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Abstract: This paper considers the problem of stabilizing (bio)chemical reaction networks
that can be represented as cyclic interconnections. The objective of the paper is to present a
constructive way to compute a dissipative potential function for the system. This potential is
then used for constructing a smooth feedback stabilizing controller. We obtain a characteristic
one-form for the system by taking the interior product of a non vanishing two-form with respect
to the drift vector field. A homotopy operator is then constructed locally around the desired
equilibrium, leading to the computation of a dissipative potential for the system. The dynamics
of the system is then decomposed into an exact part and an anti-exact one. The exact part is
generated by a potential, that is used to construct the smooth stabilizing feedback, under the
so-called weak Jurdjevic–Quinn conditions. We consider the problems of oscillations suppression
and synchronization of oscillators as illustrations of potential applications of the proposed
method.
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1. INTRODUCTION

This paper studies the feedback stabilization problem for
chemical and biochemical reaction networks that can be
represented as cyclic interconnection. The stability charac-
terization problem for systems represented in this particu-
lar form has been study extensively. An example of systems
with interconnections is metabolic network with feedback
inhibition, studied for example in (Grognard et al., 2004).
The reader is referred to the exposition by Arcak and
Sontag (2006) for references on the stability character-
ization problem. The important contribution in (Arcak
and Sontag, 2006) was to relate diagonal stability to a
secant criterion in the context of interconnected system.
More importantly, they gave a constructive stability proof
for cyclic systems. Extensions of these results to complex
(bio)chemical reaction networks are given in (Arcak and
Sontag, 2008). In the general case, cyclic systems can be
represented graphically as in Figure 1, where each block
can be of the form

Hi :

{

ẋi = −fi(xi) + gi(xi)ui
yi = hi(xi)

. (1)

This input/output representation was considered for ex-
ample in (Stan et al., 2007) for the synchronization of
coupled nonlinear Goodwin oscillators using incremental
dissipativity.

In this paper, we look at the problem of constructing
smooth feedback stabilizers for this class of systems, where
a control u(x) is assumed to be injected at any point in
the structure. In recent years, energy-based methods were
developed and studied extensively for nonlinear controller
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Fig. 1. Cyclic feedback system

design. In particular, the representation of nonlinear sys-
tems as generalized Hamiltonian systems (see for example
Ortega et al. (2002)) generated many successful controller
designs strategies for systems possessing an ”energy-like”
function or a storage function. However, for mass balance
systems, i .e., for reacting networks, such generating func-
tion of the dynamics might be difficult to develop from
the physics of the system. The problem of dissipative
Hamiltonian representation of a reacting system was given
by Otero-Muras et al. (2008). In (Ortega et al., 1999),
feedback stabilization of a Lotka–Volterra system using a
related passivity-based approach was considered. In that
case, the authors solved a set of partial differential equa-
tions, known in the literature as the matching equations.

In (De Leenheer and Aeyels, 2002), the authors consid-
ered the stabilization problem of positive systems, and
in particular mass balance systems, by computing first
integrals for the drift system. In the present paper, we
follow this general idea using a locally defined geometric
decomposition approach. We propose to use the tools of
exterior calculus to construct a locally-defined dissipative
function to be used to design a stabilizing controller. It is
shown that a stabilizing controller can be developed using
the exact part of the dynamics (the dynamics generated by
the potential). More precisely, we obtain a characteristic
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one-form for the system by taking the interior product
of a non vanishing two-form with respect to the drift
vector field. A homotopy operator centered at a desired
equilibrium point for the system is used to obtain an exact
one form, generated by a dissipative potential, and an anti-
exact form that generates the tangential dynamics. The
stability argument presented in (Hudon et al., 2008) uses
local equivalence between the exact part of the dynam-
ics and a pre-defined Hamiltonian dissipative realization,
viewed as a reference system to develop a local change of
coordinates to derive the desired local dissipative potential
for the system. In Hudon and Guay (2009), the approach
is used for stabilization purposes. The problem of Lya-
punov functions construction for the stabilization of time-
independent nonlinear control affine systems satisfying
Jurdjevic–Quinn conditions is considered (see for example
Malisoff and Mazenc (2009, Chapter 4) for an extensive
review of the technique). It is shown that a Lyapunov
function can be computed for the closed-loop vector field
subject to damping feedback control using the dissipative
potential obtained from the proposed local decomposition.
In this paper, we seek to apply the results from Hudon and
Guay (2009) to systems presenting a cyclic interconnection
structure. It will be shown through simulation, under the
usual static smooth feedback stabilization conditions, that
sustained oscillations can be canceled using a damping
feedback controller as proposed and render the equilibrium
of the system asymptotically stable. Then the problem of
synchronizing two oscillators on different time scales will
be considered.

