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Abstract: Models of acute inflammatory disease may have the potential to guide treatment
decisions in critically ill patients. Model Predictive Control (MPC) leverages the predictive
capacity of a model to determine a control strategy that guides a system to a target trajectory.
As applied to acute inflammation, MPC might be used to guide a patient from disease to health
by monitoring the patient state, computing and applying an optimal intervention strategy,
and updating the strategy if the patient state diverges from predictions. A key challenge
to the application of MPC is mapping the observable patient state into the complete state
space of the model. We propose that a Particle Filter (PF) is a suitable algorithm for state
estimation in nonlinear models of acute inflammation. As a proof of concept, we apply MPC
and PF to the administration of hemoadsorption (HA) treatment in an 8-state model of
endotoxemia in rats. In silico tests demonstrate that the PF generates accurate state estimates
from limited observations in the presence of noise and parameter uncertainty. Furthermore,
we explore the maximal predicted benefits of HA treatment with a standard single column
configuration and hypothetical multi-column configurations, where each column has a specificity
for a target cytokine. Simulations suggest that two column HA will improve treatment efficacy,
but physiological restrictions on HA will limit benefits from higher order configurations.
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1. INTRODUCTION

Inflammation is the body’s natural response to infection
and trauma (Janeway and Medzhitov, 2002). Macrophage
cells play a key role in the initiation and orchestration of
the inflammatory response. These immune cells reside in
tissues where they monitor the environment for molecules
derived from pathogen or damaged cells (Medzhitov and
Janeway, 2000). When such molecular patterns are de-
tected, macrophage secrete pro-inflammatory mediators
(such as TNF and interleukin(IL)-1) and chemoattract
other white blood cells, thus initiating an immune response
(Cohen, 2002). TNF and IL-1 induce endothelial cells to
express adhesion molecules for neutrophils, a circulating
white blood cell. Neutrophils migrate into the tissues,
following chemokine gradients, where they scavenge and
digest pathogen in a process called phagocytosis (Abra-
ham, 2003). Pro-inflammatory cytokines also trigger an
anti-inflammatory wave that suppresses inflammation and
returns the system to baseline as the infection or dam-
age is cleared. IL-10 is a powerful anti-inflammatory cy-
tokine that suppresses the expression of pro-inflammatory
cytokines and the activity of innate immunity effector
cells (Fujiwara and Kobayashi, 2005). Anti-inflammation
is an essential regulator of the inflammatory response that
thwarts potential deleterious cytotoxic effects of vigorous
pro-inflammation. Although the goal of the inflammatory
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response is to contain and eliminate the initial biological
stressor (e.g. infection) and thus restore a healthy state, it
also has the potential to push the system into a number
of pathological states.

Sepsis, a systemic inflammatory response triggered by in-
fection, is one such pathology (Bone et al., 1992). Sepsis is
a common reason for admission to the intensive care unit.
Severe sepsis may lead to the failure of multiple organ
systems (Singh and Evans, 2006) and death in 40% of
patients (Angus et al., 2001). The cascade of organ failures
may occur even while the infection is suppressed by an-
tibiotics, demonstrating that uncontrolled inflammation is
destructive to organ tissues. Numerous attempts have been
made to control sepsis using immunomodulation such as
anti-inflammatory treatments (e.g. anti-TNF antibodies,
IL-10, etc.), but clinical trials have failed to find consis-
tent benefits in randomized populations of septic patients
(Dellinger et al. (2008), Vincent et al. (2002)).

Hemoadsorption (HA) is a blood purification treatment
that has been shown to improve short term survival in
septic rats (Kellum et al., Peng et al.). The HA device is
a column packed with high surface area, bioreactive beads
that adsorb proteins in the size range typical of cytokines.
A portion of the septic animal’s blood is diverted through
the HA column, where TNF, IL-6, and IL-10 are removed
from the blood (Kellum et al., 2004). The flow rate through
the column may be adjusted to achieve maximal benefit,
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although physiological constraints define a maximum prac-
tical rate. The adsorption is not selective and presumably
adsorbs other molecules in the size range of cytokines. A
dynamic model of cytokine adsorption in the HA column
was reported in DiLeo et al. for the case of constant flow.

