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Abstract: In multivariate analysis of batch data, the step known as trajectory alignment (or 
synchronization) is not solely intended to homogenize the number of samples across batch data. Its 
primary objective is to standardize the data according to the evolution of the process, irrespective of the 
number of samples per run. The use of an indicator variable performs both objectives well. Two 
examples from the pharmaceutical sector are discussed to illustrate the different ways to deal with uneven 
samples across batches and across variables in the same batch (multi-rate data). Since trajectory 
alignment is not necessarily trivial, a simple approach based on the covariance matrix of the scores from 
a variable-wise unfolded data set is used to assess the need to analyze the dynamics of a given process 
(and hence perform alignment). The presented examples are representative of a broad variety of batch 
processes that are operated by recipe in the pharmaceutical sector. In our experience, the variables 
associated with the automation triggers in these recipes are the best indicator variables to use since the 
resulting alignment scheme can be performed in real-time for monitoring applications.  
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1. INTRODUCTION 

The application of multivariate latent variable models to 
analyze batch processes has been widely studied and 
discussed (Garcia-Munoz 2004;Garcia-Munoz et al. 
2006;Garcia-Munoz et al. 2008;Gurden et al. 2001;Kourti, 
Nomikos, & MacGregor 1995;MacGregor & Nomikos 
1992;Nomikos 1995;Nomikos 1996;Nomikos & MacGregor 
1994;Nomikos & MacGregor 1995a;Nomikos & MacGregor 
1995b;Ramaker et al. 2002;van Sprang et al. 
2002;Westerhuis, Gurden, & Smilde 2000;Westerhuis, 
Kourti, & MacGregor 1998;Wold et al. 1998). These 
techniques have been successfully implemented in industrial 
settings, with some applications available in the public 
literature (Chiang & Colegrove 2007;Garcia-Munoz et al. 
2003;Neogi & Schlags 1998). 

In spite of the maturity of these techniques, there are still 
misconceptions about the capabilities of the method, and the 
expectations that batch alignment techniques (Kassidas, 
MacGregor, & Taylor 1998;Westerhuis et al. 1999) solve the 
problem of the uneven number of samples per batch. In fact, 
the problem of having uneven samples across batches has an 
additional degree of difficulty: the uneven number of samples 
across variables within the same batch, referred to as multi-
rate data (Lakshminarayanan et al. 1996); this problem needs 
additional attention beyond simple alignment.  

This work presents our experience in dealing with these 
situations with two examples representative of those in the 
pharmaceutical sector. We also comment on the expectations 
of a batch alignment exercise from a practical perspective and 
finally present a simple method to assess the potential impact 
of the dynamics of a process onto the final product quality. 

2. 2D MULTI-WAY METHODS AND PROCESS 
DYNAMICS  

Data sampled from a dynamic system will contain samples of 
variables as they change with time. The data can then be 
arranged in any number of ways, depending on the model 
structure to be used (Data is only a set of numbers with some 
contextual relationship; any structural arrangement is 
artificially imposed).  For example, in the parameter 
estimation of an autoregressive with exogenous input (ARX) 
model the time collected samples will be lagged depending 
on the order of the model. An incorrect ARX model can be 
built by simply assuming the incorrect order. In such case the 
inaccuracy of the model is not due to the ARX general 
structure: the problem is the incorrect order of the model! 
The same analogy can be applied to the application of 
Principal Component Analysis (PCA) on dynamic data. 
Numerous authors criticize PCA as unable to capture the 
dynamics of a process and some authors propose the 
inclusion of lags as an “improvement to PCA” to capture 
dynamics. While the approach is certainly valid -including all 
possible lags of batch data was the original proposal by 
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MacGregor et al (MacGregor & Nomikos 1992)- it is 
incorrect to state that the problem is the PCA method. The 
real problem is the arrangement of the data. 

