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The Activated Sludge Model No. 3 (ASM3) extended for two-step nitrification is analyzed and reduced 

to enable fast and accurate simulations under typical process conditions. Due to the addition of energy 

storage effects, ASM3 enables the description of substrate consumption as well as Oxygen uptake with a 

higher precision than the older versions of the family of ASM. In addition the extension of the model to 

describe the two step nitrification enables the calculation of the NO2 concentration as an independent 

variable. An exhaustive analysis of the model results in a number of modifications which reduce the 

model effectively, while keeping its accuracy.  
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1. INTRODUCTION 

The most commonly applied process for biological treatment 

of waste water is the Activated Sludge Process (ASP) 

(Gernaey, van Loosdrecht et al. 2004). The family of 

Activated Sludge Models (ASM) (Henze 2000) represents the 

state of the art model framework for the simulation of ASP. 

The model ASM1 (Henze, Grady et al. 1986) is the most 

widely used in the industry (Petersen, Gernaey et al. 2002), 

ASM2 (Gujer, Henze et al. 1995)is applied to simulate 

processes with phosphorus removal (Kim, Hao et al. 2001) 

and the latest version, ASM3 (Gujer, Henze et al. 1999), 

includes the quantification of energy storage in order to 

describe substrate and oxygen uptake with higher accuracy. 

Finally, a new version of ASM3, referred to in this 

contribution as extended ASM3, where nitrification and 

denitrification are considered as two-step processes, (taking 

into account nitrite as an intermediate) has been presented 

(Kaelin, Manser et al. 2009). This work focuses on the 

reduction of this extended ASM3 version to a attractable 

form. 

The extended ASM3 has proven to be a very accurate model 

to describe the ASP. However, modeling confronts as always 

the disjunctive between model accuracy and model 

simplicity. It is then convenient, to reduce the model, in order 

to minimize the computation costs, trying to preserve the 

original dynamics 

 “The goal of model order reduction is to transform the 

system of differential equations to one of lower order and still 

retain the key dynamic information.” (Okino and 

Mavrovouniotis 1998).  

The reduction of a particular model maintaining the model 

characteristics is a common task in all fields of engineering. 

Examples are: Lumping (Aris and Gavalas 1966), Sensitivity 

Analysis (Liao and Delgado 1993) and Time-Scale Analysis 

(Stamatelatou, Syrou et al. 2009). 

2. ASM3 EXTENDED FOR TWO-STEP NITRIFICATION 

The division of the nitrification-denitrification reaction in a 

two step reaction (Fig. 1) is essential when trying to describe 

the bypassing nitrate generation process in ASP 

(Katsogiannis, Kornaros et al. 2002). If the change from 

aerobic to anoxic phase in a sequencing batch reactor (SBR) 

is adequate, ammonia is converted to nitrite in the presence 

oxygen (nıtrıtatıon), which is instantly converted into 

nitrogen under anoxic conditions before the second oxidation 

producing nitrate (nitratation) can take place. 

���� → ���� → ��	� 

�� ← ���� ← ��	� 

Fig. 1. Nitrification-denitrification process as a two -step 

reaction. 

It should be noted, that the nitrate bypassing process can only 

be described by a model which divides the nitrification-

denitrification process in a reaction with at least two steps. 

On the other hand the extended ASM3 demands significant 

computational time, which represents an obstacle for efficient 

optimization and model-based control. Furthermore, the 

extended ASM3 describes many states, which are not reached 

within conventional ASPs. If the process runs under optimal 

conditions, in other words, if the correct aeration strategy is 

selected and the initial concentrations are in the desired 

range, many of the process conditions described by the 

extended ASM3 can be avoided and therefore, no 

mathematical description is needed. Consequently, in order to 

allow a fast process simulation, and thus, an efficient model-
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based optimization, a model reduction is considered 

necessary. 

3. A PROPOSED 8-STATE MODEL 

The model proposed in this work is named 8-state model, in 

relation to the number of state variables it contains. Eight 

differential equations describe the basic variables 

(concentrations, namely: 1.- substrate, 2.- heterotrophic 

bacteria, 3.- ammonia oxidizers, 4.- nitrite oxidizers, 5.- 

dissolved oxygen, 6.- ammonia, 7.- nitrite and 8.-  nitrate. In 

addition an algebraic equation is added so as to describe the 

effects of energy storage on biomass growth and on the 

substrate as well as oxygen uptake such as described by the 

extended ASM3.  

