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Abstract: It is a well-known problem that obtaining a correct bandwidth in nonparametric
regression is difficult in the presence of correlated errors. There exist a wide variety of methods
coping with this problem, but they all critically depend on a tuning procedure which requires
accurate information about the correlation structure. Since the errors cannot be observed, the
latter is a hard goal to achieve. In this paper, we show the breakdown of several data-driven
parameter selection procedures. We also develop a bandwidth selection procedure based on
bimodal kernels which successfully removes the error correlation without requiring any prior
knowledge about its structure. Some extensions are made to use such a criterion in least squares
support vector machines for regression.

Keywords: nonparametric regression, correlated errors, short-range dependence, bimodal
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1. INTRODUCTION

In nonparametric regression problems, one is interested
in estimating the mean function E[Y |X ] = m(X) from
a set of observations (X1, Y1), . . . , (Xn, Yn), where the Xi

can be either univariate or multivariate. Many methods
are currently available, including kernel based methods,
smoothing splines, wavelet and Fourier series expansions.
The bulk of the literature in these areas has focused on
the case where an unknown mean function is masked by a
certain amount of white noise. The goal of the regression is
to remove the white noise and reveal the function. Suppose
the noise is no longer white and instead contains a certain
amount of structure in the form of correlation. The focus
of this paper is to look at the problem of estimating the
mean function m(·) in the presence of correlation, not that
of estimating the correlation function itself. Approaches
describing the estimation of the correlation function can
be found in Hart and Wehrly (1986), Hart (1991) and
Park et al. (2006). In this context we want to (i) explain
some of the difficulties associated with the presence of
correlation in nonparametric regression and (ii) discuss a
new development in this area.

Suppose we want to recover the regression function from
the following nonparametric regression model

Yi = m(xi) + ei, i = 1, . . . , n, (1)

where m is an unknown, smooth function in which the
design points are fixed and (uniform) equally spaced
i.e. xi ≡ i/n. Also, we assume that E[e] = 0 and is
a covariance-stationary process. It is well known that
when a nonparametric method is used to recover m,
that correlated errors trouble bandwidth selection severely.

Bandwidth selection procedures designed for independent
errors, such as cross–validation (CV) (Burman, 1989) and
plug-ins (Fan and Gijbels, 1996; Opsomer et al., 2001),
will suffer from significant bias. If the errors are positively
(negatively) correlated, CV will produce a small (large)
bandwidth which results in a rough (oversmooth) estimate
of m.

Another issue in this context is whether the errors are as-
sumed to be short-range dependent, where the correlation
decreases rapidly as the distance between two observations
increases or long-range dependent. The latter makes re-
gression estimation even harder and has become an active
field of research. Künsch et al. (1993) made the following
interesting remark: “Perhaps most unbelievable to many
is the observation that high-quality measurements series
from astronomy, physics, chemistry, generally regarded as
prototype of i.i.d. observations, are not independent but
long-range correlated. ”

Note that in the parametric case, ordinary least squares
estimators in the presence of autocorrelation are still
linear-unbiased as well as consistent, but they are no longer
efficient (i.e., minimum variance). As a result, the usual
confidence intervals and the test hypotheses cannot be
legitimately applied (Sen and Srivastava, 1990).

This paper is organized as follows: In Section 2 the
practical difficulties associated with estimating m under
model (1) are explained. In Section 3, some extensions of
existing results as well as new developments are described.
In Section 4 the proposed CV is adapted to least squares
support vector machine for regression. Finally, in Section 5
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the results of a simulation study justifying our findings are
presented.

2. PROBLEMS WITH CORRELATION

Some quite fundamental problems occur when nonpara-
metric regression is attempted in the presence of correlated
errors. For all nonparametric regression techniques, the
shape and the smoothness of the estimated function de-
pends on a large extent on the specific value(s) chosen for
the kernel bandwidth (and/or regularization parameter).
In order to avoid selecting values for these parameters by
trial and error, several data-driven methods are developed.
However, the presence of correlation between the errors, if
ignored, causes the commonly used automatic tuning pa-
rameter selection methods such as cross–validation (CV)
or plug-in, to break down.

