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Abstract: In many biological processes heterogeneity within cell populations is an important
issue. In this work we consider populations where the behavior of every single cell can be
described by a system of ordinary differential equations. Heterogeneity among individual cells
is accounted for by differences in parameter values and initial conditions. Hereby, parameter
values and initial conditions are subject to a distribution function which is part of the model
specification. Based on the single cell model and the considered parameter distribution, a partial
differential equation model describing the distribution of cells in the state and in the output
space is derived.
For the estimation of the parameter distribution within the model, we consider experimental
data as obtained from flow cytometric analysis. From these noise-corrupted data a density-based
statistical data model is derived. Employing this model of the data the parameter distribution
within the cell population is computed using convex optimization techniques.
To evaluate the proposed method, a model for the caspase activation cascade is considered. It is
shown that for known noise properties the unknown parameter distributions in this model are
well estimated by the proposed method.
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1. INTRODUCTION

Most of the modeling performed in the area of systems
biology aims at achieving a quantitative description of
intracellular pathways. Hence, most available models de-
scribe a ”typical cell” on the basis of experimental data.
Unfortunately, experimental data are in general obtained
using cell population experiments, e.g. western blotting. If
the considered population is highly heterogeneous, mean-
ing that there is a large cell-cell variability, fitting a single
cell model to cell population data can lead to biologically
meaningless results. To understand the dynamical behav-
ior of heterogeneous cell populations it is crucial to develop
integrated cell population models.

Modeling on the population scale has already been ad-
dressed by Mantzaris (2007) and Munsky et al. (2009).
These authors demonstrated that populations can show a
bimodal response if stochasticity in biochemical reactions
is considered. But besides stochasticity in biochemical
reactions there are other reasons which can also lead to
heterogeneity in populations. Examples are unequal par-
titioning of cellular material at cell division (Mantzaris,
2007), genetic and epigenetic differences (Avery, 2006).

For the purpose of this paper, we describe heterogeneity
in populations by differences in parameter values of the
model describing the single cell dynamics. The network
structure is assumed to be identical in all cells, as it usu-
ally represents the physical interactions among molecules,
which should be independent of the cell’s state. This para-
metric approach is well suited for genetic and epigenetic
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differences. The distribution of parameter values within
the cell population of interest is described by a multivari-
ate probability density function, which is part of the model
specification.

In the following the problem of estimating the parameter
distribution function is studied. Therefore, we consider
high-throughput experimental methods such as flow cy-
tometry, which can be used to measure concentration dis-
tributions within cell populations by suitable fluorescent
labeled antibodies. Classical flow cytometry devices can
measure several thousand cells per second.

To estimate the parameter distributions, in a first step,
an appropriate population model has to be found. In the
literature mathematical models of cell populations are
either described as cell ensembles (Waldherr et al., 2009;
Munsky et al., 2009), or as a non-linear partial differential
equation (PDE) for the distribution of the state variables
(Mantzaris, 2007; Luzyanina et al., 2009; Tsuchiya et al.,
1966). In case of ensemble models, a differential equation
is assigned to each cell, making an in depth theoretical
analysis difficult. PDE models, which describe the time
evolution of the distributions of the state variables based
on the single cell models, are easy to handle from a
theoretical point of view but hard to simulate for a large
state dimension of the single cell model. Therefore, only
low dimensional PDE models of populations have been
studied in literature so far (Mantzaris, 2007; Luzyanina
et al., 2007, 2009).

In this paper a PDE model for the state distribution within
a heterogeneous cell population is derived. Given the solu-
tion of this PDE the probability density of measuring a cer-
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tain output can be determined. As for the estimation only
the measured outputs are required, a numerical method
for computing the output distribution is outlined. This
method employs a particle-based approach (Rawlings and
Bakshi, 2006) and classical density estimation (Silverman,
1986).

Based on this efficient computation scheme for the popu-
lation response an estimation method for the underlying
heterogeneity is developed. A statistical model of the mea-
sured output distribution is derived from the single cell
measurements obtained at every measurement instance.
Therefore, again kernel density estimators are used as
they have better asymptotic properties than commonly
used naive estimators (Luzyanina et al., 2009). Given a
model and the output distribution estimated from the
measurement, l2-norm minimization is performed over the
set of possible parameter distributions. By employing the
model properties and a parameterization of the parameter
distribution this optimization problem is convex and can
be solved efficiently.

