
Global sensitivity and identifiability
implications in systems biology

Simona Dobre ∗ Thierry Bastogne ∗ Alain Richard ∗

∗ Centre de recherche en Automatique de Nancy (CRAN),
Nancy-Universite, CNRS UMR 7039, Campus Science, BP 70239,

54506, Vandoeuvre-les-Nancy Cedex, France

Abstract: In systems biology, a common approach to model biological processes is to use
large systems of differential equations.The associated parameter estimation problem requires
to prior handle identifiability and sensitivity issues in a practical biological framework. The
lack of method to assess global practical identifiability has leaded us to analyze and establish
bridges between global sensitivity and identifiability measures. Specifically, we are interested in
deriving conditions of global practical non-identifiability in association with global sensitivity
results. Two cases are considered: i) insensitive (or non-observable) parameters ; ii) two (or
more) correlated sensitivity measures of the model output with respect to model parameters.
Propositions of relationships between sensitivity and identifiability, and their proofs are
developped herein. Academic examples are also treated in order to illustrate contents of these
propositions.
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1. INTRODUCTION

Systems biology involves the combination of two objec-
tives: the comprehensively information gather from each
of the distinct levels of individual biological systems and
the integration of these data in order to generate predictive
mathematical models of the system. These mathematical
models are often described by nonlinear differential equa-
tions 1 and a central problem is to test the theoretical
and practical identifiabilities of the biological parameters
Dochain et al. (1995).

Theoretical and structural identifiability of model param-
eters examine the question of existence and uniqueness
of solution to the parameter estimation problem. While
the theoretical identifiability is studied in an idealized
framework - where the system and the model have identical
structures, the data are noise-free and where the input
signals and measurement times are chosen at will - the
practical identifiability takes quality of experimental data
into account [Vanrolleghem et al. (1995)]. These two prop-
erties are also called a priori and a posteriori identifiability
[Ghidaoui and Prasad (2000)]. Sensitivity analysis of the
model output with respect to changes in model parameters
is another tool used in system modeling to discriminate
influent and non influent parameters [Saltelli et al. (2008)].

As an indicator of the status quo of the sensitivity and
identifiability practices used in systems biology in the
modeling community, we have classified in Fig. 1 all pa-
pers of the FOSBE 2 2007 Proceedings that investigated

1 In Ideker et al. (2001) a sampling of systems biology approaches
is presented and it can be noted that differential equations hold an
important place in model analysis and simulation.
2 FOSBE - Foundations of Systems Biology in Engineering
(www.fosbe.org)
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Fig. 1. In FOSBE’2007 about 29% (25/86) of papers
dealt with sensitivity or identifiability. The latter can
be decomposed as a) Sensitivity versus identifiability
analysis; b) Local and global sensitivity

identifiability and/or sensitivity analysis. 25 out of 86
papers treated identifiability and/or sensitivity parameter
analysis. It appears that the need of sensitivity analysis
to validate model inference is universally acknowledged.
The Monte Carlo approach allowing for the simultaneous
propagation of the entire parameter distribution is often
used for uncertainty analysis purposes (5/15), while for
sensitivity analysis, the methods applied are mainly the
local derivatives or the one-at-a-time approach (8/15) and
only rarely (2/15) global methods. The link between iden-
tifiability and sensitivity was encountered in five papers,
and only from a local point of view. One main application
area in systems biology is the reconstruction of biolog-
ical networks, at different levels: genetic, proteomic or
metabolic scale.

If the equivalence between local sensitivity and identifia-
bility analysis seems to be generally acknowledged, the link
between the global studies is less obvious. As a matter of
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fact, only insensitive parameters are generally considered
as being non-identifiable. This is not surprising since global
sensitivity measures usually serve as model reduction prin-
ciples (before parameter estimation) or in tandem with
uncertainty analysis for model robustness analysis [Saltelli
et al. (2008)]. Nevertheless, sensitive parameters could also
be non-identifiable.