Given that the data is properly arranged in a 2D matrix as 
described in Nomikos and Macgregor (1994); it has been 
proven that a PCA model is equivalent to a multivariate time 
series that implicitly captures the order of the dynamics in the 
system with time dependent parameters(Garcia-Munoz, 
Kourti, & MacGregor 2004). This approach also provides a 
forecasting model with an explicit mechanism for the 
parameters to adapt to new samples; providing an accurate 
prediction of the expected future samples (Garcia-Munoz, 
Kourti, & MacGregor 2004).  These forecasting mechanisms 
are in fact the only way to model batch data with multivariate 
methods, for process control, design or optimization (Flores-
Cerrillo & MacGregor 2002;Flores-Cerrillo & MacGregor 
2004;Flores-Cerrillo & MacGregor 2005;Garcia-Munoz, 
MacGregor, Kourti, Apruzzece, & Champagne 2006;Garcia-
Munoz, MacGregor, Neogi, Latshaw, & Metha 2008). 

In a PCA model of the batch data, rearranged in a 2D matrix 
of I × (J×K) dimensions (where I is the number of batches, J 
is the number of variables sampled during the batch and K the 
number of samples taken during the batch) there is one strong 
assumption, and that is that all the elements of a column in 
this matrix corresponds to a variable sampled at the same 
state of evolution of the batch for all batches in the data set. 
This correspondence is discussed in early papers by Nomikos 
et al, and a simple procedure was proposed to ensure all 
variables were sampled at the same state of evolution of the 
process: the use of an indicator variable. 

The power of the indicator variable approach is because it 
achieves two objectives in one step: i) it ensures that all 
variables are sampled at the same state of evolution for all 
batches, and ii) it homogenizes the number of samples taken 
for each batch (K needs to be as equal as possible for all 
batches).  

The following section deals with decoupling these two 
objectives to address the common misconception that batch 
alignment only refers to the second objective (homogenizing 
the number of samples). 

3. BATCH PROCESS ALIGNMENT 

Commonly batch processes have unequal durations, since the 
recipes for automation (or criterions for manual operation) 
are based on triggers that rarely depend on time. Disturbances 
to the materials or to environmental conditions (e.g. 
temperature of chilled water or cooling air) can introduce 
changes in the magnitude of the driving forces behind the 
evolution of the process and hence change the total time it 
takes to finish a given batch. Comparison of batch data using 
time stamps is hence rarely adequate. 

If the purpose of a given data analysis technique is to uncover 
the effect of a given variable at specific points during the 
evolution of the process (irrespectively of the time it takes the 
process to get there) it is then imperative to manipulate the 
data so that the values of the collected variables are 

representative of the same points of evolution for all batches. 
This is the primary objective of batch alignment. Having the 
same number of samples for all batches is a by-product of 
alignment and not its primary objective. In fact, in practice 
there is always some variability in the final state of a batch 
(or a stage of a batch) that makes it difficult to have the same 
number of samples. 

For example, consider a given process that is executed until a 
temperature of 90 C is reached, in addition to having different 
time durations (due for example to differences in total mass 
in each batch, or variations in heating medium) it is not 
unthinkable that there will be some variability of the final 
temperature across batches. An indicator variable approach 
(Nomikos and Mac Gregor, 1994) using temperature as the 
indicator variable would be appropriate since the evolution of 
the process from an execution perspective is indicated by 
temperature. Now even when all the data is re-sampled at 0.5 
C intervals; if the variation of the final temperature is +/- 2 C 
centred around 90 C, it means that some batches will have 4 
samples less than the average and some will have 4 samples 
more than the average. Although the data is properly aligned, 
the inherent variability in the process will prevent all batches 
from having the same number of samples.  

Batch alignment is perhaps the most time-consuming step 
during batch analysis, and is necessary unless the dependence 
with respect to its evolution is disregarded (steady-state 
assumption). Multiple papers have been presented dealing 
with this topic (Kassidas, MacGregor, & Taylor 
1998;Westerhuis, Kourti, Kassidas, Taylor, & MacGregor 
1999) ranging from the simple re-sampling procedure against 
an indicator variable, to the very complex Dynamic Time 
Warping.  