A number of system models of the inflammatory response
have been constructed, ranging from phenomenological low
order models that recapitulate asymptotic system behav-
ior to predictive models of varying complexity calibrated
to experimental data. Simple phenomenological models
of inflammation have been used to explain the multiple
outcomes possible with abstract pro-inflammatory and
anti-inflammatory feedback loops (Kumar et al., Reynolds
et al., Day et al.). More complex models that include
measurable biomarkers, such as TNF and IL-10, have been
calibrated to experimental data and show potential for
the development of predictive models (Chow et al., Daun
et al.). Such models serve as a discovery platform for new
treatments for acute inflammation (Kumar et al., Cler-
mont et al.). Furthermore, predictive models should have
the potential to guide individualized treatment regimens
for patients in real time.

Model Predictive Control (MPC) uses the predictive ca-
pacity of a model to determine control inputs that guide a
dynamic process towards a target trajectory (Muske and
Rawlings, 1993). MPC is a receding finite horizon method,
where the control decision is based only on the predicted
trajectory over a finite time window (i.e. horizon). As
time advances, the horizon slides and new control decisions
are based on the latest system observations. In the case
of acute illness, MPC of HA could maintain homeostasis
and guide the patient to health based on observations of
biomarkers and vital signs.

In current models of acute inflammation, a subset of state
variables are either difficult to measure or are abstract
variables that do not correspond to a distinct biological
observable. Therefore, a method of estimating the model
state space given a set of observables is required. This is
known as the state estimation problem. Rawlings and Bak-
shi (2006) describe a variety of methods for nonlinear state
estimation in the context of MPC. The unscented Kalman
filter (UFK) is commonly implemented for state estimation
in non-linear models and assumes normally distributed
noise. This is a poor assumption for models of sepsis,
where distributions of cytokine measurements are highly
positively skewed with variance positively correlated to
their mean. Particle Filter (PF) state estimation permits
arbitrary noise models and is appealing for inflammation
models due to its generality and ease of implementation.

Particle Filtering is a stochastic state estimation method
described as “survival of the fittest”. A number of paral-
lel simulations (“particles”) are randomly initialized from
a prior distribution of states. Following an observation,
simulations are weighted by the posterior probability that
the observation was generated by the particle. The par-
ticles are then resampled (with replacement) from the
weighted distribution. The resampled particle simulations
are evolved dynamically until the next observation. The
expected state values are given by the weighted average of
the particle states. See Bishop (2006) for an overview. The

Fig. 1. Block diagram of the Daun et al. (2008) endo-
toxemia model. Boxes corresponds to a state vari-
ables; bold edges indicate observed states. Arrows
indicate upregulation, lines ending with squares indi-
cates downregulation. Dotted lines between cytokine
blocks represent indirect feedback mechanisms that
act through N . The control variables utnf , uil6 and
uil10 correspond to HA filtering.

key limitation of PF is the computational burden as the
dimensionality of the system increases.

This manuscript describes an in silico demonstration of
real-time control of hemoadsorption in acute inflammation
using a framework of MPC with PF state estimation.

2. METHODS

2.1 Endotoxemia model

All simulations in this study are based on an 8-state
ODE model of endotoxemia in rats, previously presented
by Daun et al. (Fig. 1). The model states are endotoxin
concentration, PE; number of activated phagocytic cells,
N ; a measure of tissue damage, D; an abstract, long-acting
anti-inflammatory, CA; three key extracellular mediators
of acute inflammation: IL-6, TNF, and IL-10; and a first-
order filter between D and IL-10, YIL10. Model equations
are included in the appendix. The model was calibrated to
rat serum concentrations of TNF, IL-10 and IL-6 obtained
at 1, 2, 4, 8, 12, and 24 hours after an intravenous injection
of 3 or 12 mg/kg endotoxin.

A system of stochastic differential equations was induced
by the deterministic model with a multiplicative noise
process. The stochastic equation for each state wi is:

dwi(t) = fi(w(t))dt + σwi(t)dWt (1)
where w is the state space vector and Wt is a Wiener
process, and fi(w(t)) is the deterministic derivative func-
tion. This stochastic system can be integrated with the
Euler-Maruyama method: the deterministic portion is in-
tegrated and a noise term is sampled from the distribu-
tion wi(t)σ

√
∆tN (0, 1). For small ∆t, σ the solution is

approximated by integrating the deterministic portion and
multiplying by a sample from a log-N (0, σ2∆t) distribu-
tion. This latter approach was used for simulation as it
avoids the possibility of generating a negative sample.
The parameter σ = 0.05/hr was selected to balance the
stability of the system with a non-trivial variation in the
output trajectory. The deterministic ODE was integrated
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using the CVODE library, while the stochastic noise was
applied at fixed intervals of ∆t = 0.1hr. State noise was
applied independently to each state. Observation noise was
applied to the trajectories of the measured cytokines TNF,
IL-10, and IL-6. Observation noise was multiplicative and
log-N

(
µ = 0, σ2 = 0.152

)
distributed.