The paper is organized as follows. Section 2 presents the
proposed control problem and the motivating example,
adapted from (Arcak and Sontag, 2008). In Section 3,
the proposed control design construction is presented.
Numerical applications are given in Section 4. Conclusions
and future areas of investigation are outlined in Section 5.

2. PROBLEM FORMULATION

Consider the cyclic interconnection structure given in
(Arcak and Sontag, 2006)

ẋ1 =−a1(x1) + bn(xn) (2)

ẋ2 =−a1(x2)− b1(x1) (3)

... (4)

ẋn =−an(xn) + bn−1(xn−1), (5)

where ai(·) and bi(·), i = 1, . . . , n, are continuous functions
satisfying xiai(xi) > 0 and xibi(xi) > 0 for xi 6= 0.
The situation considered here is the case where ai(·), i =
1, . . . , n and bi(·), i = 1, . . . , n− 1 are increasing functions
and bn(·) is a decreasing function. This is a special case of
the metabolic network with feedback inhibition considered
in (Grognard et al., 2004).

An interesting example of such a system was given by
Arcak and Sontag (2008),

ẋ1 =−a1x1 + φ(x3) (6)

ẋ2 =−a2x2 + b1x1 (7)

ẋ3 =−a3x3 + b2x2. (8)

In the case where φ(x3) is given as a function of the form
1

1+xp

3

, the above cyclic interconnection is known as the

Goodwin oscillator for which, depending on the value of p,
a stable periodic orbit exists (see for example Stan et al.
(2007) and references therein).

In the present paper, we will focus on the special case
considered in (Arcak and Sontag, 2008) where a1 = a2 =
a3 = 1 and b1 = b2 = 1. In those references, the authors
showed, for φ(x3) = exp(−10(x3−1))+0.1 sat(25(x3−1)),
that the stable equilibrium x∗ = [1, 1, 1]T coexists with
a periodic orbit. In the present paper, we will simply use
φ(x3) as

φ(x3) = exp(−10(x3 − 1)). (9)

The open-loop cycle surrounding the desired equilibrium
x∗ = [1, 1, 1]T is presented in Figure 3. The time
trajectories of the sustained oscillations are depicted in
Figure 2.
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Fig. 2. Open-loop trajectories — x0 = [1.2, 1.2, 1.2]T
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Fig. 3. Open-loop stable cycle — x0 = [1.2, 1.2, 1.2]T

In the sequel, we study two problems related to this
system. First, it is desired to stabilize the equilibrium x∗

using smooth damping feedback, i .e., we will suppose that
it is possible to add a feedback control signal u(x) in the
loop, i .e., the system is modified to be

ẋ = f(x) + ku (10)
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where the k is a constant n × 1 vector. The problem is
to design a damping controller u to cancel the oscillations
using a damping controller of the Jurdjevic–Quinn type,

u = −∇T
xψ(x) · k (11)

where ψ(x) is a dissipative potential for the uncontrolled
dynamics to be constructed in Section 3.2.

The second problem considers is to synchronize the above
system with another cyclic system using the same type of
damping controller with a different dissipative potential
that is constructed in Section 3.3.

3. FEEDBACK CONTROLLER CONSTRUCTION

We propose a feedback controller construction strategy for
both problems depicted in Section 2. The construction
of a local dissipative potential based on a homotopy
decomposition is presented in Section 3.1. In Section 3.2,
we present the construction of a damping feedback control
based on the Jurdjevic–Quinn approach. The problem of
synchronization of two cyclic interconnection systems is
presented in Section 3.3. Due to space limitations, we omit
reviews of exterior calculus on R

n. The reader is referred to
the general presentation from (Edelen, 2005), summarized
in Hudon et al. (2008) and Hudon and Guay (2009). We
denote a smooth vector field as

X(x) =

n
∑

i=1

vi(x)∂xi
(12)

and a smooth differential one-form as

ω(x) =

n
∑

i=1

ωi(x)dxi, (13)

where vi(x) and ωi(x) are smooth functions on R
n. The

space of k-forms over Rn is denoted Λk(Rn).