The paper is structured as follows. In Section 2, the prob-
lem of estimating the parameter distribution is introduced.
In Section 3, we present the statistical model for the
measured data and the simulation model for state and
output distribution. Section 4 gives a short overview of
the employed identification procedure before in Section 5
the proposed methods are applied to a caspase activation
model with artificial data.

Notation: Consider the m-dimensional hypersurface S,
with S ⊂ R

d. The integral I of a function g(z), with
g : R

d → R, over z ∈ S is written as

I =

∫

S

g(z)dS.

Furthermore, the i.th unit vector is denoted by ei.

2. PROBLEM STATEMENT

For the purpose of this work, a model of a biochemical
reaction network in a population of M cells is given by a
collection of differential equations,

ẋ(i) = f(x(i), p(i)), x(i)(0) = x
(i)
0 ,

y(i) = h(x(i), p(i)), i ∈ {1, . . . ,M},
(1)

with state variables x(i)(t, p(i)) ∈ R
n
+, measured variables

y(i)(t, p(i)) ∈ R
m
+ , and parameters p(i) ∈ R

q
+. The index

i specifies the individual cells within the population. The
parameters p(i) can be kinetic constants, e.g. reaction rates
or binding affinities. The effect of cell-cell interaction on
the considered pathway is assumed to be negligible, which
is the case in many in vitro lab experiments where the
response of the individual cells is predominantly influenced
by external stimuli. The vector field f : R

n
+ × R

q
+ → R

n

describing the single cell dynamics is locally Lipschitz and
the function h : R

n
+ × R

q
+ → R

m
+ is continuous.

In the following heterogeneity within the cell population is
introduced, modeled by differential parameter values and
initial conditions among individual cells. The distribution

of parameters p(i) and initial conditions x
(i)
0 is given by

a probability density function Φ : R
n+q
+ → R+ with

∫

R
n+q

+

Φ(x0, p)dx0dp = 1. For ease of notation, we write

ξT0 = [xT
0 , p

T]. The probability density function Φ is
part of the model specification and the parameters and

initial conditions of cell i are subject to the probability
distribution

Pr(ξ
(i)
0,1 ≤ ξ1, · · · , ξ(i)0,n+q ≤ ξn+q) =

∫ ξ1

0

· · ·
∫ ξn+q

0

Φ(ξ̃)dξ̃1 · · · dξ̃n+q.
(2)

As outlined in Section 1, for the study of cell populations
high-throughput cell population measurements are avail-
able. Using these experimental techniques protein concen-
trations within thousands of cells can be measured at every
measurement instance, tk, k = 1, . . . , N . This yields the
measurement data

Dk =
{(

tk, ψ
(i)(tk)

)}

i∈Ik

, k = 1, . . . , N (3)

where ψ(i) is the measured output of the cell i and Ik
is the index set of the cells measured at time tk. Note
that in general it is hard to measure single-cell time series
data: cells may move between measurement instances or
are removed from the population in order to obtain the
measurements, and the photobleaching effect limits the
time-span that can be observed. On the other hand, if
classical flow cytometric analysis is applied the sampled
cells can be assumed to be independent and identically
distributed and card(Ik) is large. Hence, an approximation
of the output distribution is possible.

Like most measurement devices, also high-throughput
fluorescence measurements are subject to noise. For the
rest of the paper, noise consisting of a relative and an
absolute part is considered,

ψ(i)(tk) = diag(η1)y(i)(tk) + η2, (4)

in which ψ(i) is the measured output and ηj ∈ R
m is a

vector of log-normally distributed random variables with
probability density functions

Θi
j(η

i
j) =















exp

{

− 1
2

(

log ηi
j−µ

i
j

σi
j

)2
}

√
2πσijη

i
j

for ηij > 0

0 otherwise

(5)

i = 1, 2, j = 1, . . . ,m, yielding the joint probability density

Θi(ηi) =

m
∏

j=1

Θi
j(η

i
j). (6)

Log-normally distributed random variables are chosen
here, since they are a good model for the commonly seen
noise distributions of the considered measurement device
and conserve the positivity of all variables. For notational
simplicity the measurement errors of the different concen-
trations are assumed to be uncorrelated. This constraint
can be removed easily.