2.2 Hemoadsorption

Hemoadsorption was applied to the model system as a
first-order elimination of cytokines with rate flow rate

blood volume .
A more detailed model of HA was presented by DiLeo et al.
(2009). However, this model assumes a fixed flow rate for
the duration of HA, which is not suitable for our purposes.
Three configurations of HA are simulated (Table 1). The
single-column configuration is the only option currently
available in the lab. The present work examines in silico
the potential utility of having multiple HA columns with
selective cytokine adsorption capabilities.

2.3 Particle Filter Implementation and Initialization

A particle filter was implemented in MATLAB according
to a standard algorithm (Bishop, 2006). While the endo-
toxemia model was calibrated to mean data in a rat pop-
ulation, individual rats respond differently to endotoxin
challenge due to genetic and environmental variations.
We assume that individual parameters are drawn from a
prior distribution centered around the best-fit population
parameters. If individual variation is neglected, PF state
estimates would be biased towards the population mean.
To eliminate this bias, each particle p was initialized with
randomized parameter θ

(p)
i from the prior distribution

θi · log-N
(
0, 0.152

)
. Future work may improve estimates

of the prior distribution. We also assume the endotoxin
dose and administration time is unknown. This reflects
the uncertainty in a clinical environment where a patient is
admitted at some time following an infection. Each particle
was initialized with a random endotoxin dose from the
uniform distribution over [0, 15] mg/kg, and a random
time delay before hemoadsorption from the uniform dis-
tribution over [0, 6] hrs. Each particle is simulated for the
length of its delay before measurements are obtained and
the HA protocol is administered. Hourly measurements of
IL-6, TNF, and IL-10 were passed to the PF to obtain
state estimates for the hidden variables.

2.4 Model Predictive Control

A schematic of the in silico experiment combining MPC,
PF, HA, and simulated endotoxic rat is shown in Fig. 2.
MPC is a popular control methodology for biomedical
systems (Parker and Doyle III, 2001), based on its ability
to robustly manage subject-model mismatch in a variety
of disease case studies. A nonlinear MPC algorithm was

Table 1. Hemoadsorption configurations

HA cytokine specificity
configuration column 1 col. 2 col. 3

1 TNF, IL-6, IL-10 – –
2 TNF, IL-6 IL-10 –
3 TNF IL-10 IL-6

Fig. 2. Schematic of the in-silico experiment with a simu-
lated endotoxemic rat, Particle Filter state estimates,
and Model Predictive Control of hemoadsorption.

implemented using HA column flow rate(s) as the ma-
nipulated variable(s), and damage (D) as the controlled
variable (target of D = 0). As D is not measurable, the PF
state estimated was used at each observation time point.
The objective function for the algorithm was:

minu(k|k) ‖Γy (Y (k + 1|k)−R(k + 1)) ‖22 +

‖ΓuU(k|k)‖22 + ‖Γ∆u∆U(k|k)‖22 (2)

s.t. U(k|k) ≤ 72ml/hr

These terms penalize predicted error in the controlled vari-
able (Y ) from the reference (R), the use of large HA flow
rates (U), and changes in the flow rates (∆U). Standard
statistical notation is employed throughout (prediction at
time k + 1 given information up to time k), and the Γ
weights are selected such that Γy = I > Γu = 0.02

c I >

Γ∆u
0.01

c I. The number of HA channels used in the inter-
vention is c. Minimization was performed using fmincon
in MATLAB ( c©2009, The MathWorks, Natick, MA). The
MPC time step was ∆t = 1 hr, the prediction horizon was
p = 6 steps, and the move horizon was m = 2. The size of
U(k|k) was m ∗ c, with the HA configuration establishing
the number of adjustable flow rates. For computational
efficiency, model predictions were based only on the deter-
ministic portion of the endotoxemia model. The weighted
averages of particle parameters were used as parameters
for the model prediction.

