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Abstract: Multivariable plants under input constraints such as actuator saturation are liable to
performance deterioration due to problems of control windup and directional change in control
action. In this paper, we propose a two-stage internal model control (IMC) antiwindup design
which guarantees optimal closed loop performance both at transient and at steady state. The
two-stage IMC is based on the solution of two quadratic programs (QP). The first QP addresses
the transient behaviour of the system and ensures that the constrained closed-loop response
is as close as possible to the unconstrained closed-loop response. The second QP guarantees
optimal steady-state behaviour of the system. Simulated examples show that the two-stage
IMC has superior performance when compared to other existing optimization-based antiwindup
methods. We consider a scenario where the proposed two-stage IMC competes favourably with
a long prediction horizon model predictive control (MPC).

Keywords: Antiwindup, Directionality, Internal model control, Predictive control, Input
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1. INTRODUCTION

Control design for processes under input constraints such
as actuator saturation nonlinearities has been widely
studied either from antiwindup design approach (Campo
and Morari, 1990; Zheng et al., 1994; Kendi and Doyle,
1997; Edwards and Postlethwaite, 1998; Horla, 2009; Tar-
bouriech and Turner, 2009) or a model predictive control
(MPC) perspective (Muske and Rawlings, 1993; Rawl-
ings and Chien, 1996; Rao and Rawlings, 1999; Ma-
ciejowski, 2002). For multivariable or multi-input multi-
output (MIMO) systems, the presence of control input
saturation introduces additional problems due to direc-
tional change in control action also known as process
directionality (Soroush and Valluri, 1999) alongside the
widely known controller windup phenomenon. These two
problems, control windup and process directionality, can
result in substantial closed-loop performance degradation
if not separately accounted for during the controller design
(Doyle et al., 1987).

In the design of analytical dynamic controllers such as
internal model control (IMC), a common approach is to
first design a linear controller neglecting the saturation
and then a saturation compensation scheme is added to
provide a graceful closed-loop performance degradation
in the presence of saturation Campo and Morari (1990).
This ad-hoc saturation compensation scheme is termed
antiwindup. A specific example of antiwindup design is
the modified internal model control structure which may
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be interpreted as solving instantaneously an optimization
problem at each time step (Zheng et al., 1994).

Antiwindup designs must be augmented with dynamic
compensators to account for process directionality in
MIMO systems. One approach is to scale down all the
control inputs in such a way the control input direction
is maintained (Doyle et al., 1987; Campo and Morari,
1990). This approach is restricted to a class of control
problems and may not necessarily be optimal. Other opti-
mization based schemes have been suggested (Hanus and
Kinnaert, 1989; Walgama and Sternby, 1993; Peng et al.,
1998; Chen and Perng, 1998; Soroush and Valluri, 1999).
While these schemes offer optimal dynamic behaviour,
their performances deteriorate significantly in steady state
especially when the constraints are active. Schemes that
guarantee optimal steady state behaviour such as (Heath
and Wills, 2004), may have poor transient characteristics.
The focus of this paper is an IMC antiwindup scheme
which optimizes the transient performance of the system
and also guarantees steady-state optimal behaviour.

The paper is structured as follows. Section 2 describes
the problem set-up and some notations. We introduce the
concept of internal model control for antiwindup design in
section 3. In section 4, we discuss directionality compensa-
tion schemes within the framework of internal model con-
trol structure. Section 5 contains the main contributions
of the paper where we present the two-stage IMC anti-
windup for not only dealing with the performance degra-
dation associated with control windup and directionality
but also for ensuring steady state performance in input
constrained multivariable problem. In terms of nominal
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performance, the two-stage IMC compares favourably with
a long prediction horizon MPC while its computational
requirement is equivalent to that of a single-horizon MPC.
The performance of the proposed approach is illustrated
via simulation examples in section 6.

2. PROBLEM SETUP

We consider a class of stable and linear systems described
by

y = Gu+ d (1)

where G is a rational, strictly proper transfer function
matrix and y, d ∈ Lp, u ∈ Lm (or y, d ∈ lp, u ∈ lm) are the
Laplace transforms (or discrete equivalent, Z-transforms)
of the output signal y(t), the manipulated input signal
u(t) and the output disturbance d(t) signal respectively.
The input signal u is constrained such that

umin
i ≤ ui(t) ≤ umax

i i = 1, . . . ,m (2)

This can be represented by following saturation function.
If we define the function sat(.) as

sat(ui(t)) =

{
ui(t) |ui(t)| ≤ 1

sgn(ui(t)) |ui(t)| > 1
(3)

where sat(ui(t)) represents the normalized saturation non-
linearity associated with each of the manipulated input
ui(t), then the constrained input becomes

sat(u(t)) = [ sat(u1(t)), · · · , sat(um(t)) ]
T

(4)

The system characteristic matrix C which describes the
transient behaviour of the system (1) is defined for a square
system as

C = lim
s(orz)→∞

[diag{s(orz)rm}G] (5)

where ri = min(ri1, ri2, . . . , rim) and ri,j is the relative
order of output yi with respect to manipulated input uj.