Given this setup the problem we are concerned with is:

Problem 1. Given the measurement data Dk, k = 1, . . . , N ,
the cell population model (1), and the noise model (6),
determine the parameter distribution Φ(ξ).

Unfortunately, estimation of Φ(ξ) using a cell population
model with a finite number of cells and discrete sampled
data is fairly difficult as no single cell trajectories are
available. A far more natural approach would be to use
a density description, as the available measurement data
can be interpreted as samples drawn from the probability
density function of the output. This interpretation is also
quite appealing from a modeling point of view as the
number of cells considered in a standard lab experiment
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is of the order of 109 and hence nevertheless too large to
be simulated on an individual basis. In the next chapter a
PDE model for the probability density of the output and
a density model for the measurement data is derived.

3. DENSITY-BASED MODELING OF
HETEROGENEOUS CELL POPULATIONS

As outlined in the previous section, a continuous statistical
model for the measurement data, as well as for the evolu-
tion of the state and output density would be preferable.
These two aspects are addressed in the following.

3.1 Density model of measurement data

The data Dk collected by the considered measurement
devices are samples drawn from the distribution of the
measured output, as mentioned in Section 2. Let Ψ(ψ, tk)
be the distribution of the measured outputs ψ(i)(tk) at
time tk. As Ψ(ψ, tk) is considered to be a probability den-
sity, classical density estimation methods can be employed
for estimating Ψ(ψ, tk) from the given samples Dk.
In this work, the problem of determining Ψ(ψ, tk) from Dk
is approached using kernel density estimators. Kernel den-
sity estimators are non-parametric approaches to estimate
probability distributions from sampled data (Silverman,
1986). They are widely used and can be thought of as plac-
ing probability ”bumps” at each observation, as depicted
in Figure 1. These ”bumps” are the kernel functionK, with
∫

Rm K(ψ)dψ = 1. Note that here only the equations for
the one dimensional case are given. The extension towards
higher dimensions is straightforward and can be found in
Silverman (1986). In this work, a Gaussian kernel given by

K
(

ψ − ψ(i), h
)

=
1√
2πh

exp

{

−1

2

(

ψ − ψ(i)

h

)2
}

, (7)

with standard deviation h is used. In this context, h is also
called smoothing parameter in the literature (Silverman,
1986).

Given the kernel K an estimator of the probability density
for a given set of samples Dk is

Ψ(ψ, tk) =
1

Mk

∑

i∈Ik

K
(

ψ − ψ(i)(tk), h
)

, (8)

where Mk is the cardinality of Ik. The selection of the
smoothing parameter h is crucial and depends strongly
on Mk. In this work h is chosen according to the least-
squares cross-validation method (Stone, 1984). As Mk is
considered to be large it can be assumed that the error
of the estimated output distribution with respect to the
actual output distribution is small.

3.2 PDE model of density evolution

As outlined previously, a continuous model for the output
density is desirable for the purpose of parameter identifi-
cation. Therefore, a PDE model for the cell population is
derived in the next step.

At first the single cell model is transformed in an extended
state space model

ξ̇(i) =

(

f(ξ(1,i), ξ(2,i))
0

)

, ξ(i)(0) =

(

x
(i)
0

p(i)

)

,

y(i) = h(ξ(1,i), ξ(2,i))

(9)
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Fig. 1. Gaussian kernel density estimate (—) of Ψ(ψ, t) for
the measured outputs (o) and the associated Gaussian
kernels (– –).
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Fig. 2. Infinitesimal volume element Xξ of the extended
state space, with fluxes across the boundaries.

in which the parameters are appended to the state vector,
ξ(i) = [ξ(1,i), ξ(2,i)]T ∈ R

n+q with ξ(1,i) = x(i) and ξ(2,i) =
p(i). This system can also be written as

ξ̇(i) = F (ξ(i)), ξ(i)(0) = ξ
(i)
0 ,

y(i) = H(ξ(i)),
(10)

to which we refer as the extended state space representa-
tion.

