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Abstract: Phase-based quality analysis and prediction has been widely addressed by employing different 
calibration modeling techniques in multiphase batch processes. In this paper, a rational analysis scheme is 
presented to evaluate and understand the effects of the inter-phase correlation on, such as the extraction of 
the latent information, model structure and quality prediction. This is performed by combining partial least 
squares and principal component of predictions and implementing it bi-directionally (Bi-PLS-PCP). 
Within each phase, it separates the process systematic variation into the common and unique parts 
respectively based on their changes under the influence of the inter-phase correlation. They can then be 
quantitatively evaluated and made better use of for enhanced process understanding and improved quality 
prediction. The strength and efficiency of the proposed algorithm are verified on a typical multiphase batch 
process, injection molding. 

Keywords: Multiphase batch process, quality prediction, inter-phase correlation; common and unique 
information, multiblock PLS. 

 

1. INTRODUCTION 

As one important area of statistical analysis, data-based 
multivariate calibration methods (Martens and Naes, 1994; 
Burnham and Viveros, et al., 1996; Brereton, 2000; 
Kleinbaum and Kupper, 2003) have been widely used to 
establish a quantitative relationship between process 
measurement ( X ) and quality property ( Y ). Among them, 
latent variable (LV) based methods have a dominating role. 
They model the correlation pattern between the variables, 
which allows shrinking of the original data space into a 
lower-dimensional feature subspace. Fewer uncorrelated LVs 
can be defined to comprehensively represent the original 
input variables and used to build a quantitative regression 
relationship with the concerned quality properties. 

The subject of calibration modelling and quality 
prediction arouses new issues and problems when it refers to 
multiphase batch processes (Undey and Cinar, 2002; Zhao 
and Wang, 2008, 2009) where various phases generally 
operate orderly under the domination of different physical 
phenomena, revealing different effects on the final qualities. 
For multiphase batches, it is generally deemed that if the data 
are handled in a single matrix, the influence of one segment 
tends to be hidden by the other segments. The resulting 
tribulation is that the hidden effect could be useful in quality-
concerned analysis. It is commonly accepted that more 
underlying information can be explored by dividing the data 
into meaningful blocks either by the types of variables or by 
the part of the process they originate from and building 
multiple specific models than single modelling of all data. 
The effect of each block can be seen and thus more 
comprehensive process understanding can be expected. 
Among the existing phase-based offline quality analysis 

strategies, two different groups have been developed as the 
major parallel lines of thought. One is to separately model 
each individual phase by MPLS algorithm (Undey and Cinar, 
2002; Zhao and Wang, 2009). It reveals well the time 
correlation within the same phase but overlooks the inter-
phase correlation. And the other is to model the variable 
correlation within each phase under the influence of the other 
phases by multiblock PLS (MBPLS) (Westerhuis and Kourti, 
1998, 2001; Qin and Valle, 2001). The objective is to extract 
the covarying systematic dynamics among phases for quality 
prediction which might have not been explored when each 
phase is analyzed individually. It is not difficult to understand 
that by the two algorithms, the LVs in each data block are 
extracted differently so that the process variations are also 
modeled differently to some extent. Actually, both phase-
based MPLS and MBPLS involve a risk of losing quality-
relevant phase information. Focusing on different types of 
correlations, comparatively, some key information originally 
extracted by one algorithm may be hidden when analyzed by 
the other algorithm whereas some may be newly explored, 
which depends upon the power comparison between the 
inner-phase and inter-phase correlations. Sometimes, the 
missing information may be important for the quality analysis. 
This is a fundamental problem, which, however, has not been 
well addressed. 

In the present work, it addresses the two following 
problems: On the one hand, based on the modelling results of 
MBPLS and phase-based MPLS, a bi-directional PLS-PCP 
(Bi-PLS-PCP) analysis strategy is developed to reveal the 
difference between their modelled quality-related process 
information. It can distinguish different types of process 
variations in each phase and provide specific model 
parameters to get a comprehensive understanding of phase 
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behaviours and their roles in quality prediction. On the other 
hand, based on the evaluation result, the underlying phase-
specific underlying information can be extracted more 
completely and made better use of. Thus possible calibration 
and prediction improvement can be achieved. The application 
to injection molding demonstrates the effectiveness of the 
method. 

