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Abstract: In this work a late lumping approach is used in order to design a state feedback
linearizing controller for influent disturbance attenuation and regulating the nitrogen concen-
tration at the output of a denitrification biofilter. This controller is associated to a distributed
parameter observer to estimate all the states needed to compute the controlled input. It results
in an output feedback nonlinear controller with stable closed-loop dynamics.

Keywords: Distributed parameter systems, linearizing control, Luenberger observer, output
feedback control.

1. INTRODUCTION

Several biotechnological processes are represented by par-
tial differential equations (PDE) describing distributed
parameter systems (DPS) in both time and space. In
order to control a DPS, two strategies are commonly
used: early lumping approach and late lumping approach.
In the first one, the model partial differential equations
are dicretized to obtain a high-order ordinary differential
equation (ODE) system and then, ODE-based control
strategies for nonlinear or linear systems may be applied
(see for example Ray [1981]). On the other hand, in the
second approach, control strategies have been developed,
based on the non-linear control theory, to design a con-
troller on the PDE system so as to keep as much as possible
its distributed nature (see for example Banks et al. [1996],
Christofides and Daoutidis [1998]).

The research concerning control of bioprocesses was
mainly focused in the early lumping approach. This is
because the most important control strategies have been
developed to control systems described by either linear or
non-linear systems represented by ODEs. In this context,
several works have been developed, for instance: Dochain
et al. [1992] applied adaptive control schemes to nonlinear
distributed parameter bioreactors by using an orthogonal
collocation method to reduce the original PDE model
to ODE equations. In Alvarez-Ramirez et al. [2001] the
authors dealt with the linear boundary control problem
in an anaerobic digestion process by using the solution
at steady state. Torres and Queinnec [2008] proposed to
control the speed rate to reject an external disturbance on
a denitrification reactor by using the method of character-
istics to reduce the PDE system into a high-order ODE
system.

On the other hand, in the last two decades, several control
strategies using a late lumping approach based on the non-
linear control theory have been proposed. Gundepudi and
Friedly [1998] addressed the problem of controlling a flow
system described by a set of first-order PDEs with a single
characteristic variable using the inverse system. Shang
et al. [2005] have designed a feedback control method
over the spatial interval that yields improved performance
for DPS modelled by first-order hyperbolic PDEs. Wu
and Lu [2001] addressed the output regulation of flow
systems described by a class of two-time-scale nonlinear
PDE system using the reduced-order slow model and
geometric control. More specifically about biotechnological
applications, Boubaker and Babary [2003] have applied
variable structure control to fixed bed reactors described
by nonlinear hyperbolic PDEs. Aguilar-Garnica et al.
[2009] have designed a nonlinear multivariable controller
for an anaerobic digestion system described by a set of
PDEs and consisting of an observer and two nonlinear
control laws on the boundary conditions.

In this context, this paper presents the design of an
observer-based output feedback controller by using a late
lumping approach in order to regulate the nitrogen con-
centration at the output and to reject a disturbance (ni-
trate inlet) at the input of a denitrification reactor. The
biofilter is modeled by a system of hyperbolic PDEs, where
the diffusion phenomena has been neglected. In addition,
model uncertainty and noise at the measured output must
also be bypassed. As a first step, a linearizing control is
developed to partially linearize (according to the system’s
relative degree) the closed loop dynamics and then, by
using a distributed parameter observer, the state variables
not available by measurements are estimated. The paper
is organized as follows: in section 2, the model of the den-
itrification reactor is presented. In section 3, a linearizing
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state feedback strategy is used to control the speed rate
of inlet flow by considering the system’s relative degree as
shown in Shang et al. [2005] and Gundepudi and Friedly
[1998]. In section 4, a distributed parameter observer is
designed to estimate all the states needed to compute the
controlled input as proposed in Vande Wouwer and Zeitz
[2003]. In section 5, the overall output feedback controller
is presented. In section 6, the discussion about simulations
allows us to evaluate the results of this strategy. Finally, in
section 7 some conclusions about this work are presented.