Based on (10), the PDE model for the population is
derived. The state variable of this PDE is the state
distribution function Ξ : R

n+q×R → R+ : (ξ, t) 7→ Ξ(ξ, t),
which is defined on the extended state space. Based on
the distribution function Ξ, the probability of picking at
random a cell from the population with states ξ(i)(t) ∈ X
at time t is given by

Pr(ξ(i)(t) ∈ Xξ) =

∫

Xξ

Ξ(ξ̃, t)dξ̃. (11)

To determine the PDE for Ξ, an infinitesimal volume
Xξ = Xξ,1 × . . . × Xξ,n+q of the extended state space is
considered, with Xξ,i = [ξi, ξi+∆ξi]. For the 2-dimensional
case this is depicted in Figure 2.

For this infinitesimal volume Xξ the flux and storage
balance is,

∫

Xξ

Ξ(ξ̃, t+ ∆t)dξ̃ −
∫

Xξ

Ξ(ξ̃, t)dξ̃ =

n+q
∑

i=1

∫ t+∆t

t

(

Ξ̇+
i (ξ, τ) − Ξ̇−

i (ξ, τ)
)

dτ.

(12)

The left hand side of the equation represents the storage
term and the right hand side the fluxes across the bound-
aries. The fluxes Ξ̇+

i and Ξ̇−
i are given by the surface inte-

gral of the product of the distribution on the boundary and
the influx velocity, determined by the single cell dynamics,

Ξ̇+
i (ξ, t) =

∫

S
Ξ̇
(ξ,i)

Fi(ξ̃)Ξ(ξ̃, t)dS,

Ξ̇−
i (ξ, t) =

∫

S
Ξ̇
(ξ+ei∆ξi,i)

Fi(ξ̃)Ξ(ξ̃, t)dS,

(13)
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in which SΞ̇(ξ, i) = {ξ̃|ξ̃i = ξi ∧ ξ̃j ∈ Xξ,j∀j 6= i}.
Next, (12) and (13) are used to derive the PDE for the
time evolution of Ξ(ξ, t). Therefore, at first the storage
term is expanded using its Taylor series, yielding

∫

Xξ

Ξ(ξ̃, t+ ∆t)dξ̃ −
∫

Xξ

Ξ(ξ̃, t)dξ̃ =

(Ξ(ξ, t+ ∆t) − Ξ(ξ, t))

n+q
∏

j=1

∆ξj + O(∆ξn+q+1).
(14)

Here we assume that O(∆ξj) = O(∆ξ)∀j ∈ {1, . . . , n+ q}.
In a second step the flux difference ∆Ξ̇i(ξ, τ) = Ξ̇+

i (ξ, τ)−
Ξ̇−
i (ξ, τ) is rewritten,

∆Ξ̇i(ξ, t) = −
∫

S
Ξ̇
(ξ,i)

( ∂(FiΞ)

∂ξi

∣

∣

∣

∣

(ξ,t)

∆ξi + O(∆ξ2i )
)

dS (15)

= − ∂(FiΞ)

∂ξi

∣

∣

∣

∣

(ξ,t)

n+q
∏

j=1

∆ξj + O(∆ξn+q+1). (16)

The first line follows from the definition of ∆Ξ̇i(ξi, t) and
the Taylor series of Fi(ξ+ei∆ξi)Ξ(ξ+ei∆ξi, t). To obtain
the second line the integration is carried out. The final
reformulation is the expansion of the integral over τ in
(12), resulting in

∫ t+∆t

t

(

Ξ̇+
i (ξ, τ) − Ξ̇−

i (ξ, τ)
)

dτ

= −∆t





n+q
∏

j=1

∆ξj





∂(FiΞ)

∂ξi

∣

∣

∣

∣

(ξ,t)

+ O(∆ξn+q)O(∆t2).

