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Abstract: In this paper we apply receding horizon constrained optimal control to the
computation of insulin administration for people with type 1 diabetes. The study is based on the
Hovorka model, which describes a virtual subject with type 1 diabetes. First of all, we compute
the optimal insulin administration for the linearized system using quadratic programming
(QP) for optimization. The optimization problem is a discrete-time problem with soft state
constraints and hard input constraints. The computed insulin administration is applied to the
nonlinear model, which represents the virtual patient. Then, a nonlinear discrete-time Bolza
problem is stated and solved using sequential quadratic programming (SQP) for optimization
and an explicit Dormand-Prince Runge-Kutta method (DOPRI54) for numerical integration
and sensitivity computation. Finally, the effects of faster acting insulin on the postprandial
(i.e., post-meal) blood glucose peak are discussed.
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1. INTRODUCTION

The World Health Organization (2008) estimates that 180
million people worldwide have diabetes. This number is
predicted to double by 2030. In the USA, the budget for
diabetes alone represents 10% of the health care budget, or
more than 130 billion dollars (132 billion dollars in 2002).

In people without diabetes, the blood glucose is controlled
tightly around 90 mg/dL (∼5 mmol/L). Type 1 diabetes
is a chronic disease characterized by an insufficient (ef-
fectively nonexistent) endogenous production of insulin,
which leads to poor regulation of glucose concentrations
in the blood. In particular, the deficiency of insulin causes
sustained high glucose levels (hyperglycemia) that result in
serious long-term health problems like eye, nerve, and kid-
ney disease. On the other hand, too much insulin can result
in very low glucose levels (hypoglycemia) which can pose
immediate health risks. Exogenous insulin, then, must be
injected to regulate the blood glucose concentration as
tightly as possible.

Usually, insulin treatment consists of the administration of
rapid acting insulin through boluses (i.e., discrete insulin
administration) at the time of meals. The size of the bolus
is based on a measurement of the current blood glucose at
mealtime and the (estimated) size of the meal. However,
having measurements only at mealtime does not provide
enough information about blood glucose. Hypoglycemic
and hyperglycemic events can go unobserved due to the in-
frequent blood glucose measurements. In addition, such a
measurement process does not give any information about
the dynamic trend of the blood glucose. Consequently,
⋆ Funding for this research as part of the DIACON project from the
Danish Council for Strategic Research is gratefully acknowledged.

Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed either continuously by an
insulin pump or discretely using an insulin pen.

people with diabetes often tolerate hyperglycemia in order
to avoid hypoglycemia and its immediate effects.

Continuous glucose monitors (CGM) can help to provide a
better control of blood glucose. They measure the glucose
concentration in the subcutaneous depot. Insulin pumps
that continuously inject fast acting insulin have also been
developed. Combining a CGM with an insulin pump can
enable automatic insulin administration for people with
type 1 diabetes. Such a medical device is called an artificial
pancreas and is illustrated in Fig. 1. Several research
groups work on aspects of control algorithms integrating
the CGM and the insulin pump to automatically adjust
insulin administration for people with type 1 diabetes (see
e.g. Klonoff et al. (2009)).

In this paper we describe the Hovorka model and use this
description to point to the factors limiting ideal glucose
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Fig. 2. Diagram of the Hovorka model.

control by insulin administration. One factor limiting the
performance is the relative long absorption time of insulin.
Using open-loop NMPC we describe quantitatively the
maximal postprandial glucose in relation to the insulin
absorption rate.

The paper is structured as following. Section 2 presents
the model developed by Hovorka et al. (2004). Section
3 states an optimal control problem in the linear case.
Section 4 presents the nonlinear optimal control problem
and discusses the benefits of having faster-acting insulin.
Conclusions are provided in Section 5.

2. MODEL

For the study of insulin administration and its effect
on glucose concentrations we use a model developed by
Hovorka et al. (2002, 2004). The model consists of a
submodel describing food absorption, a submodel describ-
ing subcuteneous-to-intravenous absorption of insulin, a
simple lumped model describing the glucose dynamics,
and simple lumped models describing insulin dynamics
and action mechanisms. In the following we describe these
models.