The breakdown of automated methods, as well as a suit-
able solution, is illustrated by means of a simple example
in Figure 1. For 200 equally spaced observations and a
polynomial mean function m(x) = 300x3(1 − x)3, four
progressively more correlated sets of errors were generated
from the same vector of independent noise and added to
the mean function. The errors are normally distributed
with variance σ2 = 0.3 and correlation following an AR(1)
process, corr(ei, ej) = exp(−α|xi − xj |) (Fan and Yao,
2003). Figure 1 shows four Nadaraya-Watson kernel re-
gression estimates for these data sets. For each data set,
two bandwidth selection methods were used: standard CV
and a correlation-corrected CV (CC-CV) which is further
discussed in Section 4. Table 1 summarizes the bandwidths
selected for the four data sets under both methods.

Table 1 and Figure 1 clearly show that as the correlation
increases, the bandwidth selected by CV becomes smaller
and smaller, and the estimates become progressively more
undersmoothed. The bandwidths selected by CC-CV, a
method that accounts for the presence of correlation, are
much more stable and result in virtually the same estimate
for all four cases. This type of undersmoothing behavior
in the presence of correlated errors has been observed
with most commonly used automated bandwidth selection
methods (Altman, 1990; Hart, 1991; Opsomer et al., 2001).

Table 1. Summary of bandwidth selection for simu-
lated data in Figure 1

Correlation level Autocorrelation CV CC-CV

Independent 0 0.081 0.072
α = 400 0.14 0.012 0.071
α = 200 0.37 0.008 0.075
α = 100 0.61 0.006 0.071

3. BANDWIDTH SELECTION WITH BIMODAL
KERNELS

To estimate the function m consider the Nadaraya-Watson
kernel estimator defined as

m̂(x) =

n
∑

i=1

K(x−xi

h )Yi
∑n

j=1 K(
x−xj

h )
,

where h is the bandwidth of the kernel K. This kernel can
be one of the following kernels: Epanechnikov, Gaussian,
box, triangle,. . . In this section, we address the problem of
finding the bandwidth h when the errors are correlated.
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Fig. 1. Simulated data with four levels of AR(1) correlation,
estimated with Nadaraya-Watson kernel regression; (bold line)
represents estimate obtained with bandwidth selected by CV;
(thin line) estimate obtained with bandwidth selected by our
method.

Some automated bandwidth selection procedures are
based on the minimization of the residual sum of squares
given by

RSS(h) =
1

n

n
∑

i=1

(Yi − m̂(xi))
2
. (2)

Taking expectations of (2) results in Lemma 1. This
lemma provides insights in why a bimodal kernel is useful
in removing the error correlation without having prior
knowledge about its structure. Figure 2 illustrates the
bimodal kernel Kbimod = 630(4x2 − 1)2x4I[−1/2,1/2](x)
which will be used in the remaining of the paper.
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Fig. 2. Illustration of the bimodal kernel used in the paper Kbimod =
630(4x2

− 1)2x4I[−1/2,1/2](x).

Lemma 1. Assume the errors are zero-mean, then the
expected value of the residual sum of squares (2) is given
by

E[RSS(h)] = E[MASE(h)] + γ0 −
2

n

n
∑

i=1

Cov(m̂(xi), ei),

(3)

where MASE(h) = 1
n

∑n
i=1 (m(xi) − m̂(xi))

2
is the mean

average squared error and γ0 = E(eiei), i = 1, . . . , n.

Proof: see Appendix A. �
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Lemma 1 shows why CV breaks down in the presence of
correlated errors. In this case, the last term in (3) will
be positive (negative) for positively (negatively) correlated
errors. Hence, the CV will be seriously biased if this is not
taken into account. For positively correlated errors, the
last term will start canceling the other two resulting in
bandwidths which tend to zero for increasing correlation.
On the other hand, for negatively correlated errors, it will
bias the CV producing larger bandwidths.

Theorem 1. Assume uniform equally spaced design and
conditions (A1)–(A3) are satisfied.

(A1) Assume that K is a symmetric probability density
function. Also K is Lipschitz continuous at x = 0.

(A2) Assume that the covariance is decreasing according to
γj ∼ j−a for some a > 2.

(A3) Assume that the errors are zero-mean covariance
stationary process.

