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Abstract: The paper introduces spline wavelets as a modelling tool for system identification
and proposes the technique of consistent output prediction using wavelets for estimating system
parameters. It suggests that direct weighted summation of projections in approximation space
could be used for deriving consistent output prediction in case model structure is built with
spline wavelets. This can be viewed as identification using prefiltered input and output. The
prefiltering is motivated to decorrelate samples such that local fit can be considered as a
possible solution. An iterative algorithm, alternately projecting the solution in time and wavelet
domain for penalized minimization of local error in wavelet coefficients could be designed for
estimating system parameters. The algorithm is computationally efficient and exhibits excellent
performance in cross validation. As a case study, the paper addresses the problem of modelling
Liquid Zone Control System (LZCS) in a large Pressurized Heavy Water Reactor (PHWR). In
this work, an identification scheme of a single input single output (SISO) linear time invariant
(LTI) model of the LZCS system is studied. Excellent approximation is achieved by modelling
with Biorthogonal spline wavelets used for deriving consistent output prediction of the LZCS
process.
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1. INTRODUCTION

In recent times, identification of partially linear and non-
linear systems using wavelet basis has attracted very active
research interests (Chang and Qu, 2004; Juditsky et al.,
1995; Sjöberg et al., 1995; Ljung, 1999; Doroslovacki and
Fan, 1996; Zhao and Bentsman, 2000) because of the abil-
ity of wavelets to provide good approximations of the sys-
tem function. A popular class of wavelets for this purpose
have been the orthogonal family of wavelets using which
the model parameters are estimated by minimizing errors
in the wavelet domain in a least squares sense (Chang and
Qu, 2004). This paper presents the method of consistent
output prediction for identification of complex systems
from the time-frequency evolution of input and output, us-
ing spline wavelet basis, which are not necessarily orthog-
onal. This opens up the solution space of identification to
a new class of wavelet basis. It is important to note at the
outset that consistency in system identification generally
refers to an asymptotically unbiased estimate of system
parameters (Ljung, 1999). In this work, the the usage of
the term consistent output prediction refers to the signal
which has the same representation in wavelet domain as
the original output, inspired by the notion of consistent
estimate in signal processing literature (Cvetković and
Vetterli, 1995). The proposed method primarily checks the
consistency in output signal in the context of prediction.
In this sense, the method is termed as one of consistent
output prediction.

System parameters are estimated in the approximation
space to where both input and output are mapped. Spline
wavelets span the approximation space and could be very
effectively used for system identification because of their
short support and excellent approximation properties. The
spline functions, however, are not orthogonal except for
those of degree 0. When the basis functions are orthogonal,
minimization of sum of squared errors could be done in
either time or wavelet domain. On the other hand, when
the basis is not strictly orthogonal, the issue of stability
of reconstruction in time needs to be addressed. Providen-
tially, when splines are used as generalized basis, direct
weighted addition of projections in approximation space
could be used for consistent output predictions and it can
be shown that the solution seeking local fit in approxi-
mation space does not necessarily require the assumption
of strict orthogonality. Hence higher order spline wavelet
basis is admissible for modelling. In general, the method of
estimation of model parameters, with wavelet basis, could
be cast as a penalized least squares problem. For a given
strictly positive threshold, the solution is arrived at by soft
thresholding of wavelet coefficients (Chang and Qu, 2004).

The efficacy of the technique has been demonstrated by
modelling a complex process in a large Pressurized Heavy
Water Reactor (PHWR) namely the Liquid Zone Control
System (LZCS) employed for providing continuous fine
control of reactor power level and power distribution in
the core (Reddy et al., 2007). Response of the system with
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the associated nonlinearities could be very appropriately
and effectively captured by biorthogonal spline wavelet
basis. An identified linear time invariant (LTI) model with
wavelet basis is cross validated using a new set of input-
output data. An excellent match is observed between the
model output and the actual output, using a small number
of basis.