The parameter non-identifiability can arise from struc-
tural properties of the model (theoretical identifiability
study) or from extreme experimental constraints on the
input signals and measurement time instants (practical
identifiability study). Methods exist to test the global
theoretical identifiability (like, for example, the Taylor
series approach). However, in our knowledge no such global
practical method exist. Our goal herein is to gain more
insight on global practical identifiability by the means of
global sensitivity analysis. Thus, the case of linear depen-
dence of global sensitivity measures is considered, and its
consequence on the non-identifiability is discussed.

This paper is structured as follows: theoretical and practi-
cal identifiabilities are firstly tackled and the Taylor series
approach is presented. Section 3 is devoted to the global
sensitivity analysis. Links between the sensitivity and
identifiability global analyses are presented on section 4,
focusing on the implication of colinear sensitivity measures
and the non-identifiability of model parameters. Finally,
results of global sensitivity and identifiability analysis for
two simple examples are presented.

2. IDENTIFIABILITY ANALYSIS

Let us consider a nonlinear state-space model defined as
follows: 

d

dt
x (t) = f (x (t) ,u(t), t,p)

y (t,p) = h (x(t),p)
x (0) = x0 (p)

(1)

where x, u and y denote the state, input and output
vectors respectively. x0 is the initial value of the state
vector and t is the time variable. f (·) and h (·) contain
the state and output equations respectively.

Structural, theoretical or a priori identifiability [Walter
and Pronzato (1997)] deals with the possibility to give a
unique value to each parameter of a mathematical model
structure. The uniqueness of this solution is assessed in an
idealized framework where the process and the model have
identical structures, the data are noise-free, and where the
input signals and the measurement times can be chosen
at will. However, in practice, experimental conditions are
often subject to economical and/or technical constraints
which can sometimes prevent input design from being ap-
plied to the process. Moreover, the number of observations
is often limited to a few data points collected at time
instants {tj}, j = 0, . . . , N−1. These are two crucial points
in systems biology. In such a case, even if a parameter
is globally or locally structurally identifiable, it may not
be so in practice, due to a lack of information in the
available observations. For that reason, D. Dochain and
P. Vanrolleghem, in [Vanrolleghem et al. (1995); Dochain
et al. (1995)], have introduced the notion of practical or a
posteriori identifiability, which also includes the quality of
the data. If we exclude the noise factor from the study, the

practical identifiability is a particular case of the output
distinguishability [Grewal and Glover (1976)] for a finite
collection of observations {tj} and a given experiment
(x0,u). Then the practical identifiability condition can be
stated as follows: given a parametric model structure with
given input signals u and initial conditions x0, a parameter
pi is practically identifiable, if for almost all p∗ ∈ P,

y (tj ,p,x0,u) = y (tj ,p
∗,x0,u) =⇒ pi = p∗i , (2)

∀tj ∈ T and ∀p ∈ P (generic identifiability).

To our knowledge, no such global identifiability method
exists, and only local conditions can be tested. The local
practical identifiability, corresponding to p∗ ∈ V(p) where
V(p) denotes a neighbourhood of p, is not considered
herein since not relevant to biological models for which
the initial guesses of parameters are either rarely available
or largely uncertain.

In terms of global theoretical identifiability, several meth-
ods exist, based on state isomorphism’s [Peeters and Han-
zon (2005)], differential algebra [Ljung and Glad (1994);
Audoly et al. (2001); Saccomani et al. (2003); Saccomani
(2004)] or power series expansion [Pohjanpalo (1978);
Walter and Pronzato (1997)]. This last class of methods
supposes two types of expansions of the model output (as
a function of input and time): Taylor series and generating
series. Hereafter, we will apply this Taylor series approach.

2.1 Taylor series approach

In the case of Taylor series, the output vector and its
time derivatives are typically developed around the initial
time. Successive time derivatives, starting with the zeroth
order term and going up to the npth order, (where np
is the number of parameters) are used to form an al-
gebraic equation system. Then identifiability is assessed
by investigating whether the algebraic equation system
is symbolically solvable, by determining the number of
solutions for the parameter set under investigation [Walter
and Pronzato (1997)].