2.1 Food Absorption

Food absorption models have been considered by a number
of authors (Elashoff et al., 1982; Lehmann and Deutsch,
1992; Dalla Man et al., 2006; Goetze et al., 2007) and it has
been observed that people with diabetes has abnormally
slow gastric emptying (Horowitz et al., 2002).

In this paper, we consider a two-compartment model
describing carbohydrate (CHO) absorption and conversion
to glucose. The model describes the effect of orally ingested
carbohydrates on the rate of appearance of glucose in the
blood stream. The model is

dD1

dt
(t) = AGD(t) −

1

τD

D1(t) (1a)

dD2

dt
(t) =

1

τD

D1(t) −
1

τD

D2(t) (1b)

in which D(t) [mmol/min] is the amount of oral carbohy-
drate intake at any time expressed as glucose equivalents,
AG is a factor describing the utilization of carbohydrates

to glucose, τD [min] is the time constant, D1(t) [mmol]
and D2(t) [mmol] are the states describing the amount of
glucose in the two compartments. The rate of appearance
of absorption of glucose in the blood stream is described
by

UG(t) =
1

τD

D2(t) (2)

UG(t) [mmol/min] is the glucose absorption rate. The
carbohydrate input rate, D(t) [mmol/min], may be related
to the carbohydrate input rate, d(t) [g/min], by

D(t) =
1000

MwG

d(t) (3)

in which MwG [g/mol] is the molecular weight of glucose.

2.2 Insulin Absorption

Insulin is administered subcutaneously. A number of mod-
els to describe the absorption rate of subcutaneously in-
jected short acting insulin in the blood stream are available
(Wilinska et al., 2005).

In this paper we consider a two compartment model de-
scribing the absorption rate of subcutaneously adminis-
tered short acting insulin. The model is

dS1

dt
(t) = u(t) −

1

τS

S1(t) (4a)

dS2

dt
(t) =

1

τS

S1(t) −
1

τS

S2(t) (4b)

in which u(t) [mU/min] is the amount of insulin injected,
τS [min] is the time constant, S1(t) [mU] and S2(t) [mU]
are the amounts of insulin in the two compartments. The
absorption rate of insulin in the blood stream is

UI(t) =
1

τS

S2(t) (5)

in which UI(t) [mU/min] is the absorption rate.

2.3 Glucose Subsystem

The blood glucose dynamics are modeled with two com-
partments. The two state variables are Q1(t) [mmol] and
Q2(t) [mmol]. Q1(t) represents glucose in the main blood
stream, while Q2(t) represents glucose in peripheral tissue
such as muscles.

The model describing evolution of glucose in the main
blood stream

dQ1

dt
(t) = UG(t) − F01,c(t) − FR(t)

− x1(t)Q1(t) + k12Q2(t)

+ EGP0(1 − x3(t))

(6)

includes absorption from the gut, UG(t) [mmol/min], con-
sumption of glucose by the central nervous system, F01,c

[mmol/min], the renal excretion of glucose in the kid-
neys, FR(t) [mmol/min], the insulin dependent uptake
of glucose in muscles, x1(t)Q1(t) [mmol/min], transfer of
glucose from peripheral tissue such as muscle to the blood,
k12Q2(t), and endogenous release of glucose by the liver,
EGP0(1−x3(t)). The uptake of glucose in muscles depends
on insulin. x1(t) is a state representing insulin in muscle
tissue. Release of glucose from the liver is also controlled
by insulin. High concentrations of insulin suppress glucose
release. x3(t) is used to model insulin in the liver.
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Glucose in peripheral tissue such as muscle is modeled by
the differential equation

dQ2

dt
(t) = x1(t)Q1(t) − (k12 + x2(t))Q2(t) (7)

in which x1(t)Q1(t) [mmol/min] is the transport of glucose
from the main blood stream to the muscles, k12Q2(t)
[mmol/min], is transport of peripheral glucose to the
main blood stream, and x2(t)Q2(t) [mmol/min] is the
insulin dependent disposal of glucose in the muscle cells.
It depends on insulin modeled by x2(t).

The glucose concentration is

y(t) = G(t) =
Q1(t)

VG

(8)

y(t) = G(t) is the glucose concentration [mmol/L] and
VG is the glucose distribution volume. It depends on body
weight, BW [kg], of the individual.

