that
the ammonium concentration could be tracked fairly ac-
curately on day 1 and 2, while the nitrate concentration
was higher than expected from the reference trajectory
(dashed line in subfigure (e)). This is caused by the tuning
of the tracking controller, which was set to prefer accurate
tracking of the ammonium concentration over the nitrate
concentration. During the rain event the references could
be tracked more accurately, as can be seen on day 5 and
6 where no comparable concentration spikes occur. Here,
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too, an offset between expected and measured ammonium
concentration is visible (Fig. 5(d), time 4 to 5).

4.8 State estimation

The performance of the state estimation can be assessed
from Fig. 6 where the estimates and the true values of
selected process states are shown. All estimates were ini-
tialized at time zero at 120% of their true values. The
covariance matrix was initialized with values correspond-
ing to 5% process noise for all concentration estimates.
In total 33 concentrations were estimated. With the ex-
ception of inert substances such as the soluble inerts
in the buffer tank (Fig. 6(a)) and in the denitrification
basin (Fig. 6(c)) the estimation performance is generally
satisfying, as estimates follow and eventually converge
to their true values. However it is likely that the offset
between expected and measured effluent concentrations,
as explained in Section 4.2, is caused by the inaccurate
state estimation at time zero and time 4 in some of the
measured states. However with all states showing some
estimation error and none (except the inert substances)
showing particularly bad estimation, it is impossible to
exactly tell which states caused the offsets.

5. CONCLUSION

A hierarchical control architecture for integrated predic-
tive scheduling, DRTO and tracking control of a waste-
water treatment plant is presented. A simulation study
shows the interdependency of the different control layers.
It is shown how operational strategies are planned on a
moving horizon, anticipating changes in operating condi-
tions such as a surge in the feed volume. An unpredicted
disturbance caused by a pollution event can be reasonably
controlled by the MPC tracking controller and a recalcu-
lation of the reference trajectories. The model states can
be estimated with good accuracy, allowing for accurate
reference trajectories. Besides improved controller tuning,
future work will aim at developing a control framework
that can be applied to the operation of real wastewater
treatment plants. As a next step, the DPS and MPC
control setup will be tested by applying more protracted
disturbances to the plant simulation. The effect of model
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Fig. 6. Performance of the state estimation for selected

states. Solid lines: Real states, dashed lines: Estimated
states. All states are given in gCOD/m?.
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inaccuracies, which were neglected in this study, will be
examined. Also, delta-mode MPC which was used for
tracking control may be replaced by a control algorithm
more suited for DRTO, such as neighboring extremal up-
dates (Wiirth et al., 2009).
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