2. DENITRIFICATION MODEL

The denitrification process under study is a biofilter (a
tubular reactor) filled with a porous pouzzolane material
which allows the removal of nitrate and nitrite from in-
fluent wastewater. The influent conditions involve a suffi-
ciently high ratio C/N such as to ensure that carboneous
component does not become the limiting source for the
growth. Denitrification is a two-stage reaction performed
in anaerobic conditions. The first stage is the denitration
which transforms nitrate (NO3) into nitrite (NO2) while
the second phase transforms nitrite into gaseous nitro-
gen (N2). The same micro-organism population (bacteria)
is involved in both stages, with a carbon source as co-
substrate. This biomass accumulates on the solid media
surface thanks to filtration of bacteria present in the feed-
ing water (if any) and to net growth. Thus, the biomass
forms a biofilm around the filter particles, which thickens
with time. One can then consider that all the biomass is
fixed and does not move along the reactor. On the con-
trary, the soluble compounds (nitrate, nitrite and ethanol)
are transported along the biofilter. It has been previously
shown in Bourrel et al. [2000] that, except during the ini-
tial colonization step, the biomass concentration remains
almost constant at a value Xamax along the biofilter and
homogeneously distributed, even after a washing out. The
dynamics of the biomass concentration are then cancelled
and it is assumed this concentration remains constant
at Xamax. Moreover, in the denitrification reactor model
considered in this work, the diffusion phenomena has been
neglected, resulting in the following quasi-linear hyperbolic
PDE system:

∂x1(z, t)

∂t
= −

v

ǫ

∂x1(z, t)

∂z

−
1 − Yh1

1.14Yh1
ǫ
µ1(x1, x3)Xamax

(1)

∂x2(z, t)

∂t
= −

v

ǫ

∂x2(z, t)

∂z

+
1 − Yh1

1.14Yh1
ǫ
µ1(x1, x3)Xamax

−
1 − Yh2

1.71Yh2
ǫ
µ2(x2, x3)Xamax

(2)

∂x3(z, t)

∂t
= −

v

ǫ

∂x3(z, t)

∂z

−
1

Yh1
ǫ
µ1(x1, x3)Xamax

−
1

Yh2
ǫ
µ2(x2, x3)Xamax

(3)

for 0 < z ≤ L, where z is the axial space variable. x1(z, t),
x2(z, t) and x3(z, t) represent the nitrate (g[N ]/m3), ni-
trite (g[N ]/m3) and ethanol (g[DCO]/m3) concentrations,
respectively. v, Yh1

, Yh2
, µ1 and µ2 represent the flow speed

m/h (the ratio between the feeding rate (m3/h) at reactor
input and the biofilter transverse surface (m2)), micro-
organisms yield coefficients and population specific rates
which transform nitrate into nitrite, then nitrite into gas
nitrogen (1/h).

The nitrate and nitrite specific growth rates are described
by the model of Monod with two substrate limitations:

µ1(x1, x3) = ηgµ1max

x1

x1 + KNO3

x3

x3 + KC

µ2(x2, x3) = ηgµ2max

x2

x2 + KNO2

x3

x3 + KC

where ηg, µ1max
, µ2max

, KNO3
, KNO2

and KC are the
correction factor for the anaerobic growth, the maximum
specific growth rates of biomass on nitrate and nitrite and
the affinity constants with respect to nitrate, nitrite and
ethanol, respectively.

Associated to the dynamic equations for the denitrification
process, appropriate initial and boundary conditions are
given by:

• Initial spatial profile at t = 0 for 0 ≤ z ≤ L:

x1(z, t = 0) = 0 g[N ]/m3 (4)

x2(z, t = 0) = 0 g[N ]/m3 (5)

x3(z, t = 0) = 0 g[COD]/m3 (6)

• Dirichlet boundary conditions at z = 0 (input) for
t > 0:

x1(z = 0, t) = x1,in = 16.93 g[N ]/m3 (7)

x2(z = 0, t) = x2,in = 0 g[N ]/m3 (8)

x3(z = 0, t) = x3,in = 101.5 g[COD]/m3 (9)

Remark 1. Initial conditions express that the initial state
corresponds to the instant after a wash out when the liquid
in the biofilter is only clean water without nutrients.