The consumption of glucose by the central nervous systems
is modeled as

F01,c(t) =

{

F01 G(t) ≥ 4.5 mmol/L

F01G(t)/4.5 otherwise
(9)

At low glucose concentrations the consumption, F01,c

[mmol/min], is proportional to the glucose concentration,
G(t), while it is constant when the glucose concentration
is not low.

The excretion rate of glucose in the kidneys is zero unless
the glucose concentration is high (G(t) ≥ 9 mmol/L).
In this case it is affine in the glucose concentration.
Consequently, the glucose excretion rate, FR [mmol/min],
is modeled as

FR(t) =

{

0.003(G(t) − 9)VG G(t) ≥ 9 mmol/L

0 otherwise
(10)

2.4 Insulin Subsystem

Then the plasma insulin concentration, I(t) [mU/L],
evolves according to

dI

dt
(t) =

UI(t)

VI

− keI(t) (11)

The insulin action is governed by influence on transport
and distribution x1(t), utilization and phosphorylation of
glucose in adipose tissue x2(t), and endogenous production
in the liver x3(t). These quantities are described by the
differential equations

dx1

dt
(t) = −ka1x1(t) + kb1I(t) (12a)

dx2

dt
(t) = −ka2x2(t) + kb2I(t) (12b)

dx3

dt
(t) = −ka3x3(t) + kb3I(t) (12c)

2.5 Parameters

The parameters in the Hovorka model (1)-(12) are listed
in Table 1. The parameters kb,i are related to the insulin
sensitivities, SI,i, by

kb,i = SI,ika,i i = 1, 2, 3 (13)

Table 1. Parameters in the Hovorka Model.

Symbol Value Unit

Transfer rate k12 0.066 1/min

Deactivation rate ka1 0.006 1/min

Deactivation rate ka2 0.06 1/min

Deactivation rate ka3 0.03 1/min

Insulin elimination rate ke 0.138 1/min

CHO absorption constant τD 40 min

Insulin absorption constant τS 55 min

CHO utilization AG 0.8 -

Transport insulin sensitivity SI,1 51.2 · 10−4 L/mU

Disposal insulin sensitivity SI,2 8.2 · 10−4 L/mU

EGP insulin sensitivity SI,3 520 · 10−4 L/mU

Insulin distribution volume VI

BW
0.12 L/kg

Glucose distribution volume VG

BW
0.16 L/kg

Liver glucose production EGP0

BW
0.0161 mmol

min
/kg

CNS glucose consumption F01

BW
0.0097 mmol

min
/kg

Some parameters are related to the body weight, BW [kg],
of the individual being considered. For a 70 kg person
(BW = 70 kg), these parameters are

VI = 0.12 L/kg · 70 kg = 8.4 L (14a)

VG = 0.16 L/kg · 70 kg = 11.2 L (14b)

EGP0 = 0.0161
mmol

min
/kg · 70 kg = 1.1270

mmol

min
(14c)

F01 = 0.0097
mmol

min
/kg · 70 kg = 0.6790

mmol

min
(14d)

The European unit for glucose concentration is mmol/L
and the American unit is mg/dL. One can convert be-
tween these units using the molecular weight of glucose
(C6H12O6): MwG = 180.1577 g/mol.

3. LINEAR MODEL PREDICTIVE CONTROL

In this section, we formulate and discuss the linearized
optimal control problem. Let x(t) ∈ Rnx be the state
vector, u(t) ∈ Rnu be the manipulated inputs, and d(t) ∈
Rnd be known disturbances.

A zero-order hold parametrization for the manipulated
variables function u and the disturbance function d is used.
We divide the time interval, [t0, tf ], into N equidistant
intervals, each of length Ts. We denote
N = {0, 1, ..., N − 1} and tk = t0 + kTs for k ∈ N . The
zero-order hold restrictions on d and u imply

u(t) = uk tk ≤ t < tk+1 k ∈ N (15a)

d(t) = dk tk ≤ t < tk+1 k ∈ N (15b)

3.1 Hard Output Constraints

Using the zero-order hold parametrization (15), the linear
discrete-time optimal control problem may be expressed
as
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min
{uk}

N−1

k=0

φ = φ
(

{uk, yk+1, rk+1}
N−1

k=0

)

(16a)

s.t. xk+1 = Axk + Buk + Edk (16b)

yk = Cxk (16c)

umin ≤ uk ≤ umax (16d)

∆umin ≤ ∆uk ≤ ∆umax (16e)

ymin ≤ yk ≤ ymax (16f)

in which xk ∈ Rnx is the state vector at time tk, and yk is
the measured output at time tk. The manipulated inputs
uk and the difference ∆uk = uk+1 − uk must lie in the
interval [umin, umax] and [∆umin, ∆umax] respectively.