Pharmaceutical batch processes are operated under a specific 
recipe with known automation triggers for the operation, the 
approach of using an indicator variable is in our experience 
the best as is illustrated in the following examples. 

4. CASE STUDY #1 

The manufacture of the active pharmaceutical ingredient 
(API) can include a complex sequence of reactions and 
separations. The first case involves a reaction and a 
distillation of an intermediate pharmaceutical product. The 
reaction is executed in 8 stages, with 9 variables sampled 
during the batch. Each lot of reacted material is then 
transferred to a distillation step. The distillation is executed in 
4 stages with 7 variables measured during the batch. The 
multiple variables sampled for the process have a much 
different sampling rate. The complete set consists of 65 
batches. 

The multi-rate nature of the problem commonly arises due to 
the existence of a compression mechanism in the historian. 
These compression algorithms (e.g. the Boxcar algorithm) are 
implemented to reduce the amount of hard drive used to 
archive the data. Although the presence of this compression 
layer will limit the frequency of the signal in the data, it can 
potentially aid the analysis since it will wash out variability 
that is considered negligible by the operator.  
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The criterion that a compression algorithm uses to determine 
whether to store a sample or not for a given tag is usually 
based on the change in magnitude being greater than a 
threshold, or a maximum dead-time (in which a sample will 
be stored even if it has not changed after a maximum amount 
of time).  

If a certain variable has very few archived points, it might be 
undesirable to interpolate intensively (to match the number of 
samples of another one) since no additional information is 
actually being included into the model.  

As a first step in the analysis of this particular application it 
was decided to work as closely with the raw data as possible, 
since the data had already undergone the manipulation of the 
compression algorithm. The challenge is to synchronize 
batches of unequal time duration, which contain variables of 
unequal sampling rate. Two approaches were taken and 
discussed in the following sections. 

4.1 First alignment approach entirely based on total number 
of samples for a multi-rate scenario 

In order to preserve as closely as possible the number of 
samples, and the sampling frequency in each stage, the 
following procedure was followed: 

1. Histograms of total number of samples for each variable 
were made; a median number of samples was calculated for 
each variable (let sj be the median number of total samples 
for variable j). 

2. An analysis was made of the median percentage of the 
total time invested in each of the n stages for each process (8 
stages for the reaction, 4 for the distillation). Let fn be median 
fraction of total time spent in stage n.  

3. For each variable we resample round(sj/fn) times during 
each of the n stages for the process 

This re-sampling mechanism yields equal number of samples 
for all batches, and also some degree of alignment. As it will 
be shown later, this alignment is much improved when an 
indicator variable is used.  

For the case of the reaction the median fractional time spent 
for each of the 8 steps were 0.13, 0.04, 0.23, 0.3, 0.03, 0.04, 
0.04, and 0.19 respectively. The numbers of samples for each 
variable for the reaction are listed in Table 1. The median 
fractional times for the distillation step were 0.32, 0.10, 0.55 
and 0.025 respectively; the total number of samples for each 
variable is given in Table 2. 

The raw trajectories for variable TIC-03R10 and the obtained 
alignment using this first procedure are illustrated in Figs. 1 
and 2. An additional trajectory for the used-time at the 
reaction and distillation was also included in the analysis as 
well as a block of data with initial conditions and key 
properties of the incoming material (Garcia-Munoz, Kourti, 
MacGregor, Matheos, & Murphy 2003). 