The reduction of this model is based on the principle that an 

activated sludge process should stop as soon as all the 

concentrations satisfy the regulations. Furthermore, these 

regulations should be reached in the shortest time possible. 

Consequently lower output concentrations than required are 

an indicator of a suboptimal operation.  

Another important assumption is that the bacteria never 

exhaust their stored energy. Except for the recycle process, 

bacteria are always in a medium rich in substrate. Therefore, 

the value of the stored energy should be high at any moment 

during the process and never limit bacterial growth. 

In addition, the death rates of the bacteria are considered 

constant. The growth rate has a major impact on substrate and 

oxygen concentrations. Nevertheless, changes on biomass 

concentration during one cycle in an SBR are relatively small 

(less than 10%). As a result, the biomass growth rate denotes 

a very important aspect of the model, not so the change on 

the biomass concentration, and therefore it is viable to 

consider a constant death rate without affecting the model 

dynamics significantly.  

4. MODEL REDUCTION APROACH 

4.1 Storage 

The implementation of energy storage represents the main 

improvement of ASM3 in comparison with older versions. 

This concept caused the addition of three new state equations 

and more than 10 new parameters to the preceding model. 

Eliminating these equations would impede a proper 

description of the process and result in a retrogressive model 

reduction. For this reason, the energy storage and its effects 

in substrate and oxygen concentration cannot be simply 

neglected. Instead, the 8-state model includes some 

adaptations to the substrate and oxygen uptake equations and 

the addition of an algebraic one. The new set of equations is 

presented in such a way that, both, the substrate uptake 

increment and the oxygen uptake increment caused by the 

storage, are included in the original substrate and oxygen 

differential equations. By this means, and as long as the 

substrate concentration is above zero, the algebraic equation, 

describing the behavior of energy stored can be eliminated 

without affecting the behavior of the substrate or oxygen 

concentration. This appears to be an inconsistent assumption, 

though it is almost certain that the process continues after 

substrate elimination to enable the ammonia degradation. 

Nevertheless previous model versions (ASM1 and ASM2) fit 

the data although they lack also of a storage variable. In other 

words, the 8-state model responds to the substrate limitation 

similar to how ASM1 does but describes also the substrate 

and oxygen uptake as precise as ASM3. 

4.2 Substitution of the storage equation 

The system of equations related to the extended ASM3 is too 

large to be presented in this contribution. For this reason, in 

this work the 15 ordinary differential equations of the 

extended ASM3 include only the process rate variables 

without its explicit equation. The process rate equations have 

been numbered in the same order as previously presented in 

(Kaelin, Manser et al. 2009): 

Heterotrophic Organisms 

r1: Hydrolysis, r2: Aerobic Storage, r3: Anoxic Storage, 

r4: Anoxic Storage of SS NO2–N2, r5: Aerobic Growth of XH 

(, r6: Anoxic Growth NO3-NO2, r7: Anoxic Growth NO2-N2, 

r8: Aerobic Endog. Resp. of HET, r9: Anoxic Endog. Resp. 

NO3-NO2, r10: Anoxic End. Resp. NO2-N2, 

r11: Aerobic Resp. of XSTO, r12: Anoxic Resp. of SXTO 

NO3-NO2, r13: Anoxic Resp. of XSTO NO2-N2, 

AOB 

r14: Aerobic Growth, Nitritation, r15: Aerobic End. Resp., 

r16: Anoxic End. Resp., 

NOB: 

r17: Aerobic Growth, Nitratation. r18: Aerobic End. Resp.. 

r19: Anoxic Endog. Resp.. r20: Aeration 

We first analyze the three state equations of the extended 

ASM3 directly involved in the energy storage. 

Readily biodegradable substrate: 

dSdt = - r2- r3- r4+(1-f
SI

)* r1  (1) 

where the term �1 − f��� ∗ r�  represents the conversion of 

slow biodegradable substrate into readily biodegradable 

substrate and can be eliminated if it is considered that all 

substrate is readily biodegradable. 

Energy Storage: 

dX���dt= Y���� ! ∗ r� + Y���#�	 ∗ r	 + Y���#�� ∗ r�
− 1Y$� ! ∗ r% − 1Y$#�	 ∗ r& − 1Y$#�� ∗ r' − r�� −  r��
−  r�	 

 (2) 

where the terms – r�� −  r�� −  r�	   represent the respiration 

reactions and are neglected in the 8-state model. 