3. RESULTS

3.1 Particle Filter State Estimation

The performance of a Particle Filter depends on the
number of particles. To determine a sufficient number of
particles for subsequent experiments, we evaluated the PF
performance for various numbers of particles. Performance
was based on the average relative error (Eabsrel) over all
states and all observed time points:

Eabsrel =
1

8T

8∑
s=1

T∑
k=0

|yest
s (tk)− ytrue

s (tk)|
ytrue

s (tk)
(3)

Here T is the number of observed time points, and ys is the
value of state s. Fig. 3 shows PF performance versus the
number of particles over 21 simulations with randomized
endotoxin dose and time interval before first observation.
As expected, the performance improved as the number
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Fig. 3. Particle Filter performance is dependent on the
number of particles. Performance was measured as
the average relative error over all model states at
all observed time points. Error bars show the 95%
confidence interval of the mean (t-distr., N = 21).

Fig. 4. An example of Particle Filter state estimation
on simulated data. Square points are observed data
fed to the PF; dashed lines show the state estimate
generated by PF; solid lines show the true state.

of particles increased. Average relative error dropped to
about 10% with 4000 particles. Increasing the particle
numbers to 8000 and 16,000 further reduced the error,
but at the expense of computational time. We chose 4000
particles for subsequent experiments as a balance between
reasonable accuracy and computational time. 24 hours of
simulated time required about 10 CPU minutes. Note that
average relative error is below noise levels of the observed
states. Fig. 4 shows an example of PF state estimation
(4000 particles) on simulated data. Estimates are shown
for a hidden state, D, and an observed state, IL-10.

3.2 Hemoadsorption Control

MPC of HA was simulated with 1, 2 or 3 columns. See
Table 1 for descriptions of each configuration. MPC per-
formance was evaluated by the average relative reduction
in damage area-under-the-curve (damage AUC) for the 24
hour interval following endotoxin administration:

∆rel =

∫ 24

0
(DHA(t)−Dsham(t)) dt∫ 24

0
Dsham(t)dt

, (4)

where DHA is the damage trajectory with HA and Dsham

is the damage trajectory without HA. Endotoxin dose
was 8 mg/kg and the first observation occurred at 30

Fig. 5. Sample simulation results from paired sham and
HA control experiments. HA was applied using con-
figuration 2.

Fig. 6. Typical HA column flows for 1, 2 and 3 column
configurations. In all cases, MPC applies aggressive
flow at the start of treatment and then drops to zero
as further intervention has negligible effect.

minutes (information withheld from PF). Identical noise
was applied to paired HA and sham simulations to limit
stochastic variation. Each configuration was simulated
N = 14 times. Fig. 5 shows typical trajectories for paired
HA and sham simulations using configuration 2.

Single column HA reduced damage AUC by 7% on aver-
age. The controller applied maximum flow to the column
initially and then tapered the flow to zero as the benefit
of additional HA became negligible. Dual column HA
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Fig. 7. Treatment delay decreases HA efficacy. A simu-
lated 8 mg/kg endotoxin dose was followed by HA
(configuration 2 ) after a variable time delay. Prompt
intervention reduced Damage AUC by 11%, but effi-
cacy dropped rapidly past one hour. Error bars show
95% confidence of means (t-distr., N = 21).

reduced damage AUC by 11% on average, significantly
more than the single column configuration. No additional
benefit was observed with the triple column configuration.
A comparison of the control schemes for the various config-
urations is shown in Fig. 6. Maximal flow is applied to the
TNF/IL-6 column in the two column configuration, while
flow to the IL-10 column is zero. The improved damage
reduction in this configuration demonstrates a benefit in
filtering pro-inflammatory TNF and IL-6 while retaining
the anti-inflammatory IL-10. In the triple column config-
uration each cytokine is filtered by a separate column. It
might be expected that the performance of three columns
should meet or exceed the performance of the two column
arrangement, but the constraint that the sum of column
flows not exceed 72 ml/hr prevents the controller from
filtering TNF and IL-6 with the same intensity as in the
two column scheme. The controller first aggressively filters
TNF, to the exclusion of IL-6, but then applies flow to the
IL-6 column as the flow to the TNF column decreases.

In order to determine the importance of timely HA inter-
vention, MPC control of HA was initiated at various times
following endotoxin administration. In all cases, the dose
and timing of endotoxin was hidden from the PF. Fig. 7
shows the relationship between HA intervention timing
and HA performance. Prompt intervention at 12 minutes
post endotoxin dosing resulted in 12% damage AUC re-
duction on average. The performance of HA diminished
rapidly after one hour and was near zero by hour two. This
simulation result suggests that HA intervention requires
timely application during the onset of acute inflammation.