The efficacy of the technique is demonstrated by modelling
a complex process in a large Pressurized Heavy Water
Reactor (PHWR) namely the Liquid Zone Control System
(LZCS) employed for providing continuous fine control of
reactor power level and power distribution in the core
(Reddy et al., 2007). It is observed that the response of the
system with the associated nonlinearities is very effectively
captured by the biorthogonal spline wavelet basis. An
identified linear time invariant (LTI) model with wavelet
basis is cross validated using a new set of input-output
data. An excellent match is observed between the model
output and the actual output, using a small number of
basis.

The rest of the paper is organized as follows. Section 2.1
reviews the theory of spline wavelets basis and presents
the essential fundamentals of system identification with
wavelet basis functions. The technique of consistent output
prediction is presented in Section 3. A simple modelling
example and the application of the proposed technique to
the LZCS using biorthogonal spline wavelets is presented
in Section 4. The accuracy of the model so obtained is
verified by comparing its output with the actual output
signals of the LZCS from experiments. Section 5 concludes
the paper indicating main contributions.

2. PRELIMINARIES

2.1 Time-varying model and wavelet representation

A regression model in terms of input u(t) and output y(t)
can be given by

y(t) = h(t, τ) ⋆ u(t) + e(t) (1)

where h(t, τ) is an unknown function in Hilbert space
L2 (space of all functions that are square-integrable in
Lebesgue’s sense) and e(t) is random noise assumed to
be i.i.d. distributed. Define the shift invariant sub-space
V of Hilbert space L2 for h(t, τ)

V (ψ) =

{

h(t, τ) =
∑

i

αi(t)ϕi(τ) ; αi ∈ l2

}

(2)

such that h(t, τ) denotes the system response in time-
domain. Shift invariant basis functions ϕi and time vary-
ing coefficients αi (t), together constitute the discrete-
continuous parametric model of the time varying system.
For ϕi to qualify as a basis of V , it is necessary that three
conditions are satisfied i.e. the sequence of coefficients
must be square summable, the family of basis functions
should form a Riesz basis of V and the basis functions
satisfy the partition of unity condition (Unser, 2000).

Associate the discrete wavelet transform (DWT) with an
operator W . Applying W to the noisy observation we
obtain the DWT of y(t) as

Wy(t) =w(t) (3)

The Riesz basis condition ensures a stable reconstruction
by the inverse DWT operator because the energy in
discrete and continuous domain satisfies the following
condition.

∥

∥

∥

∥

∥

∑

i

αi(t)(ϕi ⋆ u)(t)

∥

∥

∥

∥

∥

2

≤C ‖w(t)‖2 0 < C <∞ (4)

By virtue of (4), a solution of the parametric identification
problem could be obtained in wavelet domain as well by
minimizing the total energy (in least squares sense) as
discussed in section 3. Here, αis are the parameters which
are estimated satisfying the least squares criterion.

2.2 Spline Wavelets as Basis

A system can be described in terms of a linear time varying
response function expressed as weighted sum of a finite
number of integer indexed basis functions with compact
support. Let θi, i = 1, 2, . . . P and γi, i = 1, 2, . . . Q denote
respectively the basis functions for inputs and outputs.
The estimated one-step-ahead output, ŷk+1 of a dynamical
system can be obtained by linear filtering of projections
(which are given by the convolutions) of past input and
past outputs onto θi and γi respectively. It may be noted
here, that subscripts on signals denote the sample number
and the same on the basis functions denote the index of
the basis. An estimate of the one-step-ahead measured
output yk+1of the system having input u can be written in
general as a linear combination of u and y and the model
for approximation of the measurement yk+1is expressed as

ŷk+1 =
∑

i

aik(θi ⋆ y)k +
∑

i

bik(γi ⋆ u)k (5)

When θi and γi are sinc functions, the convolutions in
(5) pick-up time samples of input and output and the
model reduces to the classical Auto Regressive with eX-
ogenous input (ARX) type model. In general, θi and γi
could be considered as shift invariant generating functions.
(θi ⋆ y) (t) and (γi ⋆ u) (t) are convolution of output and
input with respective ith basis and samples at t = k,
(θi ⋆ y)k and (γi ⋆ u)k could be called generalized samples
of output and input respectively. In (5), the approximation
of the measurement yk+1 is no longer based on input and
output but on the basis of filtered version of input and
output. In general input and output are vectors belonging
to different spaces. Hence a mapping is necessary for lin-
early transforming a vector from input or output space to
the approximation space where the parameters aiks and
biks are estimated.