3. THE INTERNAL MODEL CONTROL
STRUCTURE EVOLUTION

Fig. 1. The Standard IMC Structure

Fig. 2. The Conventional IMC Antiwindup Structure

The standard internal model control (IMC) structure
introduced in Garcia and Morari (1982) is illustrated in

figure 1 where G, G̃ and Q denote the plant, the model
of the plant and the IMC controller respectively. The
design of Q for optimal performance and robustness is

Fig. 3. The Modified IMC Antiwindup Structure

well discussed in the literature (Morari and Zafiriou, 1989;
Zheng et al., 1994). With the assumption of perfect model

i.e. G = G̃, the stability of G and Q guarantees nominal
stability of the unsaturated closed loop system (Morari
and Zafiriou, 1989).

However, for saturating system with û(t) = sat(u(t)), the
standard IMC implementation can lead to instability. In
this case, the plant and the model are driven by different
inputs. The resultant model/plant mismatch is shown in
the closed loop equation (6).

u = Q (r − d) +QG(u− û) (6)

A first step towards avoiding the state mismatch between
the plant and the model is the conventional IMC anti-
windup structure of figure 2 (Morari and Zafiriou, 1989;
Zheng et al., 1994). Although closed loop nominal stability
is guaranteed when there is no model mismatch, the
nonlinear performance may be excessively sluggish. The
closed loop equation (7) shows that the saturation effect
on the plant output is not fed back to the controller. The
controller only acts on the error between the reference
signal r and the output disturbance d.

u = Q (r − d) (7)

y = Gû+ d (8)

The modified IMC structure shown in figure 3 was pro-
posed as an antiwindup scheme to deal with the pro-
nounced performance deterioration associated with the
standard IMC structure (Zheng et al., 1994). Assuming
no plant-model mismatch, the closed loop equations are
given by

u = Q1 (r − d)−Q2û (9)

y = Gû+ d (10)

where Q = (I+Q2)
−1Q1. Here, the controller not only acts

on the error between the reference signal and the output
disturbance but it is also fed directly with information on
the saturating control actions. When the system is away
from saturation (i.e. û = u), equations (9) and (10) reduces
to the closed loop equations for the implementation in
figure 1. For a given Q there are different ways of assigning
Q1 and Q2. It is imperative that appropriate choices are
made to achieve a good non-linear performance while
ensuring stability. One factorization option is

Q1 = ΛQ+ (I − Λ)Q (∞) (11)

where Λ = λI is a diagonal weighting matrix and λ ∈ [0, 1].
The choice of λ = 1 results in the conventional IMC
structure which chops off the control input resulting in
performance deterioration (sluggish response) but nominal
stability is guaranteed. On the other hand, the choice
of λ = 0 corresponds to the factorization proposed in
(Goodwin et al., 1993). The performance in this case is
greatly improved, but nominal stability of the closed-loop
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system is not guaranteed. Trade off between performance
and stability can therefore be achieved by appropriate
choice of λ, provided Q is minimum phase (Zheng et al.,
1994).

4. DIRECTIONALITY COMPENSATORS FOR
MULTIVARIABLE INTERNAL MODEL CONTROL

Performance deterioration in multivariable plant with in-
put saturation can be attributed to two major factors.
These are the problems resulting from control windup and
that of directional change in control. To ensure a graceful
performance degradation in the presence of input satura-
tion, a particular choice of Q1 and possibly an additional
nonlinear element in form of directionality compensator is
often incorporated into the controller as shown in figure 4
(Zheng et al., 1994; Doyle et al., 1987; Peng et al., 1998;
Soroush and Valluri, 1999; Campo and Morari, 1990; Chen
and Perng, 1998; Heath andWills, 2004; Heath et al., 2005;
Kendi and Doyle, 1997). In this section, a brief review of
some of the existing directionality compensator designs is
presented within the IMC framework.