(17)

Substituting (14) and (17) in the flux balance (12) and

dividing by ∆t
∏n+q
j=1 ∆ξj then yields,

Ξ(ξ, t+ ∆t) − Ξ(ξ, t) + O(∆ξ)

∆t
= −

n+q
∑

i=1

∂(FiΞ)

∂ξi

∣

∣

∣

∣

ξ

+ O(∆t).

Given this the PDE governing the evolution of Ξ(ξ, t) is
obtained by taking the limits ∆ξi → 0 and ∆t→ 0, leading
to

∂Ξ

∂t
(ξ, t) = −

n+q
∑

i=1

∂(FiΞ)

∂ξi
(ξ, t), (18)

for sufficiently smooth Ξ(ξ, t). This final equation is what
we expected, a transport equation with position dependent
transport direction and velocity, according to the single
cell dynamics. The initial condition of (18) is the initial
distribution on the extended state space,

Ξ(ξ, 0) = Φ(ξ), ∀ξ ∈ R
n+q
+ . (19)

From the state distribution Ξ(ξ, t), the output distribution
Υ(y, t) is computed as the integral of the state distribution
along H(ξ) = y,

Υ(y, t) =

∫

SΥ(y)

Ξ(ξ, t)dS, (20)

where SΥ(y) = {ξ|H(ξ) = y}.
The resulting partial differential equation system is

∂Ξ

∂t
(ξ, t) = −

n+q
∑

i=1

∂(FiΞ)

∂ξi
(ξ, t), Ξ(ξ, 0) = Φ(ξ)

Υ(y, t) =

∫

SΥ(y)

Ξ(ξ, t)dS,

(21)

where Ξ : R
n+q
+ × R → R+ and Υ : R

m
+ × R → R+. This

PDE is of first order, quasilinear and known as Liouville’s
equation. The solution always exists for sufficiently smooth
F (·) (Evans, 1998).

As the measurements are noise corrupted, the distribution
of measured outputs Ψ(ψ, t) is different from the actual
output distribution Υ(y, t). It is given by

Ψ(ψ, t)=

∫

SΨ(ψ)

Υ(y, t)Θ1(η1)Θ2(η2)dS, (22)

where SΨ(ψ) = {[yT, (η1)T, (η2)T]T|diag(η1)y + η2 = ψ}.

3.3 Numerical solution of PDE

In order to study the time evolution of the output distribu-
tion Υ(y, t) and the measured output distribution Ψ(ψ, t)
(21) has to be solved for given Φ(ξ). As Ξ(ξ, t) is defined on
the (n+ q)-dimensional space, standard grid based solvers
are not able to solve (21) for n + q > 3. Theoretically,
the methods of characteristics can be used (Evans, 1998)
but for the high dimensional system we are going to study,
also this method is difficult to apply. Instead, a stochastic
method is used, which is known from particle filtering
(Rawlings and Bakshi, 2006).

This stochastic integration method is based on a particle
description of the model, which is in our case equivalent
to the cell ensemble model (1). To compute Ψ(ψ, t), at

first a set of samples {(x(i)
0 , p(i))}i=1,...,S , is drawn from

Φ(ξ), where S is the number of samples. For this set of
samples the single cell model (8) is simulated, resulting
in a set of simulated outputs {y(i)(t, p(i))}i=1,...,S . The

output y(i)(t, p(i)) is then corrupted by noise according to
(4) resulting in {ψ(i)(t)}i=1,...,S . Given this a numerical
approximation of Ψ(ψ, t) can be determined using the
kernel density estimator described in Section 3.1. This
numerical stochastic approximation the output of Ψ(ψ, t)
can be shown to converge as S → ∞. Hence, the measured
output distribution Ψ(ψ, t) can be approximated also for
high dimensional nonlinear systems.