2. BI-PLS-PCP EVALUATION PROCEDURE AND 
IMPROVED CALBIRATION MODELING FOR 

QUALITY PREDICTION 

2.1  MBPLS and phase-based MPLS models 

MBPLS (Westerhuis and Kourti, 1998, 2001; Qin and 
Valle, 2001) is an extension of standard PLS which is 
recommended if additional information is available for 
blocking the variables into conceptually meaningful 
blocks/phases. If process variables are obtained from 
different parts of the process, multiblock regression method 
gives improved interpretation compared with single-block 
method because it is possible to zoom into separate blocks 
using the block scores calculated for each block. The block 
scores give information on the relation of the specific block 
with Y in the presence of the other blocks. That is, the 
covarying information between different blocks is modelled. 
In contrast, MPLS performed in each isolated block focuses 
on the separate contribution of each block to qualities and 
thus extracts the latent variables with no consideration of the 
inter-block correlation. 

Different algorithms can be used to formulate the 
MBPLS model, and the deflation step plays a crucial role in 
the difference. Westerhuis and Smilde (2001) have shown 
that the deflation using block scores led to inferior prediction. 
However, they also pointed out that since super scores 
summarized the information contained in all blocks, deflation 
using super scores mixed variation between the separated 
blocks and therefore leads to interpretation problem. In order 
to overcome the above problem, they borrowed the idea of 
Doyal and MacGregor (1997) that in standard PLS models it 
was possible to only deflate Y  instead of deflating both X  
and Y  and extended it to the MBPLS algorithm, which will 
be used in the present work. 
The MBPLS modeling step is described as below: 
(a), Perform regular PLS on [ ]1 2, ,..., B=X X X X  and Y  to 
obtain the scores it  and iu  for all required number of LVs 

( )1,2,...,i i A= , as well as the weights ir  to calculated scores 
directly from X  and loadings iq  for Y . 
(b), Calculate, for each i , 
Direct block weights: , ( ) ( )b i i ib b=r r r  where ( )i br  is the 
part of ir  that corresponds to block bX . 

Block scores: , ,b i b b i=t X r  and , 1, 2, ,, ,...,B i i i B i⎡ ⎤= ⎣ ⎦T t t t  

Super weights: T T
, ,T i B i i i i=w T u T u  

(c), Deflate residuals: 
T

1i i i i+ = −Y Y t q  
Return to step (b). 

In the algorithm, obviously X  is repeatedly used and 
not deflated. Therefore, no information from one block goes 
into another block. The block scores only give the 
information of the corresponding data block, which makes 
interpretation much easier. Their modelled process variation 
and predicted quality variation can then be calculated from 
both block and process viewpoints. 

For each block: 

T T
, , , , ,

T
, 1 , , ,

T T
, , , , ,

T
, 1 , , ,

b i b i b i b i b i

b i b i b i b i

b i b i b i b i b i

b i b i b i b i

+

+

=
= −

=
= −

p X t t t
X X t p
q Y t t t
Y Y t q

 

For the entire process: 

T T

T
1

T T

T
1

i i i i i

i i i i

i i i i i

i i i i

+

+

=
= −

=
= −

p X t t t
X X t p
q Y t t t
Y Y t q

 

Finally, the following model parameters are output: 

Block-related:   

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

, ,...,
, ,...,
, ,...,
, ,...,

b b b b A

b b b b A

b b b b A

b b b b A

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

T t t t
R r r r
P p p p
Q q q q

 

Super-related:   
[ ]
[ ]
[ ]

1 2

1 2

1 2

, ,...,
, ,...,
, ,...,

A

A

A

=
=
=

T t t t
P p p p
Q q q q

 

The phase-based MPLS model parameters can be 
structured within each local phase: 

( )
( )

, ,
1T T T

, , , ,
1T T T

, , , ,
T

, , , , ,
T

, , , , ,

ˆ
ˆ

M b b M b

M b M b M b M b b

M b M b M b M b

b M b M b M b M b M b

M b M b M b M b M b

−

−

=
=

=
= + = +
= + = +

T X R
P T T T X
Q T T T Y
X X E T P E
Y Y F T Q F

  (1) 

where, the phase scores ,M bT  are orthogonal. 
The MBPLS model in each phase can be expressed: 

T
, , , , ,

T
, , , , ,

ˆ
ˆ

b MB b MB b MB b MB b MB b

MB b MB b MB b MB b MB b

= + = +
= + = +

X X E T P E
Y Y F T Q F

 (2) 

where, the block scores can be directly calculated from block 
data by , ,MB b b MB b=T X R ; T

, , ,
ˆ

MB b MB b MB b=X T P  is the modeled 
process variation in each block for quality prediction and 

T
, , ,

ˆ
MB b MB b MB b=Y T Q  is the contribution of each block to 

quality explanation. It should be noted that the block scores 
( ,MB bT ) are correlated so that the loadings ,MB bP  and ,MB bQ  
can not be calculated as shown in Eq. (1). 