Then, the expected value of the residual sum of squares, in
case of the Nadaraya-Watson kernel smoother, is given by

E[RSS(h)] = E[MASE(h)] + γ0

−2
K(0)

S(K)

[

γ0 + 2

∞
∑

p=1

γp

]

+ o(n−1h−1),

where S(K) = nK(0) + 2
∑n−1

p=1 (n − p)K
(

p
nh

)

, γp =

Cov[ei+p, ei], i = 1, . . . , n and p = 0,±1,±2, . . ..

Proof: see Appendix B. �

It is clear that, by taking a kernel satisfying K(0) = 0,
the complete correlation structure is removed without
requiring any prior information on the structure. Hence,
here we propose a bandwidth selector, based on such a
kernel, defined by

ĥb = argmin
h

RSS(h).

Another possibility, not based on bimodal kernels, is to
estimate the covariance structure γ0, γ1, . . . This approach
is extensively studied in Hart (1991) and Park et al. (2006).

Notice that if K is a symmetric probability density func-
tion, then K(0) = 0 implies that K is not unimodal. In
this case, it is natural to use bimodal kernels. Such a kernel
gives more weight to observations near to the point x of
interest than those that are far from x. But in the same
time it also reduces the weight of points which are too
close to x. In fact, using such a kernel is equivalent with
the leave-(2l + 1)-out version of CV proposed by Chu and
Marron (1991).

However, one drawback of using bimodal kernels to esti-
mate m is that the estimate m̂ will suffer from increased
mean squared error. It can be shown under certain condi-
tions that

MASE(hM ) = cG
2/5
K n−4/5 + o(n−4/5),

where hM denotes the bandwidth minimizing the mean
average squared error, c depends neither on the bandwidth
nor on the kernel K and

GK =

(
∫

K(u)2 du

)2 ∫

u2K(u) du.

Using the Epanechnikov kernel Kepa = 3
4 (1−x2)I[−1,1](x),

which is optimal in the L2 sense, gives GKepa
= 0.072.

On the other hand, using the following bimodal ker-
nel Kbimod = 630(4x2 − 1)2x4I[−1/2,1/2](x) results in
GKbimod

= 0.374. Reducing this effect can be done by
finding a bimodal kernel that makes MASE(hM ) as small
as possible. However, Kim et al. (2009) pointed out that no
such kernels exist in the class of smooth bimodal kernels.

4. TOWARDS AN LS-SVM APPROACH WITH CC-CV

Before explaining the CC-CV algorithm, we briefly sketch
the least squares support vector machine (LS-SVM) for
regression. Further information regarding this topic can
be found in Suykens et al. (2002).

4.1 LS-SVM for Regression

In the primal weight space the following optimization
problem can be formulated

min
w,b,e

J (w, e) = 1
2wT w + λ

2

n
∑

i=1

e2
i

s.t. Yi = wT ϕ(xi) + b + ei, i = 1, . . . , n,

(4)

By using Lagrange multipliers, the solution of (4) can
be obtained by taking the Karush-Kuhn-Tucker (KKT)
(Bertsekas, 1982) conditions for optimality. The result is
given by the following linear system in the dual variables
α

(

0 1T
n

1n Ω + 1
λIn

)

(

b

α

)

=

(

0

Y

)

,

with Y = (Y1, . . . , Yn)T , 1n = (1, . . . , 1)T , α =
(α1, . . . , αn)T and Ωil = ϕ(xi)

T ϕ(xl) = K(xi, xl) for
i, l = 1, . . . , n with K(xi, xl) positive definite. Based on
Mercer’s theorem, the resulting LS-SVM model for func-
tion estimation becomes

m̂(x) =
n
∑

i=1

α̂iK(x, xi) + b̂. (5)

4.2 Correlation-Corrected Cross–Validation

Theorem 1 stated that a bimodal kernel is well suited to
automatically remove the correlation structure. So, in the-
ory we could plug such a kernel into the LS-SVM. However,
this method requires a positive definite kernel function
and the bimodal kernel does not fulfill this condition.
Therefore, this kernel cannot immediately be used but

its bandwidth ĥb can serve as a pilot bandwidth selector
for other data-driven selection procedures such as leave-
(2l + 1)-out CV or block bootstrap bandwidth selector
(Hall et al., 1995). In this paper we choose the leave-
(2l + 1)-out CV. The leave-(2l+ 1)-out CV can be defined
as follows:

Definition 1. The leave-(2l + 1)-out version of CV (LCV)
is defined as

LCV (h) =
1

n

n
∑

i=1

(

m̂(−i)(xi) − Yi

)2

. (6)

Here m̂(−i)(xi) is the leave-(2l + 1)-out version of m(xi),
that is, the observations (xi+j , Yi+j), −l ≤ j ≤ l, are left
out to estimate m̂(xi).
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A crucial parameter to be estimated, see also Chu and
Marron (1991), in this procedure is l. Indeed, the amount
of dependence between m̂(xi) and Yi is reduced as l
increases. For l = 0, LCV is ordinary CV. One possible

method to select a value for l is to use ĥb as pilot
bandwidth selector. Define a bimodal kernel Kbimod and
ĥb, then it is possible to calculate

m̂(x) =
n
∑

i=1

Kbimod(
x−xi

ĥb

)Yi

∑n
j=1 Kbimod(

x−xj

ĥb

)
. (7)

From this result, the residuals are obtained by

êi = Yi − m̂(xi), for i = 1, . . . , n

and choose l to be the smallest q ≥ 1 such that

|rq| =

∣

∣

∣

∣

∣

∑n−q
i=1 êiêq+i
∑n

i=1 ê2
i

∣

∣

∣

∣

∣

≤ Φ−1(1 − α
2 )√

n
, (8)

where Φ−1 denotes the quantile function of the standard
normal distribution and α is the significance level, say
5%. Observe that (8) is based on the fact that rq is
asymptotically normal distributed under the centered i.i.d.
error assumption (Kendall et al., 1983) and hence provides
an approximate 100(1 − α)% confidence interval for the
autocorrelation.

Once we have selected l, ĥLCV and λ̂LCV can be de-
termined by using leave-(2l + 1)-out CV combined with
(5) based on a positive definite unimodal kernel K. Algo-
rithm 1 summarizes the complete CC-CV method based
on LS-SVM. Note that this algorithm is applicable to
a wide range of smoothers other than LS-SVM such as
Nadaraya-Watson kernel regression (see example in Sec-
tion 2), local polynomial regression, Priestley-Chao kernel
estimator, Gasser-Müller kernel estimator, support vec-
tor machines,... These types of smoothers can be simply
plugged in step 3 of Algorithm 1.

Algorithm 1 Correlation-Corrected CV for LS-SVM

1: Determine ĥb in (7) with K a bimodal kernel by means
of any CV procedure

2: Calculate l satisfying (8)

3: Determine (ĥLCV , λ̂LCV ) for LS-SVM (5) by means
of leave-(2l + 1)-out CV (6) and a positive definite
unimodal kernel K, e.g. Gaussian kernel.

5. SIMULATIONS

In this section we will compare the finite sample perfor-
mance of the CC-CV, see Algorithm 1, with the classical
leave-one-out CV (LOO-CV) based on a unimodal kernel.
The used kernel functions are 630(4x2−1)2x4I[−1/2,1/2](x)

and exp(−x2) for the bimodal and unimodal kernel respec-
tively. The LS-SVM smoother is taken in both cases. An

overall comparison is made among ĥLCV and ĥLOO where

ĥLCV denotes the bandwidth of the CC-CV method and
ĥLOO the bandwidth of the unimodal kernel tuned with
LOO-CV. The performance measure is taken to be the
MASE(h, γ) for both bandwidths.

The sample size is set to n = 200 and the regression
function is m(x) = 300x3(1 − x)3 for 0 ≤ x ≤ 1.
We consider two types of noise models: (i) an AR(5)

process ej =
∑5

l=1 φlej−l +
√

1 − φ2
1Zj where Zj are i.i.d.

normal random variables with variance σ2 = 0.5 and
zero mean. The errors ej for j = 1, . . . , 5 are standard
normal random variables. The AR(5) parameters are set
to [φ1, φ2, φ3, φ4, φ5] = [0.7,−0.5, 0.4,−0.3, 0.2]. (ii) m-
dependent models ei = r0δi+r1δi−1 with m = 1 where δi is

i.i.d. standard normal random variable, r0 =
√

1+2γ+
√

1−2γ
2

and r1 =
√

1+2γ−
√

1−2γ
2 for γ = 1/2.