Table 1. Median number of samples per variable for the 
reaction step 

Tag name Description Samples 

TIC-01R13/14  Reactor Temperature  85
TIC-03R13/14  Jacket Inlet Temp.  1000
TIT-01R13/14  Upper Reactor Temp.  70
TIT-02R13/14  Jacket Outlet Temp.  450
TIT-06R13/14  Lower Reactor Temp.  70
PIC-01R13/14  Reactor Pressure  65
PIC-02R13/14  Discharge Pump Press.  65
SIC-01R13/14  Agitator Speed  900
WIT-01R13/14 Reactor Weight 970

Table 2. Median number of samples per variable for the 
distillation step 

Tag name Description Samples 
TIC-01R10  Reactor Temp.  151
TIC-03R10  Jacket In Temp.  2001
TIT-02R10  Jacket Out Temp.  1001
TIT-11R10  Dist-Temp 71
PIC-01R10  Reactor Press  31
WIT-01R10  Reactor Weight  1201
WIT-01L15 Rec. Reactor Weight 621

 

For the final mode, a multi-block PLS approach is taken due 
to the severe disparity of samples across variables (each 
block of data for one variable for all I batches is considered a 
block). All variables from distillation and reaction are 
analyzed in a single model due to the strictly sequential 
execution of these two operations. The model contains 21 
blocks and is able to capture 80% of the variability of final 
yield of the process using 3 principal components. 

 

Fig1. Raw trajectories for TIC-03R10 

For this model it was noted that the later 2 latent variables 
captured the most variability in yield. From the analysis of 
the loadings of these components (not shown) it was clear 
that the pressure in the reactor, the initial conditions, the 
properties of the incoming material (TU3), and the agitator 
speed were strongly related with both components and hence 
related with the yield of the process. 
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Fig 2. Aligned trajectories for TIC-03R10 using total number 
of samples procedure 

4.2 Second alignment for process monitoring 

The results of the previous modelling approach were useful to 
develop possible strategies to improve the yield of the 
process; however this model is not useful for monitoring 
since the total time per batch is unknown at the start of the 
run.  

What is known are the multiple automation triggers used in 
the execution system (in this case a Delta V® DCS). The 
trigger variables will surely be measured and in a process 
improvement case, they represent the desired state of the 
process hence making it sensible to monitor around them. For 
this specific example, only the alignment of the distillation 
step is discussed.  

The distillation step is executed in 4 stages. Stage 1 is the 
primary distillation and the end of it is determined by a 
certain amount of material extracted and transferred to 
collection bin. Between stages 1 and 2 there is an addition of 
a finite amount of additional material (stage 1b). Stage 2 is 
the cooling down of the system until a thermocouple records 
-17 C. Stage 3 operated by a finite amount of runtime under 
slow agitation and stage 4 is the discharge of the unit. Four 
indicator variables are hence selected from this process: 
Weight of collecting bin for the first stage, weight of the 
distillation vessel for stage 1b, temperature for stage 2, and 
run time for stage 3. Stage 4 is neglected. 

A similar analysis as in section 4.1 was carried out with 
respect to the number of samples taken per variable per stage. 
This was done in order to determine the total amount of 
samples to consider per variable per stage. Variables are then 
re-sampled with respect to the appropriate indicator variable 
for each of the stages. The aligned profile of TIC-03R10 is 
shown in Fig 3; note the improved alignment of the data 
when compared with Fig. 2. 

Once the data was aligned, a 5 component model captures 
~85% of the total variability in the data. The interpretation of 
the loadings for this second model is consistent with the 
expected driving forces acting upon the process. For 
example, thermodynamic relationships for the primary 
distillation and heat transfer for stage 1b and 2 are 
represented in the 1st PC (interpreted so by the relationships 

between jacket and product temperature, and process 
pressure). 

 

Fig 3. Aligned trajectories for TIC-03R10 using indicator 
variables 

This alignment process can be used for monitoring since all 
information for alignment is known a priori and real-time 
alignment is feasible. Fig.5 illustrates an example of the use 
of this model in a multivariate statistical process control chart 
(MSPC) (Fig 4 top) where a test batch suffers a deviation 
from the expected trajectory, the system correctly identifies 
the instantaneous contributions (Fig 4 bottom). The 
trajectories of the deviation can be seen in raw numbers in 
Fig 5. 