2.2  Bi-PLS-PCP Evaluation procedure 

The objective of PLS is to model the variations in both 
the X  and Y  spaces and relate them, which, however, often 
leads to difficulty in model interpretation resulting from the 
existence of large amount of Y -irrelated X  variations. Yu 
and MacGregor (2004) have suggested that a whole class of 
methods based on relating the LVs T  and Y , such as 
canonical correlation analysis (CCA) (Anderson, 2002) and 
PCP (Langsrud and Naes, 2003), can work as a post-
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processing to better estimate Y -correlated X subspace. In 
this way, a parsimonious model with the same prediction 
ability as the standard PLS model can be obtained with 
improved model interpretability. However, they lacked the 
proper model structure to describe their non-correlated 
variation since they only focus on the close covarying 
patterns between two data tables. 

As introduced previously, MBPLS method is a 
commonly used regression modeling strategy that can well 
captures the inter-phase correlation, and MPLS performed in 
each individual phase is regarded to only focus on the inner-
phase correlation. They model the phase behavior differently 
by extracting distinct LVs and may also make different 
contributions to qualities. Therefore, they provide a rational 
analysis platform, where their modeled process variations and 
quality variations can be compared and evaluated in order to 
understand the effect of inter-phase correlation. The 
modelling idea of PCP will be combined with PLS and 
performed in both directions for the evaluation. The basic 
objective is to analyze the variation information underlying 
two data tables in both directions and structure their relevant 
and irrelevant relationship. The evaluation procedure is 
described as below: 
(1), Run PCA on the predicted quality variations by MBPLS 
and MPLS ( ,

ˆ
MB bY  and ,

ˆ
M bY ) respectively: 

T T
, , , 1 1

T T
, , , 2 2

ˆ
ˆ

MB b MB b MB b

M b M b M b

= =
= =

Y T Q U Q
Y T Q U Q

  (3) 

where, it should be noted that by MBPLS, ,
ˆ

MB bY  is not 
orthogonal with ,MB bF  as calculated in Eq. (2), which means 

1U  extracted from ,
ˆ

MB bY  may correlate with ,MB bF . Both 1U  
and 2U  can be directly extracted from the original X  space 
as below: 

T T
1 , , 1 , , 1 1

T T
2 , , 2 , , 2 2

MB b MB b b MB b MB b b

M b M b b M b B b b

= = =
= = =

U T Q Q X R Q Q X θ
U T Q Q X R Q Q X θ  (4) 

(2), Describe the variations in ,
ˆ

MB bX  and ,
ˆ

M bX  driven by 1U  
and 2U  respectively: 

( )
( )

1T T T T
, 1 1 1 1 1 1 ,

1T T T T
, 2 2 2 2 2 2 ,

, ,

, ,

ˆ ˆ,
ˆ ˆ,
ˆ ˆ
ˆ ˆ

MB by y y MB b

M by y y M b

MB b b MB by

M b b M by

−

−
= =

= =
= −
= −

X U P P U U U X
X U P P U U U X
E X X
E X X

 (5) 

This actually is the PCP post-processing, in which, the 
original MBPLS and MPLS LVs in each block are further 
condensed. In this way, the quality-irrelevant process 
variations are excluded and ,

ˆ
MB byX  and ,

ˆ
M byX  only describe 

the closely quality-related systematic phase behaviours under 
the influence of inter-phase correlation and those with no 
such a correlation consideration respectively. ,

ˆ
MB bE  and 

,
ˆ

M bE  represent the residuals in the original process space bX  
after the PLS-PCP extraction. 