The primary objective of prefiltering is to decorrelate
samples such that direct addition of projections for local
fit can be considered as a possible solution. Moreover,
thresholding decorrelated generalized samples obtained by
prefiltering makes the identified model insensitive to noise.
Without any loss of generality it can be assumed that
I = P = Q and in vector-matrix notation, (5) can be
restated as
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ŷk+1 =



















(θ1 ⋆ y)k
...

(θl ⋆ y)k
(γ1 ⋆ u)k
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(γl ⋆ u)k
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a1k
...
alk
b1k
...
blk



















(6)

For approximating the measurement yk+1, projections
onto the basis functions θi andγi could be weighted and
directly added for every index i, if eventually both input
and output are mapped into the space spanned by the
same set of basis. For example, if θi = βm ⋆ βr

i and
γi = βn ⋆ βr

i the weighted projections on θi and γi can
be directly added because finally both input and output
are projected onto the same basis βr

i . Direct addition of
projections is a useful technique that could be used in
consistent output prediction discussed later in the paper.
Moreover, the formulation allows use of two different set
of wavelet basis for output and input. A better match
with the wavelet basis shall yield fewer coefficients of the
modelled signal in the transform domain. The structures
of θi and γi suggest use of spline wavelets as basis for
system identification because higher order spline functions
are formed by successive convolution of the spline function
of order zero.

βn(t) = βn−1 ⋆ β0(t) (7)

where β0(t) is the box function spline of degree 0.

β0(t) =

{

1, |t| < 1/2
0, |t| ≥ 1/2

(8)

It can be seen that the structure of βn is same as that of θi
and γi. Scaling functions (generated from spline functions)
which also satisfy the two-scale relation are admissible as
a generating function.

φ(
t

2
) =

√
2
∑

k∈Z

fkφ(t− k) (9)

where fk is refinement filter. Again, to admit wavelet basis
functions instead of a single space V (φ) = V0 , a ladder
of rescaled subspaces are considered. These subspaces are
indexed by scale number j and are given by

Vj = span(φj,k)k∈Z with φj,k = 2−
j

2φ(
t

2j
− k).

If φ satisfies (9)then these spaces are nested and form a
multi-resolution analysis (MRA) of L2. Defining difference
spaces Wj = Vj−1 − Vj , wavelet basis functions ψ(t) given
by

ψ(
t

2
) =

√
2
∑

k∈Z

gkψ(t− k) (10)

can be designed for the discrete-continuous models, such
that they form the Riesz basis of difference spaces Wj ,
i.e.Wj = span (ψjk)k∈Z

, and satisfy partition of unity
condition. The underlying scaling function for designing
spline biorthogonal wavelets is a box spline. Since ψ( t

2
)

is a linear combination of box splines ψ(t − k), it is a
compactly supported polynomial spline of same degree.

3. CONSISTENT OUTPUT PREDICTION

When orthogonal wavelets are used, the energy of the
signal is preserved in both time and wavelet domain by
virtue of Parseval’s relation and hence error minimization
in least squares sense in either domain would give the same
solution. The proposed method of estimation of model
parameters based on the idea of consistent output predic-
tion (Mukhopadhyay and Tiwari, 2010), however, does not
necessarily need the assumption of strict orthogonality.

Definition 1. A consistent prediction is such that the
actual output signal and its prediction have the same
signal representation in the wavelet domain.

An estimate of the predicted output in time residing in
the reconstruction set of the representation is obtained
by inverse wavelet transform W−1 of the weighted sum
of wavelet coefficients of input and output. The method
of consistent output estimate uses penalized local error
minimization in wavelet domain. The technique forces
error at every significant sample point in wavelet domain
locally to go to zero.