Consider the model structure defined in eq. (1), with f
and h infinitely continuously differentiable and let

ak (p) = lim
t→t0

dk

dtk
y (t,p) (3)

The condition y (t,p) = y (t,p∗) implies

ak (p) = ak (p∗) , k = 0, 1, . . .

A sufficient condition for M to be structurally globally
identifiable is therefore [Pohjanpalo (1978); Walter and
Pronzato (1997)]:

ak (p) = ak (p∗) , k = 0, 1, . . . , kmax, =⇒ p = p∗ (4)

where kmax is some positive integer.

3. GLOBAL SENSITIVITY ANALYSIS

Several categories of sensitivity analysis methods are pre-
sented in [Saltelli et al. (2008)]. In this study we will only
use global methods providing quantitative results while
incorporating the entire uncertainty range of parameters.
This is of particular importance in biological modeling,
since the model parameters can vary within large intervals
(two or three decades) depending on their physiological

Copyright held by the International Federation of Automatic Control 55



meaning. An additional advantage of global sensitivity
analysis is that the sensitivity estimates of individual pa-
rameters are evaluated while varying all other parameters
as well. In this way, the relative variability of each pa-
rameter is taken into account, thus revealing any existing
interactions.

Hereafter, we have adapted the Sobol’ sensitivity method
[Sobol’ (2001)] to dynamic systems, and we adjust the
terminology from “sensitivity indice” for static systems to
“sensitivity functions” for dynamic systems. In order to
analyze the global sensitivity of the output variable with
respect to the model parameters, all other computational
factors which could affect the output have to be kept
constant (as simulation method, sampling time, input
signals etc.).

Hypothesis of the method: (H1) the parameters are consid-
ered as i.i.d random variables uniformly distributed over
[0, 1]

np , with np the number of model parameters; (H2)
y(t,p) is continuous, derivative and square integrable.

The Sobol’ method is a variance-based method that allows
the computation of both the sensitivity functions of indi-
vidual parameters and those of interactions between these
parameters. This approach is based on a high dimensional
representation of the output variable,

y (t,p) = y0 (t)+

np∑
i=1

yi (t, pi) +

np−1∑
i=1

np∑
j>i

yi,j (t, pi, pj)

+ . . .+ y1,...,np

(
t, p1, . . . , pnp

)
(5)

where the terms of the decomposition have the following
properties:

y0(t) =

∫
[0,1]np

y(t,p)dp (6)

1∫
0

yi1,...,ir (t, pi1 , . . . , pir )dpk = 0 (7)

with k ∈ {i1, . . . , ir} and 1 ≤ i1 < . . . < ir ≤ np. Equation
(7) also implies

1∫
0

yi1,...,ir (t, pi1 , . . . , pir ) · yj1,...,is(t, pj1 , . . . , pjs)dpk = 0

i.e the terms of the Sobol’ decomposition are orthogonal,
with {i1, . . . , ir} 6= {j1, . . . , js} and 1 ≤ j1 < . . . <
js ≤ np. Moreover, if y(t,p) is square integrable, then
it’s variance, denoted V (t), is given by

V (t) =

∫
[0,1]np

(
y2(t,p)− y2

0(t)
)
dp

=

np∑
i=1

∫
[0,1]np

y2
i (t, pi)dp

+

np−1∑
i=1

np∑
j>i

∫
[0,1]np

y2
i,j(t, pi, pj)dp

...

+

∫
[0,1]np

y2
1,...,np

(t, p1, . . . , pnp
)dp

due to the orthogonality of the terms in eq. (5). Since
the parameters are i.i.d. and uniformily random variables
distributed over [0, 1]

2
, and according to the properties (6)

and (7), it can be deduced that

V (t) =

np∑
i=1

Vi(t) +

np−1∑
i=1

np∑
j>i

Vi,j(t) + . . .+ V1,...,np
(t) (8)

where Vi1,...,ir (t) represents the variance of the model
output by varying simultaneously the parameters pi1 , . . .,
pir . Sensitivity functions are defined as

Si1,...,ir =
Vi1,...,ir (t)

V (t)
(9)