The system (1)-(3) can be rewritten in matrix form as:

∂x

∂t
= A

∂x

∂z
+ f(x) (10)

where x = [x1 x2 x3]
T is the state vector, matrix A is a

diagonal square matrix ∈ R
n×n which diagonal elements

are denoted by aii, f(x) is a vector of non-linear functions
∈ R

n and n = 3.

We are interested in regulating the nitrogen concentration
at the reactor output. An output function is then defined
as the sum of nitrate and nitrite concentrations at the
reactor output:

y(t) = h(x) = x1(z, t)|z=L + x2(z, t)|z=L (11)
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This problem was addressed in Bourrel et al. [2000], where
the authors first imposed the desired closed-loop dynamics
and then the linearizing feedback controller was designed.
However, as it will be shown, the closed-loop dynamics
depend on the order of derivation of the output which is
needed to derive an input-output map (i.e. on the relative
degree of the system).

3. STATE FEEDBACK LINEARIZING CONTROL

Differentiating y(t) with respect to time and by consider-
ing v as the control variable, it is obtained:

ẏ(t) = Lfh(x)|
z=L

−
v(t)

ǫ

∂h(x)

∂x

∂x

∂z

∣

∣

∣

∣

z=L

(12)

where Lfh(x) is the Lie derivative of h(x) with respect to
f(x).

Since for all t > 0

∂h(x)

∂x

∂x

∂z

∣

∣

∣

∣

z=L

6= 0

the relative degree of the system (10)-(11) is r = 1.

In order to feedback linearize the system (10)-(11), a
new system of coordinates can be introduced (see Isidori
[1989]):

Φ(x) =

(

ξ1

ξ2

ξ3

)

with ξ1 = y(t).

Furthermore, because r is strictly less than n, it is always
possible to find n − r = 2 additional functions ξ2, ξ3 such
that (see Levine [1996]):

∂ξi

∂x

∂x

∂z

∣

∣

∣

∣

z=L

= 0

for i = 2, 3. In this way, ξ2 and ξ3 can be obtained by
solving the following two PDE:

∂ξ2

∂x1

∂x1

∂z

∣

∣

∣

∣

z=L

+
∂ξ2

∂x2

∂x2

∂z

∣

∣

∣

∣

z=L

+
∂ξ2

∂x3

∂x3

∂z

∣

∣

∣

∣

z=L

= 0 (13)

∂ξ3

∂x1

∂x1

∂z

∣

∣

∣

∣

z=L

+
∂ξ3

∂x2

∂x2

∂z

∣

∣

∣

∣

z=L

+
∂ξ3

∂x3

∂x3

∂z

∣

∣

∣

∣

z=L

= 0 (14)

It must be pointed out that solving the two PDEs above
is a hard task because they depend on the solution of the
state equations.

According to (12) and denoting:

a(ξ) = Lfh(x)|
z=L

b(ξ) =
−1

ǫ

∂h(x)

∂x

∂x

∂z

∣

∣

∣

∣

z=L

the following representation is obtained:

dξ1

dt
=

∂ξ1

∂x

∂x

∂t
= a(ξ) + b(ξ)v(t) (15)

Because ξ2 and ξ3 have been chosen so that

∂ξi

∂x

∂x

∂z

∣

∣

∣

∣

z=L

= 0

one has,

dξi

dt
=

∂ξi

∂x

(

f(x) −
v(t)

ǫ

∂x

∂z

)∣

∣

∣

∣

z=L

= Lfξi|z=L
−

v(t)

ǫ

∂ξi

∂x

∂x

∂z

∣

∣

∣

∣

z=L

= Lfξi|z=L

By setting:

qi(ξ) = Lfξi|z=L
(16)

for i = 2, 3, the state space description of the original
system (10)-(11) in the new coordinates may then be
written as:

ξ̇1 = a(ξ) + b(ξ)v(t)

ξ̇2 = q2(ξ)

ξ̇3 = q3(ξ)

(17)

The objective is to build a control law v(t) which stabilizes
the closed loop system and such that the output y(t)
tracks a given constant reference yr while limiting as much
as possible the activity of the control input. Define the
tracking error e0 like y(t)− yr. If the original system (10)-
(11) is locally exponentially minimum phase and α0 > 0
then the state feedback control law:

v(t) =
1

b(ξ)
(−a(ξ) − α0e0)

=

(

−ǫ
∂x1

∂z
+ ∂x2

∂z

)
∣

∣

∣

∣

z=L

×

(

1 − Yh2

1.71Yh2
ǫ
µ2(x2, x3)Xamax − α0 (x1 + x2 − yr)

)∣

∣

∣

∣

z=L

(18)

linearizes partially the original system and results in
a (locally) exponentially stable closed loop system (see
Sastry [1999]). Thus, by inspecting (17) the resulting
closed loop dynamics is given by:

ẏ(t) = −α0 (y(t) − yr) (19)

because it was only necessary to differentiate once the
output function to see explicity the control input.

The value of α0 has to be sufficiently small to reject
the influence of the x1 and x2 derivatives at the reactor
output in the output dynamics but large enough to bypass
the model uncertainties, especially those that come from
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µ2(x2, x3). In addition of this source of uncertainty, one
could also consider parameter uncertainties (on Xamax,
ǫ, Yh2

), but in some sense, such uncertainties are hidden
in that one of µ2 and therefore they are not directly
considered in the following.

4. DISTRIBUTED PARAMETER OBSERVER

In order to implement the control law (18) it is necessary
to know the nitrite and ethanol concentrations to compute
µ2(x2, x3) and to approximate the spatial derivatives of
both the nitrate and the nitrite concentrations at the
reactor output. Nitrate and nitrite concentrations are
available by measurements at the output of the biofilter. In
addition, nitrite at the input is known to be zero. In order
to design an observer with the minimum of information it
is necessary to measure the nitrate at the input. Thus, the
measured output is defined as:

ym = [x1(z = 0, t) x2(z = 0, t) x1(z = L, t) x2(z = L, t)]T (20)

A nonlinear distributed parameter observer (DPO), with
a formulation analog to the Luenberger observer, is then
designed so as to assign the error dynamics as proposed
in Vande Wouwer and Zeitz [2003] to estimate the concen-
trations not accessible by measurements:

∂x̂

∂t
= A

∂x̂

∂z
+ f(x̂) + Γ(x̂) (ym − ŷm) (21)

with initial condition represented by:

x̂(z, t = 0) = x̂(z, 0) (22)

where x̂ = [x̂1 x̂2 x̂3]
T is the estimated state vector and

Γ(x̂) ∈ R
3×3 is the correction term.

The design of operator Γ is based on the estimation error
equations e(z, t) = x̂(z, t) − x(z, t). It is then obtained:

∂e

∂t
= A

∂e

∂z
+ f(x̂) − f(x) + Γ(x̂) (ym − ŷm) (23)

e(z, t = 0) = x̂(z, 0) − x(z, 0) (24)

The linearization of f(x) along the estimated trajectory
x̂(z, t) can be done to obtain (see Vande Wouwer and Zeitz
[2003]):

∂e

∂t
= A

∂e

∂z
+

∂f(x)

∂x

∣

∣

∣

∣

x̂

e + Γ(x̂) (ym − ŷm) (25)

This linearization is justified by the fact that the estima-
tion error is assumed sufficiently small, i.e.:

‖e(z, t = 0)‖ = ‖x̂(z, 0) − x(z, 0)‖ << 1 (26)

In order to stabilize the closed-loop dynamics and to cancel
the nonlinear term, physical knowledge about the system
is used to design the correction term Γ(x̂) (ym − ŷm).
Considering the ith PDE, the ith correction term γi is

constructed in terms of error profile e(z, t) and a tuning
parameter row vector αi ∈ R

1×2, i.e.:

γT
i (ym − ŷm) = −

[(

∂fi(x)

∂x1

∣

∣

∣

x̂

+ αi1

) (

∂fi(x)

∂x2

∣

∣

∣

x̂

+ αi2

)

0

]

e(z, t)

(27)

for i = 1, 2, 3. A rough initial profile x̂0(z) as well as
error profile e(z, t) along the space in equations above are
constructed by linear interpolation of known values at the
measurement points.