Fig. 4. The Modified IMC Structure with Directionality
Compensation

The Modified IMC Antiwindup (MIA) structure of figure 3
can be considered as a special case of the scheme in figure 4
where the directionality compensator NL = I. However, in
order to preserve the output direction, Zheng et al. (1994)
recommend the choice

Q1 = fAGQ (12)

where fA is a non-causal filter that must be chosen such
that fAG|s=∞ = I or fAG|z=∞ = I and Q1 is of minimum
phase. These conditions ensure that Q2 is strictly proper
which guarantees that there is no algebraic loop in the
interconnection of figure 4.

It should be noted that the choice fA = G−1 is equivalent
to choosing λ = 1 in (11) above.

In the Direction Preservation (DP) approach of Campo
and Morari (1990), the constrained control action is ob-
tained by scaling down the controller outputs so that the
u and û have same direction in the event of saturation.
The non-linearity block NL in figure 4 is defined as

ur = NL(u) =





u if u is in linear region

min

{
sat(ui)

ui

}
u if u enters saturation

(13)
In this case, subsequent saturation will have no effect
since its input ur always remains in the linear region.
The concept of directional preservation has been shown
to be beneficial for some class of constrained multivariable

control problems (Doyle et al., 1987; Campo and Morari,
1990; Kendi and Doyle, 1997).

A number of Optimization based Conditioning Techniques
(OCT) have been proposed in the literature (Walgama and
Sternby, 1993; Chen and Perng, 1998; Peng et al., 1998).
All these are extensions of the conditioning techniques
originally discussed in Hanus and Kinnaert (1989) which
is based on the concept of realizable reference wr. When a
controller output is infeasible, a realizable control input ur

is obtained by solving an online optimization problem such
that the realizable reference wr is as close as possible to
the actual process set-point r. Following the development
in Peng et al. (1998), the NL is defined as

ur = argmin
ur

‖D−1
k ur −D−1

k u‖2Q (14)

subject to the constraints

umin ≤ ur
i ≤ umax i = 1, . . . ,m

where Dk is the feedthrough matrix of controller Q i.e.
Dk = Q(∞) and Q is a positive definite matrix which
takes into account the relative importance of achieving the
objectives represented by each component of r. In order to
address the optimality questions associated with both the
modified IMC and direction preservation schemes, Soroush
and Valluri (1999) have suggested the optimal dynamic
compensator (ODC) by solving the following optimization
problem

min
ur

‖PCur − PCu‖2Q (15)

subject to the constraints

umin ≤ ur
i ≤ umax i = 1, . . . ,m

where P is a diagonal matrix whose diagonal elements
depend on the relative orders of each of the controlled
output, C is the characteristic matrix of the plant and Q
is a positive definite weighting matrix. In this approach,
the characteristic matrix C contains information about the
directional nature of the plant; thus the constrained opti-
mization of (15) is such that the components of ur − u in
the high gain plant direction are minimized. However, since
the characteristic matrix only characterizes the sensitivity
of plant to input changes over a very short horizon, the
optimality of the solution is only guaranteed over a very
short time horizon (Soroush and Valluri, 1999). Heath and
Wills (2004) have argued the use of steady state structural
properties such as the steady state gain but only in the
context of cross directional control. The scheme in Heath
and Wills (2004) guarantees optimal steady state perfor-
mance by solving the following optimization problem.

min
ur

‖Kpu
r −Kpu‖

2
Q (16)

subject to the constraints

umin ≤ ur
i ≤ umax i = 1, . . . ,m (17)

where Q is a positive definite symmetric matrix and Kp is
the steady state gain G(0) (or G(1) for discrete systems).
This scheme may lead to a degraded transient performance
especially when Kp is significantly different from C.

In table 1, we categorize these antiwindup schemes accord-
ing to their performance characteristics during transient
stage and steady state when one or more of the input
constraints are active. None of the schemes guarantees
optimal performance at both phases.
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5. TWO-STAGE MULTIVARIABLE INTERNAL
MODEL CONTROL ANTIWINDUP STRUCTURE

We now introduce the two-stage IMC antiwindup scheme.
This approach is based on the solution of two quadratic
programs (QP) termed the dynamic QP and the steady-
state QP. While the former addresses the transient be-
haviour of the plant and ensures that the constrained
plant response is as close as possible to the unconstrained
plant response, the latter ensures optimal steady state
performance and it is based on steady state properties of
the plant. The idea of using a separate QP to calculate
steady state set-points has been previously introduced in
MPC formulations (Muske and Rawlings, 1993; Rawlings
and Chien, 1996; Muske, 1997; Rao and Rawlings, 1999).

Fig. 5. The two-stage IMC Antiwindup

Because of the presence of saturation nonlinearities in the
system, the output of the constrained system y differs from
y′, the output of the unconstrained system. In general,
the control objective is to keep every output y of the
constrained system as close as possible to those of the
unconstrained system y′. We define the mapping

y′ = Pu and y = Pû (18)

where P represent the plant operator. û and u are the
constrained and unconstrained control inputs respectively.