The objective function φ is in the form

φ =
1

2

N−1
∑

k=0

‖yk+1 − rk+1‖
2
2 + λ‖∆uk‖

2
2 (17)

Furthermore, the measured output yk must lie in the in-
terval [ymin, ymax]. In the insulin administration problem,
it means that the blood glucose at sample times must be
kept in the normoglycemic range (60-140 mg/dL or 3.3-7.8
mmol/L).

However, infeasibility of (16) might arise due to the hard
constraints on the measured output yk. Consequently, it is
preferable to replace the hard constraints (16f) with soft
output constraints.

3.2 Soft Output Constraints

The hard constraints (16f) are replaced by soft constraints
using the slacks variables vk and wk. The new objective
function is

φ =
1

2

N−1
∑

k=0

‖yk+1 − rk+1‖
2
2 + λ‖∆uk‖

2
2+

κ1‖vk‖
2
2 + κ2‖wk‖

2
2

(18)

The two new terms κ1‖vk‖2
2 + κ2‖wk‖2

2 correspond to
penalty costs for hyperglycemia and hypoglycemia respec-
tively.

The linear discrete-time optimal control problem with soft
constraints that has to be solved may be expressed as

min
{uk,vk,wk}

N−1

k=0

φ = φ
(

{uk, yk+1, rk+1, vk, wk}
N−1

k=0

)

(19a)

s.t. xk+1 = Axk + Buk + Edk (19b)

yk = Cxk (19c)

umin ≤ uk ≤ umax (19d)

∆umin ≤ ∆uk ≤ ∆umax (19e)

ymin − yk ≤ wk (19f)

yk ≤ ymax + vk (19g)

vk ≥ 0 (19h)

wk ≥ 0 (19i)

in which the hard output constraint (16f) has been re-
placed with penalty terms in the objective function (18)
and the inequality constraints (19f - 19i).

3.3 Linear simulation results

We use the Hovorka et al. (2004) model linearized at the
steady state corresponding to the target blood glucose

Fig. 3. MPC with soft output constraints on glucose con-
centration. The small meal case. Upper left corner:
Blood glucose concentration. Upper right corner: In-
sulin concentration. Lower left corner: Disturbance
(Meals). Lower right corner: Injected insulin

concentration Ḡ = 5 mmol/L to compute the optimal
insulin administration profiles. Then, we apply this profile
to the Hovorka et al. (2004) model.

The objective of the insulin administration is to compen-
sate glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined by (18). yk is the blood glucose
concentration, rk = 5 mmol/L is the target value for
the blood glucose concentration, ymin = 4 mmol/L is a
lower acceptable limit on the glucose concentration, and
ymax = 8 mmol/L is an upper acceptable limit on the
blood glucose concentration. The weights κ1 and κ2 are
used to balance the desirability of different deviations
from the target. As hypoglycemia is considered a more
immediate danger than hyperglycemia, κ1 < κ2.

The choice of the weight λ should not change the shape
of the optimal blood glucose profile. It is used to avoid
ill-conditioning of the problem. For all the simulations, we
use λ = 10−2.

We use umin = 0 and a large umax such that the upper
bound is never active. We do the optimization in a 24
hour window, i.e. t0 = 0 min and tf = 24 · 60 min, using
a sampling time of Ts = 5 min. In the three scenarios
considered, the simulated 70 kg subject has a meal at
6:00. The meal sizes for each scenario are 25 g CHO,
50 g CHO and 100 g CHO, respectively. We compute
the optimal insulin administration using the linearized
model, and simulate a virtual patient using this sequence
of insulin administration on the Hovorka model (Hovorka
et al. (2004)).