Consider a control affine system

ẋ = f(x) +

m
∑

k=1

ukgk(x), ∀(x, u) ∈ R
n × R

m, (14)

for some f, g1 · · · , gm ∈ C∞(Rn;Rn) and assume that
f(0) = 0, k = 0, . . . ,m. Moreover, assume that for every
x ∈ R

n \ {0},

span{f(x), adkfg(x), k ∈ N} = R
n. (15)

Consider the feedback law u = (u1, . . . , um)
T defined by

uk = −∇Tψ · g(x)(x), ∀ k ∈ 1, . . . ,m, (16)

with ψ(x) a weak Jurdjevic–Quinn function (Malisoff and
Mazenc, 2009, Chapter 4), i .e. such that ψ(x) > 0 and
(∇Tψ ·g)(x) < 0 for all x in a neighborhood O ⊂ R

n \{0},
ψ(0) = 0 and (∇Tψ · g)(0) = 0.

With this feedback, one has for all x ∈ R
n \ {0}

dψ

dt
(x) = f(x) · ∇ψ(x)−

m
∑

k=1

(gk(x) · ∇
Tψ(x))2 < 0.(17)

Therefore, the origin 0 ∈ R
n is asymptotically stable in

closed-loop. The function ψ(x) is not a control Lyapunov

function (CLF) in general. In (Hudon and Guay, 2009), a
deformation approach of the function ψ(x) was presented.
We refer to (Malisoff and Mazenc, 2009, Definition 2.2) for
CLF construction methods based on the prior knowledge
of a function ψ(x) satisfying the weak Jurdjevic–Quinn
conditions. In the next section, we seek to use the drift
vector field f(x) structure to design a dissipative potential.

3.1 Construction of a Potential

We first show how to construct a radial homotopy operator
H, i.e., a linear operator on elements of one forms on R

n

that satisfies the identity

ω = d(Hω) +Hdω, (18)

for a given differential form ω.

The first step in the construction of a homotopy operator
is to define a star-shaped domain on R

n. An open subset
S of Rn is said to be star-shaped with respect to a point
p0 = (x01, . . . , x

0
n) ∈ S if the following conditions hold:

• S is contained in a coordinate neighborhood U of p0.
• The coordinate functions of U assign coordinates
(x01, . . . , x

0
n) to p

0.
• If p is any point in S with coordinates (x1, . . . , xn)
assigned by functions of U , then the set of points
(x+ λ(x − x0)) belongs to S, ∀λ ∈ [0, 1].

A star-shaped region S has a natural associated vector
field X, defined in local coordinates by

X(x) = (xi − x0i )∂xi
, ∀x ∈ S. (19)

For a differential form ω of degree k on a star-shaped region
S centered at an equilibrium x0, the homotopy operator
is defined, in coordinates, as

(Hω)(x) =

∫ 1

0

X(λ(xi − x0i ))yω(x
0
i + λ(xi − x0i ))λ

k−1dλ, (20)

where ω(x0i +λ(xi−x
0
i )) denotes the differential form eval-

uated on the star-shaped domain in the local coordinates
defined above.

The important properties of the homotopy operator that
are used in the sequel are the following:

(i) H maps Λk(S) into Λk−1(S) for k ≥ 1 and maps
Λ0(S) identically to zero.

(ii) dH+Hd = identity for k ≥ 1 and (Hdf)(x) = f(x)−
f(x0) for k = 0.

(iii) (HHω)(xi) = 0, (Hω)(x0i ) = 0.
(iv) XyH = 0, HXy = 0.

The first part of the right hand side of (18), d(Hω), is
obviously a closed form, since d ◦ d(Hω) = 0. Since by
property (i) of the homotopy operator, for ω ∈ Λk(S), we
have (Hω) ∈ Λk−1(S), d(Hω) is also exact on S. We denote
the exact part of ω by ωe = d(Hω) and the anti-exact part
by ωa = Hdω. It is possible to show that ω vanishes on R

n

if and only if ωe and ωa vanish together Edelen (2005).

From the decomposition outlined above, we have

ω − ωa = ωe. (21)
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Taking the exterior derivative on both sides and using the
fact that ωe is closed, we have

d(ω − ωa) = d(ωe) = 0. (22)

In the sequel, we apply the homotopy operator on one-
forms.

First, we define a non-vanishing closed two-form Ω(x) on
R
n as

Ω =
∑

1≤i<j≤n

dxi ∧ dxj . (23)

In the present paper, the non-vanishing two-form Ω is not
necessarily defined in a canonical way, since the objective is
ultimately to compute an admissible dissipative potential
(and not a minimal one). For example, if n = 3, we would
have,

Ω = dx1 ∧ dx2 + dx1 ∧ dx3 + dx2 ∧ dx3. (24)

The orientation of the two-form will be fixed, if necessary,
by checking the sign of the obtained dissipative function,
ψ(x).