3, To reveal the covarying information between ,
ˆ

MB byX  and 

,
ˆ

M byX  for quality prediction, describe them according to 2U  
and 1U  respectively: 

( )
( ) ( )

( )
( ) ( )

T
, 2 2

1T T T
2 2 2 2 ,

1 1T T T T
2 2 2 1 1 1 ,

T
, 1 1

1T T T
1 1 1 1 ,

1 1T T T T
1 1 1 2 2 2 ,

ˆ
ˆ

ˆ
ˆ

MB by y

y MB by

MB b

M by y

y M by

M b

−

− −

−

− −

=

=

=
=

=

=

X U P
P U U U X

U U U U U U X
X U P

P U U U X
U U U U U U X

 (6) 

It is clear that in this way, ,MB byX  and ,M byX  denote the parts 
which are simultaneously driven by both 1U  and 2U  in 

,
ˆ

MB byX  and ,
ˆ

M byX . They thus represent the common quality-
related information which can be modelled no matter whether 
the inter-phase correlation is considered or not. 
4, Run PCA on the residuals ,MB boX  and ,M boX : 

T
, , , , ,

T
, , , , ,

ˆ
ˆ

MB bo MB by MB by MB bo MB bo

M bo M by M by M bo M bo

= − =
= − =

X X X T P
X X X T P

 (7) 

where, the residual ,MB boX  reveal the part in ,
ˆ

MB byX  which is 

only driven by 1U , i.e., the unique information in ,
ˆ

MB byX ; the 

residual ,M boX  reveal the part in ,
ˆ

M byX  which is only driven 

by 2U , i.e., the unique information in ,
ˆ

M byX . By PCA, the 
unique scores ,MB boT  and ,M boT  are then extracted. They are 

contrary to the common part ,MB byX  and ,M byX . 
The basic orthogonal properties are as follows: 

,MB boT  is orthogonal with both 2U  and ,
ˆ

M byX ; ,M boT  is 

orthogonal with both 1U  and ,
ˆ

MB byX . 
Proof: 

( )
( )( )

T
2 ,

T
2 , , ,

1T T T
2 2 2 2 2 , ,

ˆ

ˆ

MB bo

MB by MB by MB bo

MB by MB bo

−

= −

= −
=

U T
U X X P

U I U U U U X P
0

 (8) 

T T T
, , , 2 2

ˆ
MB bo M by MB bo y= =T X T U P 0   (9) 

In the similar way, it can also prove the orthogonal 
relationship between ,M boT  and 1U  and that between ,M boT  

and ,
ˆ

MB byX , respectively. 
Finally, the variations in X  space are separated into different 
orthogonal subspaces according to their mutual relationship 
as well as their respective relationships with qualities: 

, , , , ,

, , , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ
b MB by MB b MB by MB bo MB b

b M by M b M by M bo M b

= + = + +

= + = + +

X X E X X E

X X E X X E
 (10) 

Therefore, by the analysis procedure in both ways, 

, ,
ˆ ˆ

MB by M by↔X X , it can handle the different types of 
structured variations in both data tables, the joint covariation, 
the ,

ˆ
M byX -orthogonal variation ( ,MB boX ) in ,

ˆ
MB byX , and the 
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,
ˆ

MB byX -orthogonal variation ( ,M boX ) in ,
ˆ

M byX . In detail, the 

,
ˆ

MB byX -orthogonal part will describe variations that is present 

in ,
ˆ

M byX  but absent in ,
ˆ

MB byX , i.e., the variation that has been 
hidden under the influence of inter-phase correlation. This 
means that it may have little correlation with the features in 
other phases. In a similar manner, the ,

ˆ
M byX -orthogonal 

components consist of the structured variation that is only 
present in ,

ˆ
MB byX , i.e., the part that has been hidden by MPLS. 

The hidden information, i.e., the mutual orthogonal variation, 
reveals the respective missing information in phase-based 
MPLS and MBPLS modelling. On the contrary, in the case 
where there is no mutual orthogonal components to be 
extracted, the modelling performance of phase-based MPLS 
and MBPLS is equivalent. In this way, the Bi-PLS-PCP 
methodology facilitates the evaluation of the effect of inter-
phase correlation on feature extraction in each phase. 

2.3. Improved calibration modelling 

The above evaluation procedure creates an overview that 
can be used to assess the properties of process information 
modeled by MPLS and MBPLS respectively. Analyzing the 
correlation and amount of different types of variation allows 
for verification of the desired modeling method for a full 
investigation of phase behaviour during quality prediction. 