 

Fig. 4. MSPC chart (top) and instantaneous contributions to 
time 424 (bottom) 

5.  CASE STUDY #2 

Trajectory alignment is trivial in the involved mathematics 
(simple re-sampling and interpolating) but can become 
complex to implement and automate. Intensive bookkeeping 
of amount of samples and process markers makes batch 
alignment an exercise that can take significant effort; and 
there will be cases where the practitioner needs a quick way 
to assess if this effort is worth while. 

This second case study illustrates a simple approach taken to 
make this assessment during process improvement efforts for 
the film coating step involved in the manufacture of 
controlled-release tablets. 

The film coating step of oral dosage manufacture is a well 
understood process driven mainly by the thermodynamics of 
the solution being atomized and sprayed on the tablets (am 
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Ende & Berchielli 2005), and by the mixing process in the 
tablet bed as the tablets are tumbled in the rotational pan. 

 

 

Fig. 5. Raw variables showing the deviations in the two 
variables detected as irregular 

A process improvement exercise required the analysis of 
historical data for 30 batches. There are 5 process variables 
that are measured during the run: RH, temperature, and 
volumetric flow for the inlet air, solution spray rate and 
exhaust air temperature. The process has a PI controller over 
the exhaust temperature by manipulating the inlet air 
temperature. The final product for each of the batches is 
characterized in the laboratory and labelled according to its 
performance. Four categories were defined: Excellent, Good, 
Basic and Regular in decreasing order of its desirability. 

The film coating step can be said to be a semi-batch process. 
From the perspective of a product, the process is purely a 
batch one since the amount of coat in the tablet keeps 
increasing with time. However, from the perspective of the 
drying air, the process is known to reach a pseudo-steady 
state if the interactions of the tablets are neglected (am Ende 
& Berchielli 2005).  

Due to this dual mode in which the process can be analyzed, 
it was not clear if the analysis of the dynamics of the process 
was absolutely necessary. The method followed to do this 
assessment is described next 

5.1 Screening method to determine the need to analyze the 
dynamics of a process 

1) All variables within a batch are interpolated to the same 
number, and all batches are unfolded variable-wise (as 
suggested by Wold et al ( 1998)) and arranged in a long 
vertical matrix of (K1+K2+…+Ki) × J. Ki corresponds to the 
number of samples for ith

 batch since at this point each batch 
has a different amount of samples. A PCA model was fitted 
to this data. 

2) The score matrix obtained by the PCA fitted in step 1 has 
iK∑  rows and A columns. This matrix is segmented by 

batch (for each batch takes the corresponding rows of the 
score matrix and all columns). Metrics of position and spread 
are calculated for each of the I segments of the score matrix; 

specifically the mean value per column and the complete 
variance-covariance (which is re-arranged in a vector of 
values). The vector of metrics from the segment of the score 
matrix is then augmented with the mean SPE distance per 
batch, and mean Hotelling’s T2. For this case, a vector of 7 
descriptors was available for each of the I batches, since the 
PCA was found to have two significant principal 
components. 

3) Perform a PLS model between the matrix of descriptors 
obtained in 2 and the product quality matrix. Assuming the 
model captures the necessary patterns in the responses, 
proceed to step 4. Otherwise stop, the signature in the process 
is not related to the response. 

4) The loadings of the PLS model fitted in (3) are then 
interpreted, assessing the importance of the variance- 
covariance of the scores from the PCA model fitted in (2) 
relative to the importance of the mean values of the scores 
from the PCA model fitted in (2). If the importance of the 
variance-covariace of the PCA scores is high, this implies the 
dynamics of the process do influence the response, otherwise 
(if all the importance is in the mean values) the dynamics 
don’t matter and only the great mean values of the process 
parameters are influencing the response. 

Fig. 6 illustrates the difference in the behaviour of the scores 
from the PCA fitted in (2) between batches that resulted in 
Excellent product, and batches that resulted in Regular 
product. It is clear from this plot that the spread of the score 
values is likely to be related to the difference observed in 
product performance. The scores for this PCA model will be 
referred to as PCAt1  and PCAt2 to avoid confusion with the 
scores from the PLS model fitted in (3). 

