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Abstract: Diabetes technology has been focused since three decades ago on developing the artificial
páncreas through several closed-loop control algorithms linking glucose measurements and insulin
delivery. This work is focused on rigorously analyzing the Predictive Functional Control (PFC) algorithm
capabilities for deciding about the correct insulin dosage under everyday circumstances.
The study is done by applying the PFC in a recently developed model of the endocrine system, approved
by the FDA in 2008, as a substitute to animal trial. The platform used here consists only of a limited
number of patients: 10 children, 10 adolescents, and 10 adults. To realistically represent the full closed
loop system, a model of a subcutaneous glucose sensor was added and the constraints related to the
insulin pump was taken into account by the predictive controller.
The performance of the controller, with and without the sensor model, was evaluated by means of the
Control Variability Grid Analysis (CVGA) technique and the results were satisfactory in all patients.
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1. INTRODUCTION

Diabetes Mellitus is a disorder of the metabolism where either
insufficient insulin is produced by the beta cells in the páncreas,
or the body is unable to effectively utilize that insulin. As a
result, glucose cannot be transported to the cells, leading to
dangerously high blood glucose levels. Untreated over time,
high blood glucose levels can lead to costly complications and
low blood glucose can lead to death. It is a very frequent chronic
disease that in the last years has reached the proportion of an
epidemy. The prevalence of diabetes for all age-groups world-
wide was estimated to be 7.8% in 2030 by the International
Diabetes Federation (IDF Diabetes Atlas). The total number of
people with diabetes is projected to rise from 171 million in
2000 to 439 million in 2030.

Nowadays, to treat this disease, diabetic patients measure their
blood sugar content by pricking their fingers several times a day
and inject doses of insulin accordingly. From a control point of
view, this is an open loop method that tries to correct blood
glucose no more than 6 times a day, usually before having a
meal. The way artificial pancreas is thought is to regulate sugar
content in blood in real time, just as the human pancreas would
do. This could be done by means of a blood glucose sensor
accurate enough to give blood glucose content in real time, an
insulin pump that delivers the correct amount of insulin that the
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Argentina.

body needs, and the control algorithm, which is the responsible
for calculating this amount of insulin in real time.

To date, many control algorithms have been tested. PID (pro-
portional integral derivative) (Ramprasad et al., 2004) and MPC
(model predictive control) (Hovorka et al., 2004; Magni et al.,
2009) control laws are among the most well-known method-
ologies proposed in literature. However, model-based control
strategies have been used with more encouraging outcomes
in tighter regulation of blood glucose levels. The knowledge
incorporated by the models in these types of controllers is what
makes them more appealing. It is worth mentioning that other
types of control algorithms have been tested too. For example,
robust H∞ (Parker et al., 2000).

The PFC corresponds to the family of MPC. It has been used
many times in very different industrial applications with ex-
cellent results. Particularly, this type of controller has a great
capacity to handle nonlinear systems, unstable and with large
dead times. Moreover, PFC methodology has incorporated what
is called control zone. This means that the setpoint changes
(±∆% - control zone) depending on the difference of the pro-
cess output and the desired value, making it more versatile. The
authors have tested it before (Dı́az et al., 2005) with promis-
ing results but employing the old version of Cobelli’s model
(Carson et al., 1982). In the present work, the usefulness of this
controller is proved against a novel well validated physiological
model, much better than the old one.

So, the algorithm robustness has been tested on 30 in silico
patients based on the Food and Drug Administration (FDA)

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoAT1.3

Copyright held by the International Federation of Automatic Control 240



approved simulation environment. The full model consists of
300 patients (100 adults, 100 adolescents and 100 children)
but is only available to the Juvenile Diabetes Research Founda-
tion (JDRF) Artificial Pancreas Consortium (Kovatchev et al.,
2009). First, the type 1 diabetic patient model and the sensor
model are fully described. Then, the mathematics behind the
control algorithm is summarized. After that, the development of
the models for the controller and the adjustment of its parame-
ters is explained. Finally, the PFC is tested with and without the
in silico sensor, and introducing errors in the internal models
showing that it is robust enough to perform successfully.