First-order sensitivity functions, Si(t) represent the direct
sensitivity w.r.t. the parameter pi, while Si1,...,ir (t) rep-
resents the sensibility w.r.t. a group of parameters. The
total sensitivity functions, STi(t), regroup the sensitivity
of the model output w.r.t. the influence of a parameter
in the different forms (direct and interactions with other
parameters), and will be defined as

STi
(t) = Si(t) +

np∑
j=1

Si,j(t) + . . .+ S1,...,np
(t) (10)

The sensitivity functions (namely first-order and total
sensitivity functions) are either calculated by computer
algebra if the explicit form of y (t,p) is known or estimated
by Monte Carlo methods otherwise. In the latter case, an
estimation algorithm is given in [Saltelli et al. (2008)].

4. IMPLICATIONS OF GLOBAL SENSITIVITY AND
IDENTIFIABILITY ANALYSIS

4.1 Definition of Ψi, Ωi and Ωi,j functions

Let Ψi (t,p) be the total effect on the model output y of
a parameter pi, based on equation (5), and defined as

Ψi (t,p) = yi (t, pi) +

np∑
j 6=i

yi,j(t, pi, pj) + . . .+

+y1,...,np(t,p1,...,pnp
)

(11)

which can be further decomposed as

Ψi (t,p) = Ωi (t,p∼j) + Ωi,j (t,p) (12)

whereas Ωi (t,p∼j) represents the influence on the output
y of the parameter pi, independently of pj and Ωi,j (t,p)
its complementary effect on y (corresponding to the com-
bined action on y of pi and pj). p∼j correspond to the set
of all parameters except pj . See section 4.5 for examples
of the definition of Ω-functions. Therefore, the total vari-
ance function of the output y w.r.t the influence of the
parameter pi is defined by

VTi(t) =

∫
[0,1]np

Ω2
i (t,p∼j)dp +

∫
[0,1]np

Ω2
i,j(t,p)dp (13)

as all the terms of the Sobol’ decomposition (5) are
orthogonal.

4.2 The link between the nullity of a total sensitivity
function and non-identifiability

In [Sobol’ (2001)], it was proven that a null total sensitivity
function, STi

(t) = 0, leads the nullity of all functions
depending on the parameter in pi, i.e.

yi (t, pi) = yi,k (t, pi, pk) = . . . = y1,...,np
(t,p) = 0,
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and therefore Ψi(t,p) = Ωi (t,p∼k) + Ωi,k (t,p) = 0, with
k 6= i. Consequently, we can write y(t,p) as a function of
np−1 parameters, p∼i. In other terms, pi has no influence
on the output, and is thus non-identifiable.

4.3 Linear dependency of Ωi, Ωj and Ωi,j functions and
their link with the pi or pj non-identifiability

If the case of null sensitivity functions is generally acknowl-
edged as corresponding to non-identifiable parameters, the
case of correlated sensitivity functions and their link with
the parameter non-identifiability is less clear.

One possible cause for the time correlation of the sensitiv-
ity functions is the linear dependence, with respect to time,
of two distinct Ψi (t,p) and Ψj (t,p) functions decomposed
as:

Ψi (t,p) = Ωi (t,p∼j) + Ωi,j (t,p)
Ψj (t,p) = Ωj (t,p∼i) + Ωi,j (t,p)

and which is itself caused by the linear dependence, two
by two, of the functions Ωi, Ωi,j and Ωj (see appendix A
for further details).

Let us consider now the following propositions, which
describes the link between dependent functions Ωi, Ωi,j ,Ωj

and the non-identifiability of pi or pj .

Proposition 4.1. The linear dependence, with respect to
time, of the functions Ωi(t,p∼j), Ωi,j(t,p) and Ωj(t,p∼i),
implies that they fulfill the following properties:

Ωi (t,p∼j) = hi (pi) · g (t,p∼i,j)
Ωj (t,p∼i) = hj (pj) · g (t,p∼i,j)
Ωi,j (t,p) = hi,j (pi, pj) · g (t,p∼i,j)

Proof To simplify reading, we will consider a two-

parameter model y (t,p) with p = [p1, p2]
T ∈ [0, 1]

2
. Ac-

cording to the Sobol’ decomposition, its output variable,
y (t,p), can be represented by

y (t,p) = y0 (t) + y1 (t, p1) + y2 (t, p2) + + y1,2 (t, p1, p2)

Herein, Ω1 (t,p∼2) = y1 (t, p1), Ω2 (t,p∼1) = y2 (t, p2) and
Ω1,2 (t,p) = y1,2 (t, p1, p2) according to the definition of
the Ω-functions in section 4.1.