Let us denote one-step-ahead prediction at the kth time
instant as ŷk+1 and shifted version of measurement y(t+T )
as ys(t), where T is the sampling time. Measurement yk+1

can be expressed in terms of projections of shifted version
of the measurement ys(t) onto θi

yk+1 = (ys)k =
∑

i

(θi ⋆ ys)k (11)

Under the assumption of shift invariance of wavelet basis,
minimum error solution for αis in least squares sense is
obtained by minimizing the error functional,

J =
∑

k

(yk+1 − ŷk+1)
2 =

∑

k

e2k (12)

where,

ek =
∑

i

(θi ⋆ ys)k −
∑

i

aik(θi ⋆ y)k −
∑

i

bik(γi ⋆ u)k.

(θi ⋆ ys)k are wavelet coefficients of the shifted output
and aik, bik are the parameters associated with wavelet
coefficients of (θi ⋆ y) and (γi ⋆ u)k to be estimated. As
direct summation is allowed in the space spanned by θi,
we can write

ek =
∑

i

[(θi ⋆ ys)k − aik(θi ⋆ y)k − bik(γi ⋆ u)k].

The parameters are estimated as usual by setting the
partial derivatives to zero. For instance,

∂J

∂aik
= 2

∑

k

∑

i

ek(θi ⋆ y)k = 0 (13)

It can be seen from (13) that for a linear system, a solution
is obtained by setting the coefficients of wavelet expansion
of the shifted measurement at every time instant k, equal
to the weighted sum of coefficients of wavelet expansion of
output (θi ⋆ y)k and input (γi ⋆ u)k. Soft thresholding in
wavelet domain is used to reduce noise and is a solution
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to the penalized least squares problem. Let λu and λy
be two strictly positive values. In penalized minimization,
only those wavelet coefficients of input and output are
used which have modulus values more than λu and λy
respectively. Let us define those as significant wavelet
coefficients. Proposed method sets the local error i.e. the
error at the location of each significant wavelet coefficient
of the shifted output to zero.

(θi ⋆ ys)− aik(θi ⋆ y)k − bik(γi ⋆ u)k = 0

∀i, k ∈
{

Iu : |(γi ⋆ u)k| ≥ λu
⋂

Iy : |(θi ⋆ y)k| ≥ λy

}

aik = bik = 0 ∀i, k /∈ Iu and ∀i, k /∈ Iy (14)

The solution in (14), although suboptimal, precisely states
the solution of consistent output estimate. It may be
noted that in the above derivation, no assumption of
strict orthogonality has been made and hence biorthogonal
spline basis of order higher than 0 are admissible. It is
however, necessary to ensure stability of reconstruction
which readily follows from the assumption of Riesz basis
(refer (4)).

The correlation functions in wavelet domain are known to
decay faster than the correlation functions of the original
signal in time Tewfik and Kim (1992). As the generalized
samples of the transformed system in wavelet domain
are likely to have less memory compared to the time
samples of the original system, the solution of consistent
output prediction using local error minimization will work
better with generalized samples. The memory however
is not lost. In fact it remains embedded in the properly
designed wavelet basis. Moreover, a residual dependency
structure still remains between magnitudes of wavelet
coefficients both across the scale and at neighbouring
temporal locations. In this context a completely memory-
less system can be defined (Mukhopadhyay and Tiwari,
2010), which is recalled below

Definition 2. A system for which output estimate at any
instant is completely decided by the weighted sum of
the actual input and output at that instant is called a
completely memory-less system.

It may be noted that the output estimate could be a
prediction . Extending the arguments, the following con-
jecture may be made.

Conjecture 1. Any dynamical system can be transformed
into a completely memory-less system by proper design of
wavelet basis to represent it.

The conjecture above leads us to a proposition stated in
Mukhopadhyay and Tiwari (2010)

Proposition 1. The consistent output prediction, obtained
by penalized local error minimization in wavelet domain,
approaches the optimum solution as the transformed sys-
tem given by wavelet based representation tends to become
completely memory-less.

Proof of proposition 1 can be constructed by arguing that
the optimum solution for a completely memory less system
shall have no dependence on the measurements at any
time instant other than the ones at present time instant.
If conjecture 1 is true i.e., if it is possible to decorrelate
wavelet coefficients of the signal to the extent that the
estimated prediction at any time instant is solely depen-

dent on the input and output of a single (present) time
instant, consistent prediction by local error minimization
in wavelet domain shall give the optimum solution.