2. THE INTERACTION MODEL: GLUCOSE-INSULIN

The mathematical model used in this work to synthesize and
test the controller is the one developed by Dalla Man et al.
(2007) because it is one of the only ones that has been validated
against clinical and experimental data and has been approved
by the FDA as a substitute to animal trial in the pre-clinical
testing of closed-loop control algorithms. This model allows
simulating the dynamic effect of exogenous glucose and insulin
dosage under different specific tests for diabetic patients and it
is summarized in the following subsections.

2.1 Glucose intestinal absorption

It is modeled by a recently developed three-compartment
model:

˙Qsto1(t) =−kgriQsto1(t)+d(t) (1)

˙Qsto2(t) =−kempt(t,Qsto(t))Qsto2(t)+ kgriQsto1(t) (2)

˙Qgut(t) =−kabs + kempt(t,Qsto(t))Qsto2(t) (3)

Qsto(t) = Qsto1(t)+Qsto2(t) (4)

Ra(t) = f kabsQgut(t)/BW (5)

where Qsto (mg) is the amount of glucose in the stomach (solid,
Qsto1 , and liquid phase, Qsto2), Qgut (mg) is the glucose mass
in the intestine, kgri is the rate of grinding, kabs is the rate
constant of intestinal absorption, f is the fraction of intestinal
absorption which actually appears in plasma, d(t) (mg/min) is
the amount of ingested glucose, BW (kg) is the body weight,
Ra (mg/kg/min) is the glucose rate of appearance in plasma and
kempt is the rate constant of gastric emptying which is a time-
varying nonlinear function of Qsto:

kempt(t,Qsto(t)) = kmax +
kmax − kmin

2
[A(t)]; (6)

where:

A(t) = tanh[α(Qsto(t)−bD(t))]− tanh[β (Qsto(t)−dD(t))]

(7)

α =
5

2D(t)(1−b)
(8)

β =
5

2D(t)d
(9)

D(t) =
∫ t f

ti

d(t)dt (10)

with ti and t f , respectively, start time and end time of the last
meal, b, d, kmax and kmin model parameters.

2.2 Glucose subsystem

A two-compartment model is used to describe glucose kinetics:

Ġp(t) = EGP(t)+Ra(t)−Uii(t)−E(t)− k1Gp(t)+ k2Gt(t)

(11)

Ġt(t) = k1Gp(t)−Uid(t)− k2Gt(t) (12)

G(t) =
Gp(t)

VG

(13)

with Gp(0) = Gpb, Gt(0) = Gtb, G(0) = Gb. Here Gp and Gt

(mg/kg) are glucose masses in plasma and rapidly-equilibrating
tissues, and in slowly-equilibrating tissues, respectively, G
(mg/dl) is plasma glucose concentration, suffix b denotes basal
state, EGP is endogenous glucose production (mg/kg/min), Ra
is glucose rate of appearance in plasma (mg/kg/min), E is renal
excretion (mg/kg/min), Uii and Uid are insulin-independent and
dependent glucose utilizations, respectively (mg/kg/min), VG

is the distribution volume of glucose (dl/kg), and k1 and k2

(min−1) are rate parameters.

2.3 Glucose renal excretion

Renal excretion represents the glucose flow which is eliminated
by the kidney, when glycaemia exceeds a certain threshold ke2:

E(t) = max(0,ke1(Gp(t)− ke2)); (14)

The parameter ke1 (1/min) represents renal glomerular filtration
rate.

2.4 Endogenous glucose production

EGP comes from the liver, where a glucose reserve exists
(glycogen). EGP is inhibited by high levels of glucose and
insulin:

EGP(t) = max(0,EGPb − kp2(Gp(t)−Gpb)− kp3(Id(t)− Ib));
(15)

where kp2 and kp3 are model parameters and Id (pmol/l) is
a delayed insulin signal, coming from the following dynamic
system:

İ1(t) = kiI(t)− kiI1(t) (16)

İd(t) = kiI1(t)− kiId(t) (17)

where I (pmol/l) is plasma insulin concentration or insulinemia
and ki (1/min) is a model parameter.