Let us consider the linear dependence, w.r.t. time, between
Ω1 and Ω1,2, Ω2 and Ω1,2 and respectively Ω1 and Ω2:

α1 (p) Ω1 (t,p∼2) + α1,2 (p) Ω1,2 (t,p) = 0 (14)

β2 (p) Ω2 (t,p∼1) + β1,2 (p) Ω1,2 (t,p) = 0 (15)

γ1 (p) Ω1 (t,p∼2) + γ2 (p) Ω2 (t,p∼1) = 0 (16)

whereas α1, α1,2, β2, β1,2, γ1 and γ2 are some non-null
coefficients (parameter functions) and α1 (p) 6= α1,2 (p),
β2 (p) 6= β1,2 (p) (assuming that Ψ1 and Ψ2 are not null).
Since Ω1 and Ω2 depend on time and each on a distinct
parameter, we can conclude that in order to have the linear
dependence w.r.t. time, these functions must be factorized
as follows

Ω1 (t,p∼2) = h1 (p1) · g (t)
Ω2 (t,p∼1) = h2 (p2) · g (t) .

This being said, eq. (15) becomes

α1 (p)h1 (p1) · g (t) + α1,2 (p) Ω1,2 (t,p) = 0 (17)

allowing us to affirm that the linear dependency between
Ω1 and Ω1,2 w.r.t. time is assured iff Ω1,2 (t,p) can be
factorized as h1,2 (p1, p2) · g (t).

The consequence of this linear dependence on the non-
identifiability of parameters is stated below:

Proposition 4.2. The linear dependence, w.r.t. time, of the
functions Ωi(t,p∼j), Ωi,j(t,p) and Ωj(t,p∼i) leads to the
non-identifiability of the parameter pi or pj .

Proof Based on the proposition 4.1, we can write y (t,p)
as

y(t,p) = y0(t) + h (p) · g (t)

with h (p) = h1 (p1) + h2 (p2) + h1,2 (p).

The global identifiability analysis amounts to test whether
or not the system of equations described in (4) has a unique
solution p = p∗. Applying the Taylor series approach in
our case, reveals that

ak (p) = lim
t→t0

y0 (t) + h (p) · lim
t→t0

dk

dtk
g (t)

and hence

ak (p) = ak (p∗) =⇒ h (p) = h (p∗) ∀k (18)

In other terms, the system of equations (18) is only
composed of one equation with two unknown parameters.
Since Ψ1 et Ψ2 are assumed to be not-null, it is then
impossible to identify both p1 and p2.

4.4 Linear dependency of Ωi, Ωj and Ωi,j functions and
their relation with the colinearity of the total sensitivity
functions STi and STj

Proposition 4.3. The linear dependence of the functions
Ωi(t,p∼j), Ωi,j(t,p) and Ωi(t,p∼j), with respect to time,
implies the colinearity of the total sensitivity functions
STi

(t) and STj
(t).

Proof Taking into account the proposition 4.1 and the
definition of the functions Ψ1 and Ψ2 for a two-parameter
model, we can write:

Ψ1 (t,p) = (h1 (p1) + h1,2 (p)) · g (t)
Ψ2 (t,p) = (h2 (p2) + h1,2 (p)) · g (t)

Furthermore, the total variance functions may be written
as

VT1 (t) =

∫ 1

0

h21 (p1) dp1 +

∫
[0,1]2

h21,2 (p) dp

 · g2 (t)

VT2 (t) =

∫ 1

0

h22 (p2) dp2 +

∫
[0,1]2

h21,2 (p) dp

 · g2 (t)

were we can observe the linear dependency of VT1
(t)

and VT2
(t). As V (t) is a not-null function, then the

linear dependency of VT1
(t) and VT2

(t) will imply also
the colinearity of the total sensitivity functions ST1

(t) and
ST2

(t).