Mathematically, we seek a feasible control input u∗ that
is a solution to the following constrained optimization
problem.

u∗ = argmin
û

‖Pû− Pu‖2Q (19)

subject to the constraints

umin ≤ ûi ≤ umax i = 1, . . . ,m (20)

Q is assumed to be positive definite symmetric matrix.

For the system (1) where p = m, the initial response
of the system output to step change in the input vector
depends on the characteristics matrix C (Daoutidis and
Kravaris, 1992; Soroush and Valluri, 1999). Therefore, the
plant operator P can be chosen as the characteristic matrix
C of the plant. Making this substitution in (19) results in
the following optimization problem.

ur = argmin
ur

‖Cur − Cu‖2Q (21)

Table 1. Performance Comparison of Multi-
variable Antiwindup Schemes

Modified
IMC

Direction
Preservation

Optimization
Conditioning
Technique

Optimal
Dynamic
Compensation

Optimal
Steady State

Transient
performance

Optimal Poor Optimal Optimal Poor

Steady State
performance

Poor Good Poor Poor Optimal

subject to the constraints

umin ≤ ur
i ≤ umax i = 1, . . . ,m

In steady state, the output response of the system can be
expressed as

yss = Kpuss + d̂ (22)

where uss is the steady state control input that makes the

controlled variable achieve yss and d̂ is the estimate of the
disturbance. Kp is the steady state gain of the plant which
can be obtained from the plant’s state space matrices as
G(0) = −CA−1B for G(s) or G(1) = C(I − A)−1B for
G(z) provided A is non-singular. If the input constraints
are active in steady state, then yss may not attain the
target prescribed by the reference signal r. The objective
is to make yss as close as possible to r in some sense and
within the limit imposed by the input constraints.

The solution of the following quadratic program can be
used to determine a feasible steady state set-point rss that
should be applied as shown in figure 5 instead of r such
that system closed loop response in steady state yss is as
close as possible to r.

rss = argmin
uss

‖r − yss‖
2
Qss

(23)

subject to the constraints

umin ≤uss ≤ umax i = 1, . . . ,m (24)

yss =Kpuss + d̂ (25)

where Qss is a positive definite symmetric matrix for
penalizing deviations in each of the controlled variables
and their relative importance. From figure 5, we write the
controller as

d̃ = y − G̃ur

u = Q1(rss − d̃)−Q2u
r

ur = φ1(u)

rss = φ2(r, d̃)

(26)

where φ1 and φ2 are non-linear functions representing the
quadratic programs (21) and (23) respectively. Without
the constraints, the control law reduces to the uncon-
strained standard IMC control equation

u = (I +Q2)
−1Q1(r − d̃)

d̃ = y − G̃u
(27)

Correct steady state behaviour is ensured by designing Q
such that Q(0) = G(0)−1 for G(s) or Q(1) = G(1)−1

for G(z). If constraints are active in steady state, then
optimal steady state behaviour is guaranteed by solving
(23) subject to the constraints.

Remark 1. For the class of systems whose characteristics
matrix C and steady state gain Kp are similar, the opti-
mization problem in (21) effectively meets the steady state
requirement of (23). Hence only (21) need be solved to
achieve both optimal transient and steady state responses
in the presence of control input saturation.

6. SIMULATION EXAMPLE

Example 1. Consider the following example taken from
Zheng et al. (1994) where

G(s) =
10

100s+ 1

[
4 −5
−3 4

]
(28)
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with |ui| ≤ 1, i = 1, 2 and a step reference input of
[0.63 0.79]T .
The classical IMC controller design for a step input is

Q(s) =
100s+ 1

10(20s+ 1)

[
4 5
3 4

]
(29)

and the corresponding unity feedback controller is

K(s) =
100s+ 1

200s

[
4 5
3 4

]
(30)

Following the development in Zheng et al. (1994), the plant
model is slightly modified as

G̃(s) =
10

100s+ 1




4
−5

0.1s+ 1
−3

0.1s+ 1
4


 (31)

in order to satisfy the requirement of fAG(s)|s=∞ = I. The

non-causal filter fA is then designed for G̃(s) such that

fAG̃(s)|s=∞ = I where fA = 2.5(s+1)I. The factorization

of Q(s) is obtained as Q1 = fAG̃Q. In this example,

Kp =

[
40 −50
−30 40

]
, C =

[
0.4 −0.5
−0.3 0.4

]
and D−1

k =

[
8 −10
−6 8

]

Observe that

C =
1

100
Kp, and D−1

k =
1

5
Kp

so the directionality compensators of (14) and (15) are
equivalent and effectively meet the criterion for optimal
nominal steady state performance of (16). This is depicted
in figure 6 where the closed loop responses for DP, OCT,
ODC and OSS schemes are the same.