 

Fig.6 Overlay score plot from PCA model. Black markers are 
Excellent batches, gray markers are Regular batches 

The loadings for this PCA model (Fig.7) were helpful in 
understanding the variability in the data around the pseudo-
steady state the process operates. The 1st component was 
interpreted as the behaviour of the controller that would 
decrease the inlet air temperature (increasing its RH) and 
flow when the exhaust temperature was rising (event that 
corresponded with a decrease in spray rate). The 2nd 
component was interpreted as the thermodynamic 
relationships between the spray rate, the inlet air temperature 
and the exhaust temperature (higher spray or lower inlet temp 
results in lower exhaust temperature).  
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Fig 7. Loadings from the PCA model fitted in (2) 

A VIP coefficient was constructed with the loadings from the 
PLS fitted in (3). This assessment indicated that the most 
important variables in the model were the variance in PCAt1, 
the mean value and the variance in PCAt2. Most important of 
all, it was noted that a t1-u1 plot did exhibit a somehow 
coherent clustering of the batches according to their quality 
(Fig. 8). These results were indicative that the dynamics of 
the process (specifically the effect of the disturbances 
affecting the temperature control loop) were important in the 
definition of the final quality of the product. A multi-way 
model was then fitted to fully account for the dynamics in the 
process. 

 

Fig.8 t1-u1 score scatter for PLS model fitted in (2) 

5.2 Data alignment and multi-way model 

The batch data was aligned using the total amount of coating 
material to be applied as an indicator variable. This is a 
quantity that is calculated prior to the run and provides an 
index to perform real-time alignment (which will be of use 
when and if the model is used for monitoring purposes). 
Once the data is re-sampled with respect to the amount of 
coating material applied (which is easily calculated as the 
integral of the solution spray rate), a multi-way PLS model 
was fitted between the batch data and the performance of the 
final product. 

This new model provided additional understanding of the 
process, and captured 90% of the variability in the product 
performance (see Fig 9). The clustering of batches according 
to their performance is much better in the score space (Fig 
10) when compared to that obtained from the previous PLS 
model. The last improvement in the score scatters is due to 
the improved predictability in the data, achieved by a better 
synchronization of the trajectories. 

 

Fig 9. Predicted vs Observed dissolution at 8hr (magnitudes 
are blinded) 
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Fig 10. t1-u1 score scatter for multi-way PLS model 

6. CONCLUSIONS 
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Batch process analysis is not a trivial exercise not because the 
methods or the techniques need further development (to make 
it easier!) but because the dynamics of the process add 
increased complexity to the system to be analyzed (when 
compared to the steady state). 

In our experience analyzing batch data from pharmaceutical 
processes, the use of the variables associated with the 
automation triggers used in the execution recipe as indicator 
variables is a simple and powerful method to align the batch 
data. The use of these key variables as indicators of process 
evolution results in an alignment strategy that can be applied 
in real-time if the model is to be used for monitoring. For 
multi-stage processes the analysis will likely require the use 
of more than one indicator variable. 

Two cases are presented where different approaches were 
used to handle the dynamics in the process, indicator variable 
alignment proved to be a better approach than time 
interpolations. A simple procedure was presented to triage the 
need to align the batch data. This method was applied to the 
analysis of data from a film coating step and shown to 
provide an early assessment of the importance of the 
dynamics. This crude approach needs no alignment of the 
data and was able to provide an acceptable classification of 
the batches according to the performance of the final product. 
The use of an indicator variable proved to be much superior 
in extracting the dynamic features of the data and hence 
resulted in a better prediction and classification of the 
batches.  

Overall, we believe that analyzing data from a batch process 
and performing a proper alignment of the variable trajectories 
provides detailed process understanding which is key to the 
assurance of quality in our products. 
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