4.5 Academic examples

Example illustrating the theoretical analysis

Let us consider a four-parameter model defined by

y (t,p) = p2p3 (1− exp (−t)) +
p1p4 (1− exp (−tp2))

(19)

employed to illustrate the propositions 4.1, 4.2 and 4.3. It
clearly appears that p1 and p4 are not both identifiable.
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Fig. 2. Total variance functions for the example expressed
in eq. (19)

We computed by computer algebra the 2np = 16 functions
that compose the Sobol’ high dimensional representation
in (5), followed by the functions Ω1, Ω4 and Ω1,4:

Ω1 (t,p∼4) = y1 (t, p1) + y1,2 (t, p1, p2) + y1,3 (t, p1, p3)
+y1,2,3 (t, p1, p2, p3)

= 0.25 (2p1 − 1) (1− exp (−t · p2))
Ω4 (t,p∼1) = y4 (t, p4) + y2,4 (t, p2, p4) + y3,4 (t, p3, p4)

+y2,3,4 (t, p2, p3, p4)
= 0.25 (2p4 − 1) (1− exp (−t · p2))

Ω1,4 (t,p∼1) = y1,4 (t, p1, p4) + y1,2,4 (t, p1, p2, p4)
+y1,3,4 (t, p1, p3, p4)
+y1,2,3,4 (t, p1, p2, p3, p4)

= 0.25 (2p4 − 1) (2p1 − 1) (1− exp (−t · p2))

This result is conform to the form of the Ω-functions
in Prop. 4.1, with g(t,p∼1,4) = 0.25 (1− exp (−t · p2)).
Moreover, we can remark that Ω1, Ω4 and Ω1,4 are - two
by two - linear dependent w.r.t. time. Finally, the total
variance functions associated with p1 and p4 are

VT1
(t) =

∫
[0,1]4

(
Ω2

1 (t,p∼4) + Ω2
1,4 (t,p)

)
dp

=
2t+ 4 exp(−t)− 3− exp(−2t)

72t

VT4
(t) =

∫
[0,1]4

(
Ω2

4 (t,p∼1) + Ω2
1,4 (t,p)

)
dp

=
2t+ 4 exp(−t)− 3− exp(−2t)

72t
This result shows the colinearity of VT1

and VT4
and thus

the one of sensitivity functions ST1
and ST4

, as shown also
in Fig. 2.

Example illustrating the practical analysis

Let us consider another simple example with

y (t,θ) = (θ1 + θ2 sin (2πt)) · exp(−0.1t) + exp
(
−θ3t2

)
where θ = [θ1, θ2, θ3]

T
the model parameters, and θ1 ∈

[0, 2], θ2 ∈ [0, 4] and θ3 ∈ [0, 1]. This example is meant to
illustrate the difference between global theoretical identi-
fiability and global practical identifiability (insights from
a global sensitivity analysis point of view).

In order to decompose y, the hypotheses H1 and H2 must
be fulfilled, i.e we have to consider a set of normalized
parameters gathered in p defined as

pi =
θi − θmin

i

θmax
i − θmin

i

with i = 1, 2, 3. The new expression of y is

y (t,p) = (2p1 + 4p2 sin (2πt)) · exp(−0.1t) + exp
(
−p3t2

)
Its HDMR components are:

Fig. 3. Total variance functions of the 2nd example, for
different time-sampling strategies

y1 (t, p1) = (2p1 − 1) · exp(−0.1t)
y2 (t, p2) = 2 (2p2 − 1) · sin(2πt) · exp(−0.1t)

y3 (t, p3) = exp
(
−p3t2

)
+

exp(−t2)− 1

t2

In this case, all other terms of the Sobol’ decomposition
(see eq. (5)) are null. An a priori identifiability anal-
ysis (through a Taylor series approach) indicates three
global identifiable parameters. The associated total vari-
ance functions, obtained by computer algebra, will be
defined by

VT1
(t) = 0.33 · exp(−0.2t)