2.5 Glucose utilization

Glucose utilization is made up of two components: the insulin-
independent one Uii, which represents the glucose uptake by the
brain and erythrocytes, and the insulin-dependent component
Uid , which depends non-linearly on glucose in the tissues:

Uid(t) =Vm(X(t))
Gt(t)

Km +Gt(t)
; (18)

where Vm (1/min) is a linear function of interstitial fluid insulin
X (pmol/l)

Vm(X(t)) =Vm0 +VmxX(t); (19)

which depends from insulinemia in the following way:

Ẋ(t) = p2u(I(t)− Ib)− p2uX(t); (20)

where Km, Vm0, Vmx are model parameters, Ib (pmol/l) is the
basal insulin level and p2U (1/min) is called rate of insulin
action on peripheral glucose.

Copyright held by the International Federation of Automatic Control 241



2.6 Insulin subsystem

Insulin flow s, coming from the subcutaneous compartments,
enters the bloodstream and is degradated in the liver and in the
periphery:

İp(t) = m1Il(t)− (m2 +m4)Ip(t)+ s(t) (21)

İl(t) = m2Ip(t)− (m1 +m3)Il(t) (22)

I(t) = Ip(t)/VI (23)

where VI (l/kg) is the distribution volume of insulin and m1, m2,
m3, m4 (1/min) are model parameters.

2.7 Subcutaneous insulin subsystem

The subcutaneous insulin subsystem is modeled here with two
compartments, S1 and S2 (pmol/kg), which represent, respec-
tively, polymeric and monomeric insulin in the subcutaneous
tissue:

Ṡ1(t) =−(ka1 + kd)S1(t)+u(t) (24)

Ṡ2(t) = kdS1(t)− ka2S2(t) (25)

s(t) = ka1S1(t)+ ka2S2(t) (26)

where u(t) (pmol/kg/min) represents injected insulin flow, kd

is called degradation constant, ka1 and ka2 are absorption con-
stants.

2.8 Subcutaneous glucose subsystem

The delay of the sensor was modeled with a system of first
order:

ĠM(t) = kscG(t)− kscGM(t); (27)

3. THE SUBCUTANEOUS SENSOR MODEL

In order to simulate more realistically the behaviour of a di-
abetic patient using an artificial pancreas (Kovatchev et al.,
2009), a model of the sensor was incorporated. The in silico
subcutaneous sensor used in the simulations is the one de-
veloped by (Breton and Kovatchev, 2008). After generating a
random calibration error, the components of sensor error can
be modeled as:

(1) Blood-to-interstitium glucose transport described by the
equation:

∂ IG

∂ t
=

−1

τ
(IG−BG); (28)

where IG is the interstitial and BG is plasma glucose
concentration, and τ represents the time lag between the
two fluids;

(2) Noise of the sensor, which is non-white (Gaussian). We
therefore use ARMA process for its modeling:

e1 = v1 (29)

en = 0.7(en−1 + vn) (30)

with vn ∼ Φ(0,1), i.i.d.. The sensor noise is εn, which
is driven by the normally distributed time series en. The
parameters ξ , λ , δ , and γ are the Johnson system (SU -
unbounded system) parameters corresponding to empiri-
cal noise distributions established in accuracy trials:

εn = ξ +λ sinh(
en − γ

δ
); (31)
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Fig. 1. Nominal scenario for adult patient. It can be seen
the upper bound (300 mg/dl) and the lower bound (70
mg/dl) in accordance with the CVGA and the sensor noise
superimposed in gray.

4. THE IN SILICO PRECLINICAL TRIAL

The performance of our controller was tested on a 1-day virtual
protocol (Fig. 1) based on Patek et al. (2009). For an adult:

(1) Admit state: Patient blood glucose steady at 100 mg/dl at
18:00 Day 1.