First, the respective contributions of unique scores 
,MB boT  and ,M boT  to quality can be checked by directly 

performing least squares regression: 

( )
( )

1T T
, , , , ,

1T T
, , , , ,

ˆ

ˆ
MB bo MB bo MB bo MB bo MB bo

M bo M bo M bo M bo M bo

−

−

=

=

Y T T T T Y

Y T T T T Y
 (11) 

Since ,MB boT  are orthogonal to ,
ˆ

M byX  as well as the 

orthogonal relationship between ,M boT  and ,
ˆ

MB byX , both 

,MB boT  and ,M boT  can explain additive quality information 

compared with the original prediction results by ,
ˆ

M byX  and 

,
ˆ

MB byX . That is, ,
ˆ

MB boY  and ,
ˆ

M boY  are orthogonal with ,
ˆ

M boY  

and ,
ˆ

MB boY  respectively, revealing no overlapping 
information. So as the complementary quality predictions, 
they should be nicely combined with the original ones. The 
complete quality prediction information in each phase can 
thus be prepared as , ,

ˆ ˆ,MB b M bo
⎡ ⎤⎣ ⎦Y Y  or , ,

ˆ ˆ,M b MB bo
⎡ ⎤⎣ ⎦Y Y , which 

can then be directly related with the real qualities by simply 
PLS regression algorithm. So the weights attached to the 
original and the later quality predictions can be readily 
calculated: 

, ,

, ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

MB b M bo MBb o MBb o

M b MB bo Mb o Mb o

− −

− −

⎡ ⎤Θ =⎣ ⎦
⎡ ⎤Θ =⎣ ⎦

Y Y Y

Y Y Y
 (12) 

Ideally, after the supplementation of later quality prediction 
information, the final prediction results should be equal for 
MBPLS and phase-based MPLS. However, because their 
unique information may not extracted completely more or 

less, the final quality prediction results ˆ
MBb o−Y  and ˆ

Mb o−Y  
may not exactly the same but both show some improvement 
to a certain extent compared with their original results ,

ˆ
MB bY  

and ,
ˆ

M bY . 

3. APPLICATION TO INJECTION MOLDING 

In this section, one typical multiphase batch process, 
injection molding (Yang and Gao, 2000), is used to illustrate 
the developed method and its performance for the evaluation 
of inter-phase correlation and improvement of calibration 
modelling. As a key process in polymer processing, it 
transforms polymer materials into various shapes and types 
of products. A typical injection molding process consists of 
three operation phases, injection of molten plastic into the 
mold, packing-holding of the material under pressure, and 
cooling of the plastic in the mold until the part becomes 
sufficiently rigid for ejection. Besides, plastication takes 
place in the barrel in the early cooling phase, where polymer 
is melted and conveyed to the barrel front by screw rotation, 
preparing for next cycle. The material used in this work is 
high-density polyethylene (HDPE). Twelve process variables 
are collected online from measurements with a set of sensors. 
Two dimension indices, product length (mm) and weight (g), 
are chosen to evaluate the product quality, whose real values 
can be directly measured by instruments. Totally 25 normal 
batch runs are conducted under various operation conditions 
by DOE method. 

By the clustering-based phase division method (Zhao 
and Wang, 2008, 2009), the whole operation cycle can be 
readily partitioned into five phases. In each phase, for 
simplicity, only 10 continuous sampling time slices are 
chosen, which construct multiple data blocks, 

( )( )25 120 1,2,...5b b× =X . They all correspond to the final 

quality property (25 2)×Y . First, each data set { },bX Y  is 
regressed by MBPLS and phase-based MPLS to extract the 
initial LVs and their respective quality contributions within 
each phase. For the consideration of justice, the number of 
PLS LVs is set to be the same for both MBPLS and phase-
based MPLS, here 4 by cross-validation. The result from 
MBPLS takes the inter-phase correlation into consideration 
whereas the other only focuses on the inner-phase correlation. 
They prepare the analysis platform for the evaluation of 
effects of inter-phase correlation. By PCP-based post-
processing, only the really quality-related variation is kept in 
each phase, which represents the real quality-related process 
behaviours with and without consideration of inter-phase 
correlation respectively. As shown in Figure 1, the values of 
the first weight vector ( 1θ  and 2θ ) for the calculation of 1U  
and 2U  are plotted through five phases. Generally, for the 
same phase, the weights for MBPLS and phase-based MPLS 
are different, which reveals that under the influence of inter-
phase correlation, the quality-related phase LVs are extracted 
differently more or less. Moreover, as previously 
demonstrated, ,MB boT  and ,M boT  are orthogonal with 2U  and 