0
50
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200

Unconstrained

MIA

Others
0

0.2

0.4

0.6

0.8

Time (Secs)

R
e
s
p
o
n
s
e

Fig. 6. Example 1: The Modified IMC (MIA,’+’) yields a
faster reponse for the first output at the expense of
a poor transient response in the second out while the
other schemes ( DP, OCT, ODC, OSS and two-stage
IMC,’o’) all yield same response.

Example 2. This example is taken from Soroush and Val-
luri (1999) where the state space model of the process is
given as[

ẋ1

ẋ2

]
=

[
−0.01 −0.0002
−0.5 −0.03

] [
x1

x2

]
+

[
0.25 0
0 4

] [
u1

u2

]

[
y1
y2

]
=

[
1 0
0 1

] [
x1

x2

] (32)

with |u1| ≤ 0.12 and |u2| ≤ 0.12 and a set point change of
[0.85 2.2]T . The plant can be represented in continuous-
time transfer function as

G(s) =




0.25(s+ 0.003)

s2 + 0.04s+ 0.0002

−0.0008

s2 + 0.04s+ 0.0002
−0.125

s2 + 0.04s+ 0.0002

4(s+ 0.01)

s2 + 0.04s+ 0.0002


 (33)

The classical IMC controller design for a step input is

Q(s) =



4s+ 0.04

5s+ 1

0.0008

2s+ 1
0.125

5s+ 1

0.25s+ 0.0075

2s+ 1


 (34)

and the corresponding unity feedback controller is

K(s) =



4s+ 0.04

5s

0.0008

2s
0.125

5s

0.25s+ 0.0075

2s


 (35)

The controller Q(s) is factorized based on the modified
IMC approach as Q1 = fAGQ and Q2 = fAG− I with

fA =

[
4(s+ 1) 0

0 0.25(s+ 1)

]
(36)

With relative orders r1 = 1, r2 = 1, the plant structural
matrices are given as

Kp =

[
37.5 −4
−625 200

]
, C =

[
0.25 0
0 4

]
and D−1

k =

[
0.8 0
0 0.125

]

The plant has a diagonal characteristic matrix which is
significantly different from the steady state gain matrix
and hence the ODC will result in a different steady
state performance compared to the OSS scheme. Figure
7 shows the two-stage IMC results in the closest closed
loop performance to the unconstrained case as compared
to the other antiwindup schemes.

We also compare the performance of the two-stage IMC
with a particular MPC formulation Maciejowski (2002).
We consider two MPC cases; a single horizon MPC (pre-
diction horizon Np = 1 and control horizon Nc = 1) and
a long horizon MPC (prediction horizon Np = 100 and
control horizon Nc = 50). The closed loop responses in
Figures 8 and 9 show that the two-stage IMC competes
favourably with a long horizon MPC while only requiring
the computation equivalent to that of a single horizon
MPC. It is however, envisaged that a long horizon MPC
will outperform the two-stage IMC especially when there
is high-order unmodeled dynamics in the system. The two-
stage IMC does not require the receding horizon compu-
tation of MPC and may serve as a less computationally
intensive and more transparent (in terms of tuning for
robustness) alternative to MPC.

7. CONCLUSION

We have demonstrated the effectiveness of the two-stage
internal model control antiwindup in dealing with the per-
formance degradation associated with control windup and
process directionality in input constrained multivariable
systems. While MPC algorithms are known to handle such
problems, their implementation require extensive online
computation and tuning for robustness is achieved in an
obscure fashion. The distinguishing feature of the proposed
two-stage IMC is that it lacks the horizon of MPC. It is
based on the solution of two low-order QPs.
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Fig. 7. Example 2: Two-stage IMC (TIMA) yields the clos-
est performance to the unconstrained case. DP and
OSS schemes have improved steady state behaviours
but poor transient characteristics as opposed to the
OCT and ODC schemes both of which have optimal
transient behaviours but degraded steady state per-
formances.
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Fig. 8. Two-stage IMC (’+’) outperforms the single hori-
zon MPC (sMPC, ’o’) and yields similar reponse to
long horizon MPC (lMPC, ’*’)
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Fig. 9. Constrained input: Two-stage IMC (’+’), single
horizon MPC (sMPC, ’o’) and long horizon MPC
(lMPC, ’*’)
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