VT2 (t) = 1.33 · sin(2πt)2 · exp(−0.2t)
VT3

(t) = 0.5
(
1− exp(−2t2)

)
−

−1− 2 exp(−t2) + exp(−2t2)

t4

These functions are plotted in Fig. 3 with three different
sampling strategies for tk ∈ [0, 10]. In the upper figure,
we propose a good sampling rate, tk = 0.01 · k. A first
conclusion that can be drawn from this figure is that even
in a best case scenario p3 is a poor-sensitive parameter
as VT3

(t) < 0.1 and ST3
(t) < 0.2. In the middle figure, we

chose measurement time instants as to assure colinear total
variance functions, VT1

(t) and VT2
(t). For such sampling

instants sin (2 · π · tk)
2

= 1/4, allowing as to write y as

y (t,p) = (2p1 ± 2p2) · exp(−0.1t) + exp
(
−p3t2

)
(20)

indicating also the non-identifiablity of parameters. The
bottom figure exploits the total variance function for tk =
0.5 · k. In this case, for all tk, the total variance VT2

(tk) is
null, leaving only one sensitive parameter, p1.

5. DISCUSSION

We have studied herein two links between the non-
identifiability of parameters and the properties of global
sensitivity functions. One corresponds to a generally ac-
knowledged association: insensitive parameters mean non-
identifiable parameters and a null total sensitivity func-
tion. The second is a less corroborated link: the conse-
quences of the linear dependence between the Ω - functions
on the identifiability of parameters and global sensitivity
measures. Let us analyse the Fig. 4 representing this last
bridge between identifiability and sensitivity.

The correspondence between linear dependent Ω functions
(w.r.t. time) and the parameter non-identifiability was
tackled through a Taylor series approach (this was only a
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Fig. 4. Schematic representation of relationship between
identifiability and sensitivity

subjective choice, any other identifiability method could be
applied) indicating a theoretical global non-identifiability
(Prop. 4.2). But theoretical identifiability is only a nec-
essary identifiability condition, designating also a global
practical non-identifiability (arrow 1 in Fig. 4).

The collinearity w.r.t. time of the Ω-functions also implies
the collinearity of the total sensitivity functions (Prop.
4.3). In practice, the latter sensitivity functions are rarely
explicitly determined. A more realistic approach is to
estimate them by a Monte Carlo simulation approach
(arrow 4 in Fig. 4 ) that takes experimental conditions
into account.

Dashed arrows 2, 3 and 5 in Fig.4 indicate ongoing works.
The conclusions on global practical identifiability from the
analysis of the empirical sensitivity functions (arrow 5)
mainly depends now on the reciprocal condition described
by arrow 3.

6. CONCLUSION

Due to the lack of methods to test the global practical
identifiability, we focused on global sensitivity methods.
Global sensitivity measures are the result of an a posteriori
study, in which the time instants and input signals are
fixed. It is natural to think of it also as an a posteriori
identifiability measure. Nevertheless, the links between
these two domains are not yet fully explored.

This present work provides new insights into the relation-
ships between these two concepts. In perspective, these
results could lead to the development of new approaches to
test the non-identifiability of parameters in an experimen-
tal framework. Systems biology is a particular application
area of such solutions.

The present results are based exclusively on the output
trajectories in explicit algebraic form. A more realistic case
study is presented in Dobre et al. (2010).
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Appendix A. DEPENDENCE OF ΨI AND ΨJ

In the literature, the non-estimability of parameters is
explained sometimes by the compensation on the ouput
y of the effects of two (or more) parameters. But, the
function Ψi is supposed to reflect the total effect of the
parameter pi, and VTi

depends only on Ψi.

How can the parameter pj compensate the effect of pi ?

This compensation must take place within Ψi, meaning
through Ωi and Ωi,j (that’s why we decomposed Ψi in a
part which is independent of pi, Ωi, and its complement
Ωi,j which characterize the joined action between pi and
pj). Therefore, a cause of compensated effect is the linear
dependence of the functions Ωi and Ωi,j , respectively Ωj

and Ωi,j . This will also imply the dependence of Ψi and
Ψj .
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