Table 2 summarizes the average of the regularization
parameters, bandwidths and MASE(h, γ) for 50 runs for
both noise models. By looking at the MASE(h, γ) it is clear
that the tuning parameters obtained by CC-CV result into
better estimates. Also notice the small bandwidths and
larger regularization constants found by LOO-CV for both
noise models. This provides clear evidence that the kernel
smoother is trying to model the noise instead of the true
underlying function. These findings are also valid if one
uses generalized CV or v-fold CV. Figure 3 shows typical
results of the regression estimates for both noise models.
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Fig. 3. Typical results of the regression estimates for both noise
models. The bold line represents the estimate with tuning
parameters determined by LOO-CV and the thin line is the
estimate based on the CC-CV tuning parameters.

Table 2. Average of the regularization parameters,
bandwidths and MASE for 50 runs for both noise

models

AR(5) m-dependence models

LOO-CV CC-CV LOO-CV CC-CV

λ̂ 224.69 2.28 1.03 × 105 6.96

ĥ 0.027 1.06 0.03 1.89

MASE(ĥ, γ̂) 0.36 0.021 0.89 0.04

Figure 4 and Figure 5 show the CV surfaces for both
methods on the AR(5) noise model. These plots clearly
demonstrate the shift of the tuning parameters. A cross
section for both tuning parameters is provided below
each surface plot. Also notice that the surface of the
CC-CV tends to be flatter than LOO-CV and so it is
harder to minimize numerically (Hall et al., 1995). Because
of this extra difficulty, we used a state-of-the-art fast
global optimization technique called Coupled Simulated
Annealing with variance control (Xavier de Souza et al.,
2009) in all the examples.

In a second example we take the same function m(x)
and n = 400. Further, the noise error model is taken
to be an AR(1) process with varying parameter φ =
−0.95,−0.9, . . . , 0.9, 0.95. For each φ, 100 replications of
size n were made to report the average regularization
parameter, bandwidth and MASE for both methods. The
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Fig. 4. (a) CV surface for LOO-CV; (b) cross sectional view of
log(h) for fixed log(λ) = 5.5; (c) cross sectional view of log(λ)
for fixed log(h) = −3.6. The dot indicates the minimum of the
cost function obtained by Coupled Simulated Annealing. These
results correspond with the first column of Table 2.
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Fig. 5. (a) CV surface for CC-CV; (b) cross sectional view of log(h)
for fixed log(λ) = 0.82; (c) cross sectional view of log(λ) for
fixed log(h) = 0.06. The dot indicates the minimum of the
cost function obtained by Coupled Simulated Annealing. These
results correspond with the second column of Table 2.

results are summarized in Table 3. These results indicate
that the CC-CV method is indeed capable of finding good
tuning parameters in the presence of correlated errors.
The CC-CV method outperforms the classical LOO-CV
for positively correlated errors, i.e. φ > 0. The method is
capable of producing good bandwidths which do not tend
to very small values as in the LOO-CV case. In general, the
regularization parameter obtained by LOO-CV is larger
than the one from CC-CV. However, the latter is not
theoretically verified by the author and serves only as a
heuristic.

On the other hand, for negatively correlated errors (φ <
0), both methods perform equally well. The reason why
the effects from correlated errors is more outspoken for
positive φ than for negative φ might be related to the
fact that negatively correlated errors are seemingly hard
to differentiate form i.i.d. errors in practice.

Table 3. Average of the regularization parameters,
bandwidths and MASE for 50 runs for the AR(1)