4. ESTIMATION OF PARAMETER DISTRIBUTIONS

As mentioned in Section 2 the problem studied in this work
is the estimation of the parameter distribution Φ from the
data Dk. This problem is approached in the following by
minimizing the l2-norm of the model-data mismatch,

J
(

Φ̂
)

=

n+q
∑

k=1

∣

∣

∣

∣

∣

∣Ψ(ψ, tk) − Ψ̂(ψ, tk, Φ̂)
∣

∣

∣

∣

∣

∣

2

2
. (23)

in which Ψ̂(ψ, t, Φ̂) is the distribution of the measured
output ψ(t) obtained by simulation with the parameter

distribution Φ̂(ξ). According to the cost J , the optimal

parameter distribution Φ̂∗(ξ) is than given by

Φ̂∗ = arg min
Φ̂
J(Φ̂)

subject to

∫

R
n+q

+

Φ̂(ξ)dξ = 1, Φ̂(ξ) ≥ 0∀ξ ∈ R
n+q
+ ,

(24)

where the last two constraints enforce that Φ̂(ξ) is a
probability distribution.

Remark 1. For the remainder of this section the measured
output distribution Ψ(ψ, t) is compared to the noise cor-

rupted simulated output distribution Ψ̂(ψ, t, Φ̂). This is
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possible as we assume a large number of measured cells per
measurement instance and therefore have good statistics
on the measurement error.

Unfortunately, the optimization problem (24) is infinite

dimensional. Therefore, a parametrization of Φ̂,

Φ̂ϕ(ξ) =

nϕ
∑

i=1

ϕiΛ
i(ξ), (25)

with a weighting vector ϕ ∈ R
nϕ is introduced. In this

work the ansatz functions Λi for Φ̂ are chosen to be
head functions, as depicted in Figure 3. This yields the
simplified, finite-dimensional optimization problem,

ϕ∗ = arg min
ϕ
J(Φ̂ϕ)

subject to cTϕ = 1, ϕ ≥ 0,
(26)

in which ci =
∫

R
n+q

+

Λi(ξ)dξ. The two constraints are again

needed to ensure that Φ̂ϕ(ξ) is a probability density.

In order to solve (26) using computational techniques the
quasi-linearity of (21) is employed. As the superposition

principle holds, the output Ψ̂(ψ, t, Φ̂ϕ) can be written as
the weighted sum

Ψ̂(ψ, t, Φ̂ϕ) =

nϕ
∑

i=1

ϕiΨ̂(ψ, t,Λi), (27)

where Ψ̂(ψ, t,Λi) is the output distribution obtained for
simulation with a parameter distribution according to
Λi(ξ). This allows the reformulation of the objective func-
tion to

J
(

Φ̂ϕ

)

=

n+q
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ψ(ψ, tk) −
nϕ
∑

i=1

ϕiΨ̂(ψ, tk,Λ
i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Employing this the optimization problem (26) can finally
be written as

ϕ∗ = arg min
ϕ

n+q
∑

k=1

(Akϕ− bk)
T
W (Akϕ− bk)

subject to cTϕ = 1, ϕ ≥ 0,

(28)

where the integral || · ||22 has been approximated, e.g. using
the trapezoidal rule. The column vector bk contains hereby
the values Ψ(ψ, tk) at the grid points of the discretization.
Equivalently, the ith column of Ak contains the values
of Ψ̂(ψ, tk,Λ

i) at the grid points. The matrix W is a
constant weighting matrix, determined by the chosen
approximation of || · ||22.
Note that problem (28) is convex. Hence, even in case of
high dimensional ϕ, convergence to an optimal parameter
distribution within the considered class of distributions
can be guaranteed.

5. APPLICATION TO THE CASPASE CASCADE

Programmed cell death, also called apoptosis, is an im-
portant physiological process to remove infected, mal-
functioning, or no longer needed cells from a multicel-
lular organism. Pathways to induce apoptosis converge
at the caspase activation cascade (Hengartner, 2000). A
mathematical model for this network has been proposed
by Eissing et al. (2004). Here, we consider the caspase
activation in response to an external death receptor stim-
ulus, e.g. the tumor necrosis factor (TNF). As seen from

0

0.5

1

· · ·
Λi(p)

· · ·

pmin pmaxpimin pic pimax

p

Λ
(p

)

Fig. 3. Illustration of head functions Λi(p).
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Fig. 4. Schematic of the caspase activation cascade.

experimental cytotoxicity assays, the cellular response to
a TNF stimulus is highly heterogeneous, with some cells
dying and others surviving. To understand the process at
the physiological level it is thus crucial to consider the
cellular heterogeneity, using for example cell population
modeling.