4. DISCUSSION AND SUMMARY

Our results demonstrate that MPC with PF state esti-
mation is suitable for online control of hemoadsorption
in acute inflammation. Furthermore, simulations suggest
that two-column HA devices may reduce tissue damage
more than conventional HA, while three or more columns
will have diminishing impact due to physiologic limitations
on the sum of flows through the columns. Since the cur-
rently available HA device adsorbs a broad spectrum of
cytokines, these results provide motivation for the devel-
opment of cytokine-specific columns.

PF state estimation and MPC computation was fast
enough for online implementation. On a typical PC, state
estimation with 4000 particles and MPC required less
than 1 minute of computation time per hour of simulated
time. The bulk of the computation is consumed by particle
simulation. Computational cost may become prohibitive in
models with larger state spaces if larger particle sets are
required. Future work is needed to determine scalability
to higher dimensional models of inflammation.

This work assumed that real-time measurements of the
observables were available at point-of-care. In current
practice, IL-6 is the only cytokine measurement that is
available bedside. Boyle et al. (2006) were able to produce
semi-quantitative measurements of cytokines in under 45
minutes. Efforts to develop point-of-care inflammatory
profiles are underway, but the time requirement is cur-
rently a barrier to online control implementation.

The model used to simulate the endotoxemic rat was
also used by the MPC controller to predict trajectories.
While parameter uncertainty was introduced to mimic the
genetic and environmental variability in the population, we
had the benefit of a predictive model with correct math-
ematical structure. Future work is needed to determine
whether performance is robust to subject-model mismatch.
At present, alternative models calibrated to our dataset
are not available for mismatch analysis. A more detailed
model of acute inflammation developed by Chow et al.
(2005) is a candidate for future comparison.

In a clinical setting, an endotoxin dose is not limited to a
single bolus at the onset of infection. In sepsis, for example,
a constant source of endotoxin can be delivered from an
ongoing infection in the abdomen. In order to determine
the effect of unmeasured endotoxin step disturbances, sim-
ulations were performed with a constant source of endo-
toxin (results not shown). The resulting state estimates
for the measured variables were accurate, but biased for
the unmeasured variables. The endotoxin variable (PE)
settled at a positive steady state, while the state estimate
tended to zero. As a preliminary attempt to correct the
bias, a modified PF was tested. The modified PF included
a random variable to model an endotoxin source. 30% of
particles were initialized with an endotoxin source with a
rate drawn from an exponential distribution. The modified
PF was able to estimate a non-zero endotoxin steady state,
but bias was not eliminated in all cases. Further study is
required to delevop an unbiased observer.
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Appendix A. ENDOTOXEMIA MODEL EQUATIONS

The deterministic endotoxemia model is defined by the
equations below. The control variables are uil6, utnf , and
uil10, which depend on the HA column configuration.

˙PE =−dPE · PE

Ṅ =
kN ·R(PE,D)
xN +R(PE,D)

− dNN

Ḋ =
kD ·N6

x6
D,N +N6

− dDD

ĊA = sCA
+ kCA

N − dCA
CA

˙IL6 =
kil6 ·N4

x4
il6,N +N4

· f il6
up (IL6, TNF ) · f il6

down(IL10, CA)

− (dil6 + uil6) · IL6
˙TNF = ktnfN

3
2 · f tnf

up (TNF ) · f tnf
down(IL6, IL10, CA)

− (dtnf + utnf ) · TNF

˙IL10 = sil10 +
kil10 ·N3

x3
il10,N +N3

· f il10
up (IL6, TNF )

+ Yil10 −
(
dil10 · f il10

down(IL10) + uil10

)
· IL10

˙Yil10 =
kYil10 ·D4

x4
Yil10,D +D4

− dYil10Yil10

where:

R(PE,D) =

(kN,pePE + kN,DD) · fN
up (TNF, IL6) · fN

down (CA, IL10)

and regulatory functions fup and fdown are defined:

fw
up (z1, . . . , zn) = 1 +

n∑
i=1

kw,zi
Z

hw,zi
i

(xw,zi)
hw,zi + z

hw,zi
i

fw
down (z1, . . . , zn) =

n∏
i=1

(xw,zi
)hw,zi

(xw,zi)
hw,zi + z

hw,zi
i
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