1U  respectively. They also reveal orthogonal and 
complementary quality information. In each phase, the 
original two-dimensional quality prediction results and the 
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later ones construct a four-variable regressor data set 

, ,
ˆ ˆ,MB b M bo

⎡ ⎤⎣ ⎦Y Y  or , ,
ˆ ˆ,M b MB bo

⎡ ⎤⎣ ⎦Y Y . By regressing them with 

the real final quality measurement respectively, in Figure 2, 
their combination weights MB o−Θ  and M o−Θ  are plotted. It is 
clear that the weights distributions are different over phases. 
For the case of MBPLS, the weights are more stable whereas 
for the case of phase-based MPLS, in the first three phases, 
the attached weights are more different. From the result, it 
can be inferred that for MBPLS, the additive quality 
information is important to complement the original one 
whereas for phase-based MPLS, the complementary quality 
prediction results do not play an important role compared 
with the original ones. 
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Figure 1 The first weight coefficient for (a) 1U  and (b) 2U  

through five phases 
After the separation of different types of variation in the 

original process space, they are quantitatively evaluated. An 
overview of the analysis results is summarized in Table 1. 
First, in different phases, they have different contributions to 
quality prediction. By PCP post-processing after PLS, the 
modelled process variations are greatly reduced for the case 
of phase-based MPLS, 2 2

, ,
ˆ ˆ

M by M bR RX X , whereas it shows 

little change for the case of MBPLS, 2 2
, ,

ˆ ˆ
MB by MB bR R≈X X . 

The unique information ( 2
,MB boR X  and 2

,M boR X ) accounts 
for a certain extent for both the cases of MBPLS and MPLS, 
which means under the influence of inter-phase correlation, 
the underlying process information is extracted differently to 
some extent. However, the unique information does not 
necessarily mean large contribution to quality property. As 
shown in Table 1 (b), their modeled quality variations 

2
,

ˆ
MB boR Y  and 2

,
ˆ

M boR Y  are quite different. Although the 

unique process variation 2
,MB boR X  is larger than 2

,M boR X , its 

contribution to quality is little as indicated by 2
,

ˆ
MB boR Y . 

Compare the original quality predictions ( 2
,

ˆ
MB bR Y  and 

2
,

ˆ
M bR Y ), localized in each phase, the MBPLS results are 

much worse than phase-based MPLS, which tells us that the 
consideration of inter-phase correlation does not necessarily 
improve the phase-based quality prediction performance for 
this specific case. After merging the additive quality 
prediction results with the original ones, the final quality 
predictions are greatly improved for the case of MBPLS 
( 2 ˆ

MBb oR −Y ), which also indicates the importance of ,M boX  
that is originally hidden in MBPLS. However, for MPLS 
( 2 ˆ

Mb oR −Y ), the improvement of quality prediction is not 

improved much, which also means that ,MB boX  is not so 

important to supplement ,
ˆ

M bY . The result agrees well with 
the case shown in Figure 2. 
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Figure 2 Weights attached to quality predictions (a) MBb o−Θ  

and (b) Mb o−Θ  
For the presented illustrate case, it is shown that MBPLS 

and phase-based MPLS may reveal the phase behaviours 
differently more or less. Analysis of the mutual orthogonal 
variation in the extracted phase information suggests that 
before and after the consideration of inter-phase correlation, 
some phase behaviors are hidden and some new underlying 
information is explored. It also tells one that there is no 
determinate rule which method is better but more dependent 
upon whether they can better extract the quality-related LVs 
to describe the key process behaviours and quality variations. 

4. CONCLUSIONS 

In the present work, a bi-directional PLS-PCP algorithm 
is developed. It can provide definite model structures to 
evaluate the effects of inter-phase correlation on the 
extraction of process variation used for quality analysis. On 
the basis of the evaluation results, within each phase, 
different underlying process variations can be made better 
use of to improve calibration model and quality prediction. 
The evaluation method described in this paper can be readily 
transferred to analyze and evaluate the similarities and 
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differences between other statistical modelling results. 
Moreover, it aids to decide which method is better and 
especially provides the possibility to combine the strengths of 
different methods for better modelling performance. 

ACKNOWLEDGE 

The work is supported in part by China National 973 
program (2009CB320603) and Hong Kong Research Grant 
Council (613107). 