In case it is known apriori that the process is LTI, it
can be assumed that in the identified time varying model,
variation in the system parameters are only due to residual
noise in the de-noised output (obtained by employing soft
thresholding). Now for an LTI model, substituting aik =
k1αik and bik = k2αik in (6)and using direct addition of
projections as suggested earlier, prediction can be written
as

ŷk+1 =







k1(θ1 ⋆ u)k + k2(γ1 ⋆ y)k
...

k1(θI ⋆ u)k + k2(γI ⋆ y)k







T 





α1k

...
αIk






(15)

It may be noted that for an LTI model, k1, k2 and αik

are assumed to remain constant over time. In the light
of proposition 1, the following theorem can be proved
(Mukhopadhyay and Tiwari, 2010) from the solution of
consistent estimate given by (14).

Theorem 1. Assuming that the noise in the estimate is
stationary, iid N(0, σ2) distributed, aik and bik are given
by aik = k1αik, bik = k2αik where k1 and k2 are two real
valued constants independent of time, then the first order
estimate of the model parameters based on the consistent
output estimate using penalized local error minimization
in wavelet domain is given by

α̂i =
1

K

K
∑

k=1

[

(θi ⋆ ys)k
k1(θi ⋆ y)k + k2(γi ⋆ u)k

]

(16)

The structure of (16) however, suggests that an iterative
scheme can be formulated to find the solution. The algo-
rithm seeks the solution to have minimum local error in
wavelet coefficients by alternately projecting the solution
in time and wavelet domain (Mukhopadhyay and Tiwari,
2010). At every iteration, the solution is estimated once
using the projections of the output followed by using those
from the input. The alternate projection algorithm gives
better results compared to that from exact implementa-
tion of (16) as restrictive constraints aik = k1αik and
bik = k2αik are avoided in the implementation. In step
1 of each iteration, intermediate values of parameters or
weights are computed using contribution from significant
wavelet coefficients of input only. In step 2 the solution is
projected in time domain and again projected back onto
wavelet basis. In step 3 final values of parameters for the
iteration is computed using contribution from significant
wavelet coefficients of the output. The algorithm contin-
ues till the mean squared errors between two consecutive
iterations is less than a predefined error threshold. Initial
values of parameters are all set to zero.

4. DEMONSTRATION OF RESULTS

The model of an LTI system in the wavelet domain can be
written in the form

h(τ) =
∑

k

cJφJk(τ) +
∑

k

∑

0≤j≤J

djψjk(τ) (17)
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The structure of the model is clearly decided by the
choice of the wavelet. To draw a correspondence with
the traditional method of identification, a simple system
can be rigged up by connecting a zero order hold (the
box function, spline of degree 0), parallel to its dilations.
The right choice for modelling such system would be with
Haar Wavelet. When the method of consistent prediction is
applied, the system parameters {cJ , d0, · · · , dJ} are found
to correspond to the number of zero order holds used for
simulation. Although this result is interesting in the sense
that these parameters correlate to assumed structure, it is
not essential that parameters of the wavelet based model
correspond to the poles and zeros of a traditional model. It
is sufficient to cross validate a model with different inputs
for testing the consistency in the output.

The technique of parameter estimation is demonstrated
by modeling the LZCS in a large PHWR. Control of
the reactor power level and the core power distribution
is achieved by LZCS through variation of light water
levels in the Zone Control Compartments (ZCCs). In the
experiments the water level in each ZCC was regulated by
its level controller. Figures 1(a) and 1(b) depict two sets
of input output data collected from the LZCS test set-up
at 50 ms uniform interval. Input signal is shown as the
equivalent desired position of the control valve (CV) in
terms of percentage opening (%OPN). The output signal
is the level of water expressed as percentage of full scale
(%FS). Full scale level means that the height of the water
column is equal to the full height of the ZCC.

Identification of LZCS with classical models is attempted
first. A simple first order model required for design of re-
actor regulating system can be developed from first princi-
ples considering the ZCC as a tank in which the water level
variation is caused due to variations in inflow that occurs
when position of control valve changes due to variations in
input. Although the first order model is adequate for the
initial design of control system, simulation needs rigorous
models of LZCS. A model yielding better results than
the first order model, would require knowledge of valve
design data including the characteristics of its different
accessories. In view of such difficulties, developing the
model for ZCC water level dynamics employing a suitable
method of identification from measurement of input and
output is preferred.