process with varying parameter φ

LOO-CV CC-CV
φ

γ̂ ĥ MASE γ̂ ĥ MASE

-0.95 14.75 1.48 0.0017 7.65 1.43 0.0019

-0.9 11.48 1.47 0.0017 14.58 1.18 0.0021

-0.8 7.52 1.39 0.0021 18.12 1.15 0.0031

-0.7 2.89 1.51 0.0024 6.23 1.21 0.0030

-0.6 28.78 1.52 0.0030 5.48 1.62 0.0033

-0.5 42.58 1.71 0.0031 87.85 1.75 0.0048

-0.4 39.15 1.55 0.0052 39.02 1.43 0.0060

-0.3 72.91 1.68 0.0055 19.76 1.54 0.0061

-0.2 98.12 1.75 0.0061 99.56 1.96 0.0069

-0.1 60.56 1.81 0.0069 101.1 1.89 0.0070

0 102.5 1.45 0.0091 158.4 1.89 0.0092

0.1 1251 1.22 0.0138 209.2 1.88 0.0105

0.2 1893 0.98 0.0482 224.6 1.65 0.0160

0.3 1535 0.66 0.11 5.18 1.86 0.0161

0.4 482.3 0.12 0.25 667.5 1.68 0.023

0.5 2598 0.04 0.33 541.8 1.82 0.033

0.6 230.1 0.03 0.36 986.9 1.85 0.036

0.7 9785 0.03 0.41 12.58 1.68 0.052

0.8 612.1 0.03 0.45 1531 1.53 0.069

0.9 448.8 0.02 0.51 145.12 1.35 0.095

0.95 878.4 0.01 0.66 96.5 1.19 0.13

6. CONCLUSION

We have introduced a type of CV procedure (CC-CV),
based on bimodal kernels, in order to automatically re-
move the error correlation without requiring any prior
knowledge about its structure. Since the estimate suffers
from increased mean squared error, due to the bimodal
kernel, we have used the bandwidth of the bimodal kernel
as pilot bandwidth selector for leave-(2l + 1)-out CV. By
taking this extra step, methods like LS-SVM and SVM
can be equipped with this technique of handling data
in the presence of correlated errors since they require a
positive definite kernel. Also other kernel methods which
do not require positive definite kernels can benefit from
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the proposed method. Finally, we have demonstrated the
capability of the method by means of toy examples.
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Appendix A. PROOF OF LEMMA 1

Since Yi = m(xi)+ei and denote m(xi) = mi, m̂(xi) = m̂i,
we can write the following

RSS(h) =
1

n

n
∑

i=1

(Yi − m̂i)
2

=
1

n

n
∑

i=1

(

m2
i + 2miei + e2

i − 2Yim̂i + m̂2
i

)

=
1

n

n
∑

i=1

(mi − m̂i)
2
+

1

n

n
∑

i=1

e2
i

+
2

n

n
∑

i=1

(m̂i − mi)(mi − Yi).

Taking expectations and using the zero-mean error as-
sumption gives

E[RSS(h)] = E

[

1

n

n
∑

i=1

(mi − m̂i)
2

]

+ E

[

1

n

n
∑

i=1

e2
i

]

+ E

[

2

n

n
∑

i=1

(m̂i − mi)(mi − Yi)

]

= E[MASE(h)] + γ0

+
2

n
E

[ n
∑

i=1

(m̂i − mi)(mi − Yi)

]

,

where γp = Cov[ei+p, ei], p = 0,±1,±2, . . .. For ease of

notation set A(h) = 2
n E

[

∑n
i=1(m̂i − mi)(mi − Yi)

]

. By

noting that Yi = mi + ei and using the zero-mean error
assumption, we obtain

A(h) = − 2

n
E

[ n
∑

i=1

(m̂i − mi)ei

]

= − 2

n

n
∑

i=1

Cov(m̂i, ei),

which completes the proof.

Appendix B. PROOF OF THEOREM 1

Plugging in the Nadaraya-Watson kernel regression esti-
mator for m̂i in the last term of Lemma 1 results in

A(h) = − 2

n

n
∑

i=1

(

E

[

n
∑

l=1

K(xi−xl

h )el
∑n

j=1 K(
xi−xj

h )
ei

])

.

The above expression reduces to

A(h) =− 2

n

n
∑

i=1

n
∑

l=1

E

[

K(xi−xl

h )
∑n

j=1 K(
xi−xj

h )
elei

]

=− 2

n

1

S(K)

[

nK(0)γ0 + 2n

n−1
∑

p=1

(

n − p

n

)

K

(

p

nh

)

γp

]

,

where S(K) = nK(0) + 2
∑n−1

p=1 (n − p)K
(

p
nh

)

. Using

condition (A1) and γp ∼ p−a for some a > 2, we obtain

A(h) = −2
K(0)

S(K)

[

γ0 + 2

∞
∑

p=1

γp

]

+ o(n−1h−1).
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