REFERENCES 

Anderson T.W. (2002). Canonical correlation analysis and 
reduced rank regression in autoregressive models. Annals of 
Statistics, 30(4), 1134-1154. 
Brereton RG. (2000). Introduction to multivariate calibration 
in analytical chemistry. Analyst. 125(11), 2125–2154. 
Burnham, A.J., Viveros, R. and MacGregor, J.F., 1996. 
Frameworks for latent variable multivariate regression. 
Journal of Chemometrics, 10(1), 31-45. 
Dayal, B.S. and MacGregor, J.F. (1997) Improved PLS 
algorithms. Journal of Chemometrics, 11(1), 73-85. 
Kleinbaum, D.G., Kupper, L.L., Muller, K.E., Nizam, A. 
(2003). Applied Regression Analysis and Other Multivariable 
Methods (3rd ed.), California: Wadsworth Publishing Co Inc. 
Langsrud O, Naes T. (2003). Optimised score plot by 
principal components of predictions. Chemometrics and 
Intelligent Laboratory Systems, 68(1-2), 61-74. 
Martens, H. and Naes, T. (1994). Multivariate Calibration 

(2nd ed.). Chichester: Wiley. 
Qin, S.J., Valle, S. and Piovoso, M.J., 2001. On unifying 
multiblock analysis with application to decentralized process 
monitoring. Journal of Chemometrics, 15(9), 715-742. 
Undey, C. and Cinar, A. (2002). Statistical monitoring of 
multistage, multiphase batch processes. IEEE Control 
Systems Magazine, 22(5), 40-52. 
Westerhuis, J.A., Kourti, T. and MacGregor, J.F., 1998. 
Analysis of multiblock and hierarchical PCA and PLS 
models. Journal of Chemometrics, 12(5), 301-321.  
Westerhuis, J.A. and Smilde, A.K., 2001. Deflation in 
multiblock PLS. Journal of Chemometrics, 15(5), 485-493.  
Yang, Y. and Gao, F. (2000). Adaptive control of the filling 
velocity of thermoplastics injection molding. Control 
Engineering Practice, 8(11), 1285-1296. 
Yu, H.L. and MacGregor, J.F. (2004) Post processing 
methods (PLS-CCA): Simple alternatives to preprocessing 
methods (OSC-PLS). Chemometrics and Intelligent 
Laboratory Systems, 73(2), 199-205. 
Zhao, C.H., Wang, F.L., Mao, Z.Z., Lu, N.Y. and Jia, M.X. 
(2008). Improved knowledge extraction and phase-based 
quality prediction for batch processes. Industrial & 
Engineering Chemistry Research, 47(3), 825-834. 
Zhao, C.H., Wang, F.L. and Gao, F.R. (2009). Improved 
calibration investigation using phase-wise local and 
cumulative quality interpretation and prediction. 
Chemometrics and Intelligent Laboratory Systems, 95(2), 
107-121. 

 
Table 1 Summary of evaluation and calibration modeling results 

(a) modeled process variation (%) 
Phase 2

,
ˆ

MB bR X  2
,

ˆ
M bR X  2

,
ˆ

MB byR X 2
,

ˆ
M byR X 2

,MB byR X 2
,M byR X 2

,MB boR X  2
,M boR X

1 79.57 87.86 78.88 52.46 59.51 45.58 24.56 13.12 
2 62.68 82.34 47.95 32.30 32.12 25.27 33.02 21.79 
3 50.34 65.77 46.30 38.28 38.43 31.26 16.99 18.34 
4 77.12 89.38 75.97 23.22 27.13 16.07 64.29 30.79 
5 58.84 65.83 47.62 25.15 27.38 15.77 42.51 37.28 

(b) modeled quality variation (%) 
Phase 2

,
ˆ

MB bR Y  2
,

ˆ
M bR Y 2

,
ˆ

MB boR Y 2
,

ˆ
M boR Y 2 ˆ

MBb oR −Y 2 ˆ
Mb oR −Y  

1 17.80 48.65 0.38 18.38 48.59 48.67 
2 51.44 90.35 0.10 13.12 88.12 90.39 
3 76.19 90.11 0.05  4.36 89.98 90.14 
4 16.48 48.06 1.62 13.54 48.74 49.59 
5 15.81 59.28 1.58 24.72 59.77 60.66 
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