(2) Control loop is closed at 21:00 Day 1.
(3) At 7:30 Day 2, the patient has breakfast lasting about 2

min with a carbohydrate (CHO) content of 50 grams.
(4) At approximately noon (12:00) Day 2, the patient takes a

lunch meal containing 65 grams CHO. Meal duration is
15 min.

(5) At 18:00 Day 2, the patient takes a dinner meal containing
80 grams CHO. Meal duration is 15 min.

This scenario changes for adolescents and children just in
the amount they eat (Adolescents: 40/50/65 grams; Children:
25/30/40 grams).

5. PREDICTIVE FUNCTIONAL CONTROL (PFC)

The PFC technique is the third generation of a family of Model
Algorithmic Control. PFC basically consists of four main ele-
ments such as a process dynamic model, a reference trajectory
yr(n), a self-compensation of the predicted error and a specific
structure for the manipulated variable. The future error between
yr(n) and the predicted output over the coincidence horizon
[H1,H2] is estimated. A self compensation is done accounting
for the actual mismatch between real data and model output.
The estimation of the future error at the coincidence horizon by
specific kind of extrapolation, allows to improve the model pre-
diction. Within PFC, feedforward and feedback control actions
can be jointly designed and constraints are taken into account
in a very natural way.

Calling the inputs of the manipulated variable u(n) (insulin
from the pump) and the perturbation d(n) (a meal), the first or-
der model response at the coincidence point (n+H) becomes:

ym(n+H) = αH
m xmi(n)+αH

d xmd(n)+
H−1

∑
j=0

αH−1− j
m Kmi(1−αm)u( j+n)+

H−1

∑
j=0

α
H−1− j

d Kdi(1−αd)d( j+n)

(32)
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Fig. 2. External insulin infused to Adult #3.

u(n) = K0ε̂(n)+K1ymi(n)+ ... (33)

...+K2ymd(n)+K3d(n)+K4ym(n)

K0 =
(1−λ H)

Kmi(1−αH
m )

(34)

K1 =
−αH

m

Kmi(1−αH
m )

(35)

K2 =
−αH

d

Kmi(1−αH
m )

(36)

K3 =
−Kdi(1−αH

d )

Kmi(1−αH
m )

(37)

K4 =
1

Kmi(1−αH
m )

(38)

(39)

The reference trajectory, which is the path to the future set
point, is resetted at every instant and is given by:

C(n+ j)− yr(n+ j) = λ j(C(n)− yp(n)),0 ≤ j ≤ H (40)

λ = e
−3Ts
CLT R (41)

where C(n) is the set-point, yp(n) the real process output and
λ is a parameter that represents the exponential convergence of
the algorithm, and thus fixes the closed-loop behaviour. Ts is the
sampling time and was considered as 5 minutes because of the
sensor readings per hour.

The parameters to be tuned for the PFC are: number of coin-
cidence points (H), closed loop time response (CLTR) of the
reference trajectory, the control zone considered so that CLTR
moves linearly between two extremes values recognized as
CLT R L (low) and CLT R H (high), the transition zone [%] that
set the allowed zone for the controlled variable expressed as ±
Delta [%] with respect to the set point value and constraints to
the manipulated variable are also included by fixing maximum
(Umax), minimum (Umin) and variations for it [(dU/dt)max].

Here just a brief summary of the PFC technic is presented.
For more details about the implementation of PFC, the reader
should see Richalet and O’Donovan (2009).

5.1 Models for the PFC controller

The PFC has three inputs, the glucose measurement, the glu-
cose set point (100 mg/dl in our case) and the glucose rate
of appearance into the glucose compartment (Ra). The last
input is only present if the meal is announced. To avoid the
nonlinearities in the stomach compartment, the model for the
controller was linearized without this compartment present. As
a consequence of this, the meal disturbance has to be given as

a filtered response into the glucose compartment and not as a
step response into the stomach compartment (Ellingsen, 2008).