The reactions in the single cell model are given by

C3+C8∗
k1→ C3∗+C8∗ IAP

k8
⇆
k−8

∅

C3∗+C8
k2→ C3∗+C8∗ C8

k9
⇆
k−9

∅

C3∗+IAP

k3
⇆
k−3

C3∗

∼IAP C3

k10
⇆
k−10

∅

C3∗+IAP
k4→ C3∗ C8∗+BAR

k11
⇆
k−11

C8∗

∼BAR

C8∗
k5→ ∅ BAR

k12
⇆
k−12

∅

C3∗
k6→ ∅ C8∗

∼BAR
k13→ ∅

C3∗

∼IAP
k7→ ∅ TNFR+C8

k14→ TNFR+C8∗

For nominal parameter values, we refer to the original
publication (Eissing et al., 2004). In comparison to the
original model, we added reaction v14 for the initiator
caspase 8 (C8) activation by the TNF receptor com-
plexes (TNFR). The reaction rate for this activation is
given by v14 = k14[TNFR][C8], with the parameter value
k14 = 10−6(molecules min)−1. A sketch of the single cell
model is given in Figure 4.

Heterogeneity is modeled by a log-normally distributed
production rate of the inhibitor of apoptosis IAP, k8, and
a log-normally distributed amount of TNF-receptor com-
plexes on the cell membrane, TNFR. These two quantities
were chosen as it is known from experiments that there is a
high cell-to-cell variability. Especially the concentration of
IAPs contained in a cell is highly variable, and a variation
in IAP production is known to affect cell death consider-
ably (Eissing et al., 2006). In the following the possibility
of estimating the distributions of Φ(k8) and Φ([TNFR])
from the distributions of [C3∗], Ψ([C3∗], t), is studied.
The statistical model of the distribution, Ψ([C3∗], t) is
shown in Figure 5. This statistical model has been de-
rived using artificial measurement data of 104 cells at the
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measurement instances tk, k = 1, . . . , 6. This is a realistic
number for standard cytofluorometric experiments. The
noise properties are assumed to be known and have been
set to µ1 = 0, σ1 = 0.1, µ2 = log(103), and σ2 = 0.3,
corresponding to an average measurement error of more
than 20 percent.

Based on these data, the approach presented in Section 4 is
used to obtain an estimate for the parameter distribution.
For this purpose the considered parameter set is divided
using a 12 × 12 grid, with logarithmically distributed grid
points. The grid points are used as edge and center points
of the ansatz functions Λi(k8, [TNFR]) for Φ̂(k8, [TNFR]).
The obtained estimation result is depicted in Figure 6.

It is obvious that the estimated parameter distribution
approximates the real parameter distribution very well,
especially considering the finite number of degrees of free-
dom. Hence, even though there is an average measurement
error of 20 % on the single cell measurement, due to good
statistics at the population level, the actual parameter dis-
tributions can be estimated accurately. Furthermore, this
study shows that in principle, measuring one concentration
can give enough information to estimate several parameter
distributions, if the output distribution is sensitive with
respect to these parameters.

6. SUMMARY AND CONCLUSION

Heterogeneity in cell populations is an important issue
for research in systems biology. However, so far only few
models describing heterogeneous populations of cells with
more than one state variable have been developed. In this
paper a partial differential equation model describing the

time evolution of the state distribution is derived. We
focused hereby in particular on the distribution of the
measured outputs.

In the second part of the paper, the model of the noise cor-
rupted measured outputs and its particular properties are
used to estimate the parameter distributions underlying
the heterogeneity. Therefore, a density-based statistical
model of the sampled single cell is developed and applied
in combination with l2-norm based convex optimization.

Finally, we applied the developed estimation method to
artificial data of a medium size bistable system modeling
the caspase activation cascade. It could be shown that the
proposed method yields good estimation results in case of
a setup which is realistic in terms of noise and amount of
available data.
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