Remark 2. The correction term (27) is used to compen-
sate the nonlinearities of the ith equation. The resulting
observer system is asymptotically stable as soon as αi,j are
positive elements high enough. Since measurements about
ethanol are not available inside the reactor, their error
profile cannot be calculated. Therefore, the error related
to this variable is not considered.

5. OUTPUT FEEDBACK CONTROL

At this moment a feedback linearizing controller and
a distributed parameter observer have been developed
by using a late lumping approach over the hyperbolic
PDE system (1)-(3). The overall control law is then the
aggregation of the feedback linearizing control with the
distributed parameter observer, approximating the spatial
derivatives by finite differences, that is:

v(t) =

(

−ǫ
∆x̂1

∆z
+ ∆x̂2

∆z

)
∣

∣

∣

∣

z=L

×

(

1 − Yh2

1.71Yh2
ǫ
µ2(x̂2, x̂3)Xamax − α0 (x̂1 + x̂2 − yr)

)
∣

∣

∣

∣

z=L

(28)

with v(0) = 4m/h and x̂(z, t) estimated by using (21).

6. SIMULATIONS AND RESULTS

In order to simulate the closed loop system, the original
PDE system (1)-(3) and the observer PDE system (21),
associated to the initial and boundary conditions given
in (4)-(9), are solved by the Method of Lines (ML) and
the spatial derivatives are approximated by fourth-order
finite differences (FDM). N = 151 discretization points
uniformly distributed throughout the reactor are sufficient
to correctly solve the PDEs. A sample period T = 1 min.
is used, whereas estimation starts after fifteen minutes
and the control action starts after stabilizing the observer
(after thirty minutes). To simulate the nominal ”real”
biofilter behavior, the values in Table 1 are considered
(borrowed from Bourrel et al. [2000]).

As mentioned before, we are interested in evaluating the
sensitivity of the closed-loop system with respect to the
state estimation errors but also to the uncertainties of the
model parameters. Since the variations of each parameter
is aggregated as a variation of the overall µ1 and µ2 values,
one considers, for the simulation of the closed-loop system,
modified values for the maximum specific growth rates as
follows: µ1max

= 0.414 1/h and µ2max
= 0.368 1/h.
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Parameter Value Parameter Value

Yh1
0.56 Yh2

0.54
µ1max

0.36 1/h µ2max
0.32 1/h

KNO3
1.5 g[N ]/m3 KNO2

1.0 g[N ]/m3

KC 40 g[COD]/m3 Xamax 800 g[COD]/m3

ng 0.8 ǫ 0.52
v 4 m/h L 2.1 m

Table 1. Parameters considered to simulate the
biofilter.

We are interested in regulating the output y(t) less or
equal than the European norm (5.65g[N ]/m3) when the
system is submitted to a varying influent nitrate concen-
tration. The disturbance influent profile shown in figure
1 intends to illustrate a periodic varying disturbance but
non-periodic or slowly varying disturbance could also be
considered. In this application a reference yr = 5.0 is
considered. In order to obtain correct estimation and well
rejection of disturbance and noise. In addition, to keep the
distributed parameter observer dynamics faster than the
linearizing feedback controller ones, the elements of the
matrix α are proposed by trial and error, large enough:

α =

[

110 0
100 110
100 100

]

The nitrate and the nitrite spatial derivatives at the
reactor output necessary to compute the control law (28)
are approximated thanks to finite differences. Besides
the measurements available at the output (z = L), the
estimates of the concentration at the last point before
the output is used. The location of this point depends
of the number N of discretization points. However, such
an influence is limited as soon as the variation of the
concentrations remains smooth enough at the end of the
biofilter. In the present configuration with N = 151, it
is the estimations of nitrate and nitrite concentrations
at z = 2.086m which are used to compute the spatial
derivatives.
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Fig. 1. Disturbance influent at the reactor input.