To announce a meal, the mean of all model parameters for each
group of patients was taken and the glucose rate of appearance
of each group was saved in a matrix. Then, the controller
receives a mean absorption profile. Another way of solving this
problem could be detecting when a patient receives a meal as
shown in Dassau et al. (2008).

In our case, the relationship between insulin infusion (manipu-
lated variable) and blood glucose (controlled variable) is named
Gmi. Meanwhile Gdi refers to the relationship between exoge-
nous glucose (Glucose rate of appearance Ra from a meal) and
blood glucose. Both models were set to be first order with time
delay, and their identification was done by means of a step
excitation in the insulin delivery and in the meal ingestion at
the nominal condition. The step used depends on the group
studied. For the manipulated variable, having the information
of the Total Daily Insulin (TDI [U]) consumed by each patient,
the mean value of all patients was taken. For the perturbation,
the R̄a = ∑ R̄ai was calculated.

5.2 PFC tuning

First, the controller was adjusted to each individual patient to
see the optimal performance of it. The way parameters were set
is described later in this section. Then, the controller was tested
over three groups of patients: 10 children, 10 adolescents, and
10 adults. A set of parameters for the PFC was proposed to each
group of patients (See Table 1). These set of parameters were
obtained as follows:

(1) for each patient, two first order models with time delay
was proposed (the plant and the disturbance):

Gmi =
Kmie

−θmis

1+Tmis
(42)

Gdi =
Kdie

−θdis

1+Tdis
(43)

(2) for each patient the CLTR L, CLTR H, H1 and H2 were
computed as:
• CLT R L = Tmi/2
• CLT R H = 10Tmi

• H1 = θmi

• H2 = θmi +3Tmi

(3) then, the mean value of these parameters were taken for
each group (children, adolescents and adults) and the rest
of the parameters were fixed as shown in Table 1. The
only parameter to be changed among the patients was
[(dU/dt)max].

The parameter ([(dU/dt)max]) represents the aggressiveness of
the controller. If it is set in a low value, the response of the
controller is very soft. Increasing it, the controller becomes
more and more aggressive. The adopted parameters for the
simulations shown in this work are included in Table 1. This
table shows the parameters adopted in cases study 3 (columns 2,
3 and 4) and 4 (fifth column) as will be shown in the following
section.

6. RESULTS

The Control-Variability Grid Analysis (CVGA) is a graphical
representation of min/max glucose values in a population of pa-
tients either real or virtual. The CVGA provides a simultaneous
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Table 1. Controller Parameters

Parameter Children Adolescents Adults Mean Units

CLT R L, 100.5 184.5 167.5 150.8 [min]

CLT R H, 2010 3690 3350 3016.7 [min]

Delta, 30 30 30 30 [%]

Umin, 0 0 0 0 [pmol/min]

Umax, 150 150 150 150 [pmol/min]

( dU
dt
)max, ( dU

dt
)max ( dU

dt
)max ( dU

dt
)max ( dU

dt
)max [pmol/min2]

Kmi, -1.899 -0.573 -1.283 -1.2517 [(mg/dl)/(pmol/min)]

Tmi, 201 369 335 301.7 [min]

θmi, 104 121 137.5 120.8 [min]

Kdi, 42.243 44.753 53.471 46.822 [(mg/dl)/(mg/kg/min)]

Tdi, 146 164.5 174.5 161.7 [min]

θdi, 7.9 6.7 6.3 6.97 [min]

H, 1 1 1 1 [dimensionless]

H1, 104 121 137.5 120.8 [min]

H2, 707 1228 1142.5 1025.8 [min]

Ts, 5 5 5 5 [min]

Fig. 3. CVGA (Case Study 1): circles (adults), diamonds (ado-
lescents) and pentagrams (children).

assessment of the quality of glycaemic regulation in all patients.
As such, it has the potential to play an important role in the
tuning of closed-loop glucose control algorithms and also in the
comparison of their performances (Magni et al., 2008). So, it is
a method for visualization of the extreme glucose excursions
caused by a control algorithm in a group of subjects, with each
subject represented by one data point for any given observation
period. In this work, four case studies are presented:

6.1 Case Study 1

In Fig. 3 the CVGA done with the controller adjusted to each
patient is presented. To differentiate among the groups, they
are represented as follows: adults with circles, adolescents
with diamonds, and children with pentagrams. As can be seen,
everybody is in the green zone, which means that they are
safe, not running major risks. In Figs. 1 and 2 the glucose and
insulin profiles obtained in the nominal scenario with the PFC
including the subcutaneous sensor model are reported for adult
#3. There can be seen superimposed the sensor signal in gray.

6.2 Case Study 2

In another study, the CVGA without using the sensor model was
done (Fig. 4). This is as if the controller received the real blood
glucose content, a perfect sensor. The controller in this scenario
uses the same tuning as in case study 1. It can be seen that,
although everybody is in the safe zone, they have all gone closer
to the lower bound (to the right - 70 mg/dl of blood glucose),

Fig. 4. CVGA without the use of the sensor model (Case
Study 2): circles (adults), diamonds (adolescents) and
pentagrams (children).

where the risk of undergoing an hypoglycaemic episode is
bigger. It is remarkable that Case Study 1 is misleading because
it seems that the controller performed better than in this case
which is just a matter of randomness (because of the sensor
noise and error some patients crossed the line between zone
B and A). If the influence of the sensor model is needed in
depth , a different study should be done. This may lead to a
Fault Diagnosis and Identification (FDI) system which gives
the controller the exact quantity (Campetelli et al., 2009).

6.3 Case Study 3

In this case study, the controller parameters were adjusted to
each group of patients as explained in Section 5.2. In Fig. 5 a
CVGA performed with this PFC tuning is showed. It results in
a poorer performance of the controller than in case study 1 but
everybody is still in the safe region.

6.4 Case Study 4

Taking into account the good performance obtained hitherto,
we encouraged to go even farther. In this case study, the
controller parameters were set the same to all patients. The
mean value of all parameters as showed in the fifth column of
Table 1 was used. Then, adjusting the value of [(dU/dt)max] to
each individual patient as done before, everybody was sent to
the safety zone. This can be seen in Fig. 6. Even though the
number of patients in zone A is smaller than in the other case
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Fig. 5. CVGA using mean parameters in the controller for
each group of patients (Case Study 3): circles (adults),
diamonds (adolescents) and pentagrams (children).

Fig. 6. CVGA using mean parameters in the controller for
all patients (Case Study 4): circles (adults), diamonds
(adolescents) and pentagrams (children).

studies, everybody is still in the green zone, which means that
they are under control. Just to make a comparison among the
different scenarios, each CVGA has the percentages at the top,
showing that the case where most patients were in zone A is the
first scenario studied (36.7%).

7. CONCLUSIONS

This is the first time that PFC was tested in a well-known
mathematical model of the glucose-insulin system accounting
for the physiological variability of different patients of different
age groups. In spite of the fact that the internal model is
so simplistic, the performance of the controller is more than
acceptable and is similar to the results obtained by using other
technologies within MPC technique (Magni et al., 2009). In
Fig. 1 the evolution of a type 1 diabetic adult after the virtual
protocol defined in Section 4 can be seen. The insulin infusion
rate calculated by the PFC controller to keep this patient within
normal glucose range is shown in Fig. 2.

It must be remarked that the PFC results very intuitive for
selecting all the adjusting parameters involved in this technique.
Hence, even though a more sophisticated implementation of
this kind of MPC philosophy could be applied, the results ob-
tained here demonstrate its potentiality for this type of complex
problems. It has been proved that the robustness of the control
algorithm is capable of dealing with inter-patient variability.
Taking the same parameters within the same group of patients

resulted in a very good performance of the control algorithm.
So, it gives more simplicity and seems to be robust enough to be
useful for a group of models corresponding to similar patients.
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