Initially, identification with sinc basis (the classical) ARX
model and its variants were attempted. ARX type low or-
der models showed unacceptable prediction errors between
the output of the model and actual output in both the
experiments. Simulated Box-Jenkins (BJ) model showed
best result where order of all four filters was found to be
nine. The mismatch does not reduce even by increasing the
filter orders or fine tuning other parameters. Such a high
order model, in any case is not fit for the purpose of control
system analysis. It was also observed from the pole-zero
plot, that the identified system is almost always unstable,
having poles outside the boundary of the unit circle. This is
not surprising since open-loop LZCS system is essentially
an integrator with nonlinearities due to control valve and
flow characteristic (Mukhopadhyay and Tiwari, 2010). The
instability to the step input is due to the response of the
integrator and associated nonlinearity which could not be
captured appropriately by sinc basis used in the ARX

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

E
q

u
iv

a
le

n
t 

C
V

 p
o

si
ti

o
n

 (
%

O
P

N
)

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

W
a

te
r 

le
v

el
 (

%
F

S
)

Time (seconds)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

E
q

u
iv

a
le

n
t 

C
V

 p
o

si
ti

o
n

 (
%

O
P

N
)

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

W
a

te
r 

le
v

el
 (

%
F

S
)

Time (seconds)

Fig. 1. (a) Input-output profile for training (b) Input-
output profile for validation

type models. In conclusion, as experienced by authors,
the modeling exercise with sinc basis ARX model and
its variants was not satisfactory. Hence, modeling based
on wavelet basis was explored. Wavelet based models are
expected to perform better due to their excellent local
approximation property.

For modelling with wavelet basis as given in (17), the
time response of the LZCS is implemented using spline
basis. Two biorthogonal spline wavelets of different order
are used, one for projecting the input (Biorthogonal 1.5)
and the other for projecting the output (Biorthogonal 2.4).
The wavelet used for projecting step input is of lower
order compared to the wavelet used for projecting the
output reflecting dynamic modes of the system. Data of
Figure 1(a) is used for identification of the model and
data from the second experiment is used for validation of
the model. The proposed iterative algorithm estimates the
time invariant parameters at each scale. The reconstructed
water level output signal after 7 iterations and actual water
level output signal are compared in Figure 2. An excellent
match is observed between the consistent prediction and
the actual output. The identified LTI model based on the
input output data given in Figure 1(a), thus obtained, is
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Fig. 2. Actual vs. predicted levels on training data set

0 50 100 150 200 250 300 350 400 450 500
20

25

30

35

40

45

50

55

60

65

70

A
ct

u
a

l 
a

n
d

 e
st

im
a

te
d

 w
a

te
r 

le
v

el
 (

%
F

S
)

Time (seconds)

Estimate of level

Actual level

Fig. 3. Actual vs. predicted levels on validation data set

now tested to check if actual output can be predicted,
also for the input output data shown in Figure 1 (b).
The output in this case, is again measured by exciting
the control valve with a different sequence of steps. The
cross validation result is shown in Figure 3. Note that
an excellent match is observed in both the transient and
steady state responses, between the model output and the
actual output level of the ZCC. The result conclusively
proves the validity of proposed method of parameter
estimation based on consistent output prediction.

5. CONCLUSIONS

The paper introduced spline wavelets for consistent output
prediction in wavelet domain as an algorithmic solution
to the classical least squares minimization problem. Pe-
nalized minimization of local errors in wavelet domain is
used to obtain estimate of system parameters. The algo-
rithm is computationally efficient and exhibits excellent
performance in cross validation. With the use of spline
wavelets, direct weighted summation of projections are
permitted and the assumption of strict orthogonality is not

required. The proposed algorithm has been demonstrated
on a case study involving identification of the LZCS in a
large PHWR. Results of the iterative alternate projection
algorithm for estimating process parameters show excel-
lent match with the experimental data in cross validation.
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