Heterotrophic Biomass: 

dX$dt = r% + r& +  r' −  r) − r* −  r�+  (3) 

where the terms – r) −  r* − r�+ represent the death rates of 

the heterotrophic bacteria and are substituted by death 

constants. A closer look at the rate equations (4) - (9) shows 

that all of them are dependent on XH and, considering that the 
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switching functions have a constant value (meaning that the 

concentrations are considerably larger than their saturation 

constants), there is a linear relation 
,-./
µ0  between (4) - (6) and 

(7) - (9): 

r� = k23 ∗ S�S� + K$,�� ∗ S�S� + K� ∗ X$  (4) 

r	
= k23 ∗ η$,#�	 ∗ K$,��678K$,��678 + S�
∗ S�S� + K�

S#�	S#�	 + K$,#�	 ∗ X$ 

 (5) 

r�
= k23 ∗ η$,#�� ∗ K$,��678K$,��678 + S�
∗ S�S� + K�

S#��S#�� + K$,#�� ∗ X$ 

 (6) 

r%
= µ$ ∗ S9:,S9:, + K9:, ∗ S�S� + K�� ∗ S#$�S#$� + K#$
∗

X��� X$;
K$,��� + X��� X$; ∗ X$ 

 (7) 

r&
= µ$ ∗ η$,#�	 ∗ K$,��678K$,��678 + S� ∗ S9:,S9:, + K9:,
∗ S#�	S#�	 + K$,#�	 ∗

X��� X$;
K$,��� + X��� X$; ∗ X$ 

 (8) 

r'
= µ$ ∗ η$,#�� ∗ K$,��678K$,��678 + S� ∗ S�S� + K�
∗ S#��S#�� + K$,#�� ∗

X��� X$;
K$,��� + X��� X$; ∗ X$ 

 (9) 

We now bound our process conditions, such that neither 

ammonia, nor alkalinity, nor substrate, nor storage are 

limiting to the process. In other words (10): 

k ∗ S�S� + K�
= S9:,S9:, + K9:, ∗ S#$�S#$� + K#$ ∗

X��� X$;
K$,��� + X��� X$;  

 

(10) 

where k is an arbitrary constant. 

The following equations (11) can now be implemented: 

For i = 2,3,4 

k ∗ Y���� ! ∗ r6k���
µ$

= 1Y$� ! ∗ r6�� = a6  (11) 

Substitution in the three state equations (1) – (3) gives: 

dSdt
= = 1Y���� ! ∗ a� + 1Y���#�	 ∗ a	 + 1Y���#�� ∗ a�>
∗ k���k ∗ µ$

+ 1Y 

 (12) 

dX���dt = �a� + a	 + a�� ∗ k���k ∗ µ$
− a� − a	 − a�   

dX���dt = �a� + a	 + a�� ∗ ? k���k ∗ µ$
− 1@  (13) 

dX$dt = Y$� ! ∗ a� +  Y$#�	 ∗ a	 +  Y$#�� ∗ a�  (14) 

If we add a new constant St� = ,ABC,∗D0 − 1: 

and consider that:  Y$� ! =  Y���� ! and Y$�73F = Y���#�	 = Y���#�� =Y$#�	 = Y$#�� (which is true for the values shown in 

(Kaelin, Manser et al. 2009) by replacing them in the 

simplified state equations (12) – (14), we obtain: dSsdt
= H− 1Y$� ! ∗ a� − 1Y$�73F ∗ �a	 + a��I
∗ �1 + St�� 

 (15) 

dX���dt = �−a� − a	 − a�� ∗ �−St��  (16) 

dX$dt = Y$� ! ∗ a� +  Y$#�	 ∗ a	 +  Y$#�� ∗ a�  (17) 

The most important characteristic of this new set of equations 

is given in (18) 

dS�dX��� = dX$dX��� = 0  (18) 

This means that we can now eliminate the ninth state 

equation responsible for energy storage. 

dSsdt
= H− 1Y$� ! ∗ r�� − 1Y$�73F ∗ �r�#�	 + r�#���I
∗ �1 + St�� 

 (19) 

Finally, a rearrangement of the equations in order to 

substitute a6 for new rate constants in (15) – (17), results in a 

model with 9 state equations. The energy storage equation 
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can be further reduced to an algebraic equation to obtain the 

8-state model. 

Sto = =C�23 − S�1 + MNO> ∗ MNO  (20) 

The 8-state model can also be adapted to describe the 

substrate limited phase. Because of (20) the information 

about the amount of energy stored is not lost. To enable the 

biomass growth beyond substrate limitation, an inhibition 

function and new slightly modified rate equations are to be 

added. This would increment the size of the reduced model 

and is not studied in this work. 