Figures 2 and 3 show both the nitrate and the nitrite
derivatives, in solid blue the real value and in dashed green
the estimated one. It can be observed that the estimated
values follow correctly the real ones with an expected error
because the estimated values and, the uncertainties and
noise influence. Since the concentrations at the reactor
output are less than at points before, negative slope values
are computed.

Figure 4 shows in blue the ethanol real value and in black
the estimated one at the reactor output. This value is

needed to compute the growth term µ2(x2, x3) at the reac-
tor output. In this case, the bias in the estimation is related
to the model uncertainties, as ethanol measurements are
not available.
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Fig. 2. Nitrate derivative estimated at the reactor output.
In blue the real derivative and in black the estimated
one.
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Fig. 3. Nitrite derivative estimated at the reactor output.
In blue the real derivative and in black the estimated
one.
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Fig. 4. Ethanol estimated at the output reactor. In blue
the real concentration and in black the estimated one.

On the other hand, to calibrate the linearizing controller,
a gain α0 = 10 was first proposed by using also a trial and
error strategy. Under the hypothesis that the system is
certain, the output converges quickly towards the reference
and the disturbance shown in figure 1 is correctly rejected.
However, the controller is strongly susceptible to model
uncertainties. α0 was then increased so as to reduce the
influence of model uncertainties. α0 = 90 is then proposed
to get robustness over uncertainties in the original model
growth terms µ1 and µ2 without degradating too much
the closed loop dynamics. A tolerance upon 15% of error
on the prediction of µ1 and µ2 was observed. It must be
pointed out that parametric uncertainties of the biofilter
model is the most important problem to bypass by the
linearizing feedback controller, when the state estimation
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is sufficiently accurate. In addition, a noise level upon 2%
was correctly filtered.
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Fig. 5. Nitrogen concentration at the reactor output in
closed-loop. In red the output reference and in blue
the measured output.

Figure 5 shows the output reference in red and the nitrogen
concentration at reactor output in blue according to the
controlled input shown in figure 6 computed by using the
observed-based linearizing controller designed. It can be
seen a transition period of more or less three hours before
tracking the reference and well rejecting the disturbance
shown in figure 1.
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Fig. 6. Time-evolution of the flow rate along the biofilter.

7. CONCLUSIONS

This paper presents the design of a linearizing feedback
controller to track, around a reference, the nitrogen con-
centration at the output of a denitrification reactor mod-
eled by an hyperbolic PDE system. The flow rate v(t) is
choosen as the control input. This controller is comple-
mented by a distributed parameter observer to estimate
the overall set of states needed. In order to keep the
system’s distributed nature in the controller design, a late
lumping approach has been considered.

The main idea behind the controller is to linearize the
closed loop dynamics. In this way, the system’s relative
degree r = 1 indicates that the system is partially lineariz-
able by representing it in a new system of coordinates of
same dimension like the original. The first equation is con-
structed directly from the original system and the remain-
ing equations are proposed to assure locally exponentially
minimum phase of the system. However, this property is
difficult to demonstrate, therefore a pragmatic version of
the linearizing method is applied. Since the observer-based
controller expressions are based on the original model, they
are very sensitive to the model parameter uncertainties.
In order to compensate them, a balance between the re-
sponse and the robustness was found. In addition, it was

demonstrated that the disturbance nitrate at the input
is correctly rejected. However, it must be pointed out
that a more theoretical robust analysis over the system
dynamics is needed in order to correcly support its closed-
loop performance. It is considered as a perspective of
this work. Another perspective would be to combine a
feedforward action with the feedback system to exploit
the evident correlation between the disturbance and the
control action.
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