We obtain a first one-form associated to the system by
contracting this two-form with respect to the drift vector
field,

ω0(x) = (fyΩ)(x). (25)

From the above discussion, we know that we can locally
construct a homotopy operator on R

n such that ω0 =
ω0,e + ω0,a. Since ω0,e is exact, it is given as the exterior
derivative of a potential function and we rewrite

ω0 = −dψ + ω0,a. (26)

We assume that ψ(x), obtained after application of the
homotopy operator (i .e., ψ(x) = −(Hω0,e))(x), is such
that ∇Tψ(x) ·f < 0 for x ∈ R

n \ {0}. In practice, one may
use an integrating factor γ(x) to guarantee that

ψ(x) = − (H(γω0)) (x) (27)

has the desired properties. In the present paper, the
anti-exact part that does not contribute locally to the
dissipative dynamics is not taken into account for the
design. In practice, a feedback gain κ is used to dominate
the tangential dynamics, i .e., we construct the damping
feedback controller

uk(x) = −κ(∇Tψ · g)(x). (28)

However, if one was considering the problem of deforming
ψ(x) to derive a control Lyapunov function, it was shown
in (Hudon and Guay, 2009) that ω0,a ≡ 0 has to hold
locally by building an integrating factor. Essentially, this
last condition is equivalent to the equality of mixed partial
derivatives for the construction of a storage function for
dissipative systems.

We now turn our attention to the cyclic interconnection
system structure.

3.2 Stabilization of a Desired Equilibrium

In this section, we decompose specialize the above con-
struction to cyclic interconnection systems. We take ad-
vantage of the structure, defining Ω as

Ω =

n
∑

i=1

dx1 ∧ dx2 + . . .+ dxi ∧ dxi+1 + . . .+ dxn ∧ dx1. (29)

Contracting this two-form with respect to the drift vector
field denoted f1∂x1

+ f2∂x2
+ . . . + fn∂xn

, we obtain the
one-form

ω0 = (fn − f2)dx1 + (f1 − f3)dx2 + . . . (fn−1 − f1)dxn. (30)

A potential for damping stabilization design can be
obtained by applying a locally defined homotopy operator
centered at an admissible equilibrium point x∗ of the
dynamics,

ψ(x) = −

n
∑

i=1

Hω0 (31)

=

∫ 1

0

(

(fi−1 − fi+1)|x∗+λ(x−x∗)λ(xi − x∗i )
)

dλ, (32)

with fi−1 for i = 1 being fn and fi+1 for i = n being fi.

Using the assumptions along the lines of those used in
(Arcak and Sontag, 2006, Sections 5 and 6), it is possible
to show that ψ(x) is locally a weak Jurdjevic–Quinn
function. Due to space limitations, we omit the explicit
computations. But to summarize, if one first expands the
terms (fi−1 − fi+1)xi, one sees that the terms bi(xi)xi, by
assumption positive semi-definite appear. Then, using the

assumption that there exists γi > 0, such that bi(xi)
ai(xi)

≤ γi,

for x 6= 0, one can shows that the positive terms ai(x)xi >
0 dominate the negative terms in the explicit expression for
ψ(x). To show that (∇Tψ · f)(x) < 0, one need essentially
to assume some ”secant criterion” on the γk for the explicit
expression of (∇Tψ · f)(x) < 0 to be negative definite. An
application of this construction is presented in Section 4.1.

3.3 Synchronization

We now turn our attention to the synchronization of two
cyclic systems originally on different time scales. To be
more precise, it is desired here to force one oscillating
system to follow a copy of the system oscillating at a dif-
ferent frequency, a problem referred to phase entrainment
by some authors. Consider, for example, the problem of
synchronizing two systems:

ẋ1,1 =−a1(x1,1) + bn(xn,1) + u1 (33)

ẋ2,1 =−a1(x2,1)− b1(x1,1) + u2 (34)

... (35)

ẋn,1 =−an(xn,1) + bn−1,1(xn−1,1) + un, (36)

and

τẋ1,2 =−a1(x1,2) + bn(xn,2) (37)

τẋ2,2 =−a1(x2,2)− b1(x1,2) (38)

... (39)

τẋn,2 =−an(xn,2) + bn−1,2(xn−1,2). (40)
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We assume that the functions ai,j and bi,j are identical
with the properties given in Section 2. We consider two
differential one-forms obtained using f1(xi,1) and f2(xi,2),
the drift vector fields from the two systems:

η1 = f1(xi,1)yΩ1 (41)

η2 = f2(xi,2)yΩ2. (42)

Since both systems have the same drift structure, we have
that Ω2 = δΩ1, where δ = τ2. We hence defined a closed
one-form for the error as

ω0 = (f1(xi,1)− δf2(xi,2))yΩ1. (43)

Then, applying a homotopy centered at the origin for this
dynamics, we have

ψ(xi,1, xi,2) = Hω0 =

∫ 1

0

ω0(λ(xi,1 − xi,2))λ(xi,1 − xi,2)dλ.(44)

Assuming that all the reference trajectories xi,2(t) are
available, the damping controllers for the system are given
by

uk = −kk∇
T
xi,1

ψ · gk. (45)

Using the damping method from above, stabilization of
the slave system to the reference trajectories follows.
Application of this construction is demonstrated in Section
4.2.

4. NUMERICAL APPLICATION

This section presents the application of the constructions
presented in Section 3 on the example presented in Section
2 through numerical simulations.

4.1 Suppression of Oscillations

We here assume that the full feedback controller affects
only the first state variable, i .e., the modified system is
given by

ẋ1 =−a1x1 + φ(x3) + u (46)

ẋ2 =−a2x2 + b1x1 (47)

ẋ3 =−a3x3 + b2x2, (48)

where u is given as

u(x) = −∇Tψ(x) ·

[

1
0
0

]

= −k
∂ψ

∂x1
(x). (49)

The stabilization of the desired equilibrium is presented in
Figure 4.

It should be noted that the damping can be adjusted, i .e.,
the convergence rate can be adjusted arbitrarily for the
controller structure proposed here, as depicted in Figure 5
to suppress oscillations.

Finally, one can check that the controller structure k =
[1, 0, 0]T fulfills the rank condition stated in Section 3.
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Fig. 4. Stabilization of the equilibrium — k = 1
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Fig. 5. State Trajectories — k = 10

4.2 Synchronization

We now apply the construction of Section 3.2. We con-
sider the synchronization of the original system with full
feedback

ẋ1 =−a1x1 + φ(x3) + u1 (50)

ẋ2 =−a2x2 + b1x1 + u2 (51)

ẋ3 =−a3x3 + b2x2 + u3 (52)

with a reference system on a different time scale

σẋ1r =−a1x1r + φ(x3r) (53)

σẋ2r =−a2x2r + b1x1r (54)

σẋ3r =−a3x3r + b2x2r . (55)

In this paper, controller action is assumed to be applicable
directly to each state, forcing each state to synchronize
independently. If only one state is required to be synchro-
nized, that structure can obviously be modified. In the sim-
ulations presented in Figure 6, the control ui(x) = −ki

∂ψ
∂xi

are set to zero for t < 20. Both systems are initialized at
x0 = [1.2, 1.2, 1.2]T .

The results show that the original system synchronizes
with the reference dynamics. Current studies seek to
extend the procedure formally to the synchronization and
observer design problem, as proposed in (Nijmeijer and
Mareels, 1997).
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Fig. 6. Synchronization simulations — σ = 2

5. CONCLUSION

This paper presented an approach for the construction
of smooth damping controllers for a class of cyclic sys-
tems. Taking the interior product of a non vanishing
two-form with respect to the drift vector field, we first
obtained a (possibly) non-closed characteristic one-form
for the system. Constructing a locally defined homotopy
operator on a star-shaped domain centered at the desired
equilibrium point, we presented how to decompose locally
the obtained form into an exact and an anti-exact one-
forms. From (Hudon et al., 2008), we know that the exact
part is associated to a dissipative (stable) potential. The
obtained anti-exact form is associated to a non dissipative
potential which generated tangential dynamics that do not
contribute to the value of the dissipative potential locally
on the star-shaped domain. A stabilizing controller was
designed using the Jurdjevic–Quinn approach, following
the construction developed in (Hudon and Guay, 2009).
Application of the technique for stabilization of the desired
equilibrium was presented as well as the application of the
technique for oscillator synchronization. Future research
will focus on extensions to more general networks and to
time-dependent feedback design in cases where static sta-
bilization might fail. The synchronization idea presented
here leads to the natural extension to observer design
(Nijmeijer and Mareels, 1997), and eventually, to adaptive
control. Finally, application to stabilization and synchro-
nization of circadian model such as the one presented in
(Ito, 2007) will be considered.
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