It should be noted, that the reduced equation system will not 

react to all the limitations exactly like the original model. For 

example, in the extended ASM3 the energy storage is not 

limited by the ammonia concentration, but only the growth of 

the biomass. Having both storage and growth in the same 

equation, the 8-state model is forced to have the same 

switching functions for both cases. 

4.3 Parameter fit 

The main objective of this work is to achieve a reduced 

version of the extended ASM3 which presents the same 

behavior as the extended ASM3. Consequently, the new 

parameters of the 8-state model were compared and fitted 

against the extended ASM3. 

Saturation constants: 

The only possible way to assure, that the model will respond 

to the concentration limitations as similar as possible to the 

extended ASM3, is to apply identical saturation constants. 

This was the case in this work. All the constants K.x have the 

same value as published in the extended version of ASM3 

(Kaelin, Manser et al. 2009). 

5. MATHEMATICAL REPRESENTATION OF 

THE 8-STATE MODEL  

5.1 ordinary differential equations 

The 8 ordinary differential equations are shown in (21) – 

(28), and their belonging rate equations are described in (30) 

– (34). The algebraic equation describing the storage is 

shown in (29).  

dS�dt
= H− 1Y$� ! ∗ r�� − 1Y$�73F ∗ �r�#�	 + r�#���I
∗ �1 + St�� 

(21) 

dX$dt = r�� + r�#�	 + r�#�� 
 

(22) 

dX#dt = r��# 
 

(23) 

dX#Pdt = r��#P 
 

(24) 

dS�dt
= KQ�R�C∗ ��CS − 1 − Y$� !Y$� ! r�� − =3.43Y9� − 1> r��#
− =1.14Y9� − 1> r��#P 

 

(25) 

WMXY�WN
= − =− ZXOO[Y\]^ + ZX_> \̀\] − = 1[a� + ZX_> \̀\Xb
− i#dr��#P − =− i#��Y$�73F + i#d> r�#�	
− =− i#��Y$�73F + i#d> r�#�� 

 

(26) 

dS#��dt
= 1Y9� r��# − 1Y9� r��#P + 1 − Y$�73F1.14Y$�73F �r�#�	
− r�#��� 

 

(27) 

dS#�	dt = 1Y9	 r��#P − 1 − Y$�73F1.14Y$�73F r�#�	 
 

(28) 

 

Sto = =C�23 − S�1 + MNO> ∗ MNO 
 

(29) 

5.2 reaction rates 

r�� = µ$ ∗ S�S� + K� ∗ S�S� + K�� ∗ S#$�S#$� + K#$ ∗ X$ 
 

(30) 

r��# = µ9� ∗ S�S� + K� ∗ S#$�S#$� + K#$ ∗ X# 
 

(31) 

r��#P
= µ9� ∗ S#��S#�� + K#��� ∗ S�S� + K� ∗ S#$�S#$� + K#$∗ X#P 

 

(32) 

r�#�	
= µ$� ∗ S�S� + K� ∗ S#�	S#�	 + K#�	 ∗ K���K��� + S�
∗ S#$�S#$� + K#$ ∗ X$ 

 

(33) 

r�#��
= µ$� ∗ S�S� + K� ∗ S#��S#�� + K#�� ∗ K���K��� + S�
∗ S#$�S#$� + K#$ ∗ X$ 

 

(34) 

The values of the constants used for the simulations 

are presented in table 1. 
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Table 1: 8-state model constants and its values 