Fig. 3 illustrates an optimal insulin administration profile
for the case where the meal size is relatively small. Having
a small meal implies a small deviation to the steady state.
Consequently, the linear and nonlinear solutions are quite
similar.
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Fig. 4. MPC with soft output constraints on glucose
concentration. The normal-sized meal case.

Fig. 5. MPC with soft output constraints on glucose
concentration. The large meal case.

Fig. 4 illustrates an optimal insulin administration profile
for the case where the meal size is normal. Although the
mismatch between the linear and the nonlinear model
becomes more evident, hypoglycemia is avoided.

Fig. 5 illustrates an optimal insulin administration profile
for the case where the meal size is large. A hypoglycemic
event occurs when the computed insulin is injected to the
virtual patient.

4. NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we state and discuss the continuous-
time nonlinear optimal control problem that we use to
compute the insulin injection profiles for people with
type 1 diabetes. The bound-constrained continuous-time
optimal control problem

min
{uk}

N−1

k=0

φ = φ
(

{u(t), y(t), r(t)}
t=tf

t=t0

)

(20a)

s.t. x(t0) = x0 (20b)

ẋ(t) = f(x(t), u(t), d(t)) (20c)

y(t) = g(x(t)) (20d)

u(t) = uk tk ≤ t < tk+1 (20e)

umin ≤ uk ≤ umax (20f)

∆umin ≤ ∆uk ≤ ∆umax (20g)

is used to compute the optimal insulin administration.
x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the vector
of manipulated inputs for tk ≤ t < tk+1, y(t) ∈ Rny

is the vector of measured outputs and d(t) ∈ Rnd are
known disturbances. ẋ(t) = f(x(t), u(t), d(t)) represents
the model equations. The initial time, t0, and the final
time, tf , are specified parameters. The initial state, x0,
is a known parameter in (20). The inputs are bound-
constrained and must lie in the interval [umin, umax], and
the difference ∆uk = uk+1 − uk must lie in the interval
[∆umin, ∆umax].

The objective of the insulin administration is to mitigate
glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined as

φ =
1

2

N−1
∑

k=0

[
∫ tk+1

tk

(y(t) − rk+1)
2+

κ1‖max{ymin − y(t), 0}‖2
2+

κ2‖max{y(t) − ymax, 0}‖
2
2

]

dt + λ‖∆uk‖
2
2

(21)

4.1 Optimal insulin administration

Fig. 6 illustrates an optimal insulin administration profile
in the case where the controller knows the size and time
of all meals in advance. Computing the solution using the
nonlinear model allows the controller to avoid mismatches.
However, the assumption that the patient would know
in advance the meal times and sizes is not practical.
Safety considerations would preclude significant amounts
of insulin from being delivered prior to mealtime.

Fig. 7 shows the simulation results for the case in which the
meals are announced to the MPC only at mealtime. Thus,
the controller can deliver no anticipatory insulin prior to
meals. The limitations for this case force the subject into
hyperglycemia, but hypoglycemia is avoided.

Fig. 8 shows the maximum blood glucose versus the insulin
time constant τs for small-sized meals (25 g CHO), normal-
sized meals (50 g CHO) and large-sized meals (100 g
CHO) if the meal is announced only at mealtime. A
faster insulin reduces the peak of glucose. For normal-sized
meals, having an insulin absorption time constant at least
equal to the glucose absorption time constant (i.e. τs = 40
minutes) avoids hyperglycemic events.

5. CONCLUSION

In this paper, we described a model developed by Hovorka
et al. (2004) to study the effects of insulin administration
on glucose concentration for people with type 1 diabetes.
Based on a linearized version of this model, we use an
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Fig. 6. Optimal insulin administration profile obtained
using NMPC.

Fig. 7. Optimal insulin administration with meal an-
nouncement at meal time.

optimal control algorithm to compute insulin adminis-
tration profiles for the case with meal announcement in
advance. The insulin profile simulated on the nonlinear
model does not match the optimal insulin administration
for the linearized model only if the meal is too large.

We use our optimal control algorithm to compute insulin
administration profiles for the cases with and without
meal announcement in advance, and we also compute the
maximum blood glucose versus the insulin time constant
for small-, normal- and large-sized meals. The results
suggest that having faster acting insulin can significantly
increase the control quality of blood glucose.
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