SOStar  =    7;  [mgO2/l] process 

K_La    =    1000;  [d-1]  process 

i_NB =   0.086;  [gN/gCOD] fitted 

mou_H =  0.6021;  [d-1]   fitted 

mou_A1 =  0.6552; [d-1]  fitted 

mou_A2 =  0.3468;  [d-1]  fitted 

Y_Haer  =    0.1302;  [gCOD/gCOD] fitted 

Y_A1 =   0.1327;  [gCOD/gN]  fitted 

Y_A2 =   0.0985;  [gCOD/gN] fitted 

Y_A3 =   0.0331;  [gCOD/gN] fitted 

i_NSS =  0.01;  [gN/gCOD]  ASM3    

Y_Hanox =  0.0632; [gCOD/gCOD] fitted 

mou_H1 =  0.0511;  [d-1]  fitted 

mou_H2 =  0.0362;  [d-1]  fitted 

K_NH1 =  0.01;  [mgCOD/l] ASM3 

K_NH2 =  0.1;  [mgCOD/l] ASM3 

K_S =   10;  [mgCOD/l] ASM3 

K_S1 =   0.1;  [mgCOD/l] ASM3 

K_S2 =   0.1; [mgCOD/l] ASM3 

K_NHH =  0.05;  [mgN/l]  ASM3 

K_O1 =   0.2;  [mgO2/l] ASM3 

K_NH    =    0.1;  [mgN/l]   ASM3 

K_O =     0.8;  [mgO2/l] ASM3 

K_NO21  =    0.5;  [mgO2/l] ASM3 

K_NO3   =    0.5;  [mgN/l]  ASM3 

K_O21   =    0.2;  [mgO2/l] ASM3 

K_NO2   =    0.25;  [mgN/l]  ASM3 

K_O22   =    0.2;  [mgO2/l] ASM3 

stS     =    1.7;  [ ]  fitted 

stO     =    0.08; [ ]  fitted 

6. RESULTS 

6.1 Simulations 

The 8-state model was set to various conditions so as to 

confirm its stability and accuracy. The most representative 

results are present in Fig.2-5.  

 

Fig. 2. Substrate concentration SS and stored energy Sto 

against time. The initial value of the storage was set to 400 

gCOD/m
3
 considering that the time between loads is short.  

 

Fig. 3. Biomass against time. Changes in the biomass are 

very small (less than 10%). Nevertheless the influence of the 

growth rate plays a significant role in the load characteristics. 

 

Fig. 4. NOX concentration against time. The concentration of 

NO2 and NO3 are kept under 20 mgN/L. The control variable 

is the aeration of the tank.  

  

Fig. 5. a) Oxygen concentration in the medium against time. 

The aeration is turned off when the concentration of NO2 or 

NO3 reaches 20 mgN/L and turned on when the concentration 

of NO2 is under 0.3 mgN/L. 

b) Ammonia concentration against time.  
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The simulation represents a tank ideally mixed, where the 

aeration can be turned on and off to induce either aerobic or 

anoxic condition. The main purpose is to set both models to 

drastic changes and various limitations. The concentrations of 

NO2 and NO3 are limited by turning the aeration off, if any of 

these two concentrations rises above 20 gCOD/m
3
, and on, if 

NO2 reaches values smaller than 0.3 mgN/L. The initial value 

of the storage is set to 400 gCOD/m3. This is explained by 

considering that the bacteria have been in the process for 

some time and have already stored energy. As a result, a 

constantly changing process is obtained, which makes it very 

difficult to be described identically by two models with 

different characteristics. The process conditions prove that 

the 8-state model accurately describes limitations of 

dissolved O2, NO2 and NO3.  

6.2 Limitations of the 8-state model 

It is worth reminding that the 8-state model is not valid along 

the same range as extended the ASM3. Some limitations are 

to put up with in order to reduce the model and speed up the 

simulation in the region of interest. Moreover, because of the 

new storage equation, the bacteria can store energy, but 

cannot use it when there is no more substrate available. For 

this reason, the reduced version describes the process as long 

as substrate is present in the medium.  

In the extended ASM3, the ammonia concentration does not 

limit the storage of energy. This results in a consumption of 

substrate even under NH4 limitations. Once again, because of 

the coupled equations, the 8-state model predicts a substrate 

consumption only as long as ammonia is present in the 

medium. Finally, the growth of heterotrophic biomass can be 

mathematically described as a second order differential 

equation. For this reason, if the energy stored by the bacteria 

is low, a time delay can be seen in the growth curve. This 

time delay is not represented in the 8-state model. 

Considering that the storage has a value at least larger than 

100 gCOD/m3, both growth curves match. 

7. CONCLUSIONS 

The extended version of ASM3 has been successfully 

reduced to a simpler model. The 8-state model mimics the 

behavior of the extended ASM3 in a broad operation range. 

The results obtained in this work suggest that the reduced 

model can be one order of magnitude faster (table 2) and be 

applied to both, continuous and to SBR ASP.  

Table 2. Comparison of the computation time.  

Models simulated with Matlab® R2008b 

Model AMD Processor (1.81GHz) 

CPU time: 1000 func. eval. 

Extended ASM3 2.225 sec 

8-state 0.157 sec 

Furthermore, the 8-state model enables the process 

simulation for optimization and for model based control. 
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