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Abstract: Methods to estimate the parameters and the time delay of continuous time transfer
function models using different nonideal step inputs are presented. By nonideal step inputs we
refer to excitation signals that initially change gradually or in smaller steps to a final value
unlike the ideal step that requires a sudden jump equalling the size of the step. Many different
forms of such input signals can be designed. We consider four types namely the saturated ramp,
the staircase input, the saturated sinusoid and the filtered step input. Two approaches are
taken for the parameter estimation. First, estimation equations are directly obtained for the
particular inputs and second, equivalent ideal step responses are generated from the nonideal
step responses and step response method is used to estimate the parameters. The estimation
equations are based on the integral equation approach. The necessary mathematical derivations
are provided taking a first order plus time delay model as an example. Simulation results for
both first and second order models are presented to demonstrate the efficacy of the proposed
methodologies.
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1. INTRODUCTION

Over the last decade, some interesting developments in
the field of identification from step response have been
reporetd. In fact, a considerable research effort in the field
of system identification is devoted to identification from
step response and over the last few years there has been
a renewal in interest in this topic. This is partly because
the step might be the most commonly used input signal
in process industries. From the design aspect, it might
be the simplest input to design. Also it offers unique
advantages in the parameter estimation step. With the
new developments in the integral equation approach, the
coefficients of transfer function models along with their
time delay can be estimated simultaneously from the step
response [Wang and Zhang (2001)]. Different practical
issues, for example the unsteady initial conditions [Ahmed
et al. (2008); Hwang and Lai (2004); Liu et al. (2007)] and
the presence of disturbances [Ahmed et al. (2009a)] have
also been dealt. Other developments in this field have been
reported in [Li et al. (2005); Mei et al. (2005); Wang et al.
(2004)].

Choice of the input signal plays an important role on
the quality of the estimated model and it has been an
active area of research [Doraiswami et al. (1986); Kalafatis
et al. (2005); Zaremba and Pavlov (2002); Antoulas and
Andersen (1999); Iwase and Shigi (2005)]. While the step
response has been subject to extensive studies, its variants
have not been considered explicitly although in real life
applications, the ideal step input is not always applicable.
In this article, we introduce some variants of the step input
that are already in use in industrial applications. We name
the variants of the ideal step to be nonideal steps as they
do not change instantaneously.

1.1 Nonideal step inputs

Step input requires an instantaneous change of the corre-
sponding variable from one operating point to another. For
some variables, it might be possible to make such a sudden
change. For example, flow rates can be changed almost
instantaneously over some operating range. However, for
some other variables, a sudden change may not be feasible.
Even when a sudden change is possible, there might have
a risk of process upset. For such a case, variables are often
increased gradually during the initial stage. For example,
to make a change in a column pressure it is a common
practice to initially increase the pressure gradually until
it reaches the desired operating point and then it is kept
constant. In some cases, the desired change is attained in
two or more steps instead of one, resulting in a staircase
type of input. Also, step changes are often made in both
positive and negative directions to capture the nonlin-
earities in processes giving pulse type inputs. Sometimes
the step signal is passed through a filter and the filtered
step is applied. All these result in, what we call, nonideal
step inputs. Figure 1 shows a few of such input signals
commonly used in process industries.

As the nonideal step inputs do not require an instanta-
neous large change in the variable, they are not limited
in application. Another advantage of the use of nonideal
step input might be the comparatively moderate change
in the output response. For example, processes having
an underdamped dynamics may exhibit a high overshoot
when an ideal step is applied. However, if a nonideal step,
such as a filtered step or a saturated sinusoid is applied, the
overshoot may be much less. Figure 2 shows the responses
to an ideal step input and a saturated sinusoid input
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Fig. 1. Nonideal step inputs: 1. staircase (top-left) 2. satu-
rated sinusoid (top-right) 3. saturated ramp (bottom-
left) 4. filtered step (bottom-right)

of a process with underdamped and nonminimum phase
dynamics. It can be seen that both the inverse response
and the overshoot are considerably less in the case of
the sinusoidal input. Thus in the test stage, the required
response is obtained without disturbing the process to a
large extent.

Fig. 2. Response of a process with underdamped dynamics
and inverse response due to ideal step input and a
saturated sinusoidal input.

Certain types of these inputs have been considered under
different titles. The saturated ramp has been considered
by Hwang and Lai (2004) under the title of pulse inputs.
However, the method by Hwang and Lai (2004) involves
a two step solution procedure and each step requires
sufficient good quality data. The staircase inputs have
been considered under the banner of piecewise step inputs
by Liu et al. (2007). We include the staircase input
signal in this study to complete the set of inputs. The
mathematical procedure for the staircase input is similar
to that of [Liu et al. (2007)]. New estimation equations
are provided for the saturated ramp and the filtered
step that involve a single stage simultaneous solution of
parameters and the delay. For the saturated sinusoidal
input, equivalent step response is generated from the
sinusoidal response and a step response method is used
to obtain the model.

The following sections of the article has been organized
as follows: section 2 outlines the necessary mathematical
formulation to describe the identification methodology for
the integral equation approach for both ideal and nonideal

step inputs. Section 3 presents the simulation results and
finally in section 4, concluding remarks are provided.

2. MATHEMATICAL FORMULATION

First the general formulation of the integral equation
method is outlined. This is followed by the derivation
of the estimation equations for the different types of the
input. For the purpose of simplicity in the presentation, we
discuss the methods using an example of a first order plus
time delay model. However, the methods are not limited
in application to first order processes and the estimation
equations are readily extendable to general n-th order
models.

2.1 The Integral Equation Approach

Let us consider a first order model described by the
following differential equation

dy(t)
dt

+ ay(t) = bu(t) + e(t) (1)

Here, y(t) and u(t) are the process output and input,
respectively, and e(t) is the error term, evolving from
the measurement noise. The objective of identification is
to obtain an estimate of the parameter vector, [a b]T ,
from a given set of input and output data [u(t) y(t)] for
t = t1, t2, · · · tN , with N being the length of the data set.

In the integral equation approach, the differential equation
is integrated to express the model equation in terms of the
integrals of the signals instead of their derivatives. While
the derivative operation magnifies the noise, the integrator
acts as a filter for the noise. Integration of eqn(1) once
assuming an initial steady state of the output gives

y(t) + ay[1](t) = bu[1](t) + e[1](t) (2)

For a signal x(t), x[1](t) is its first order integral, i.e.
x[1](t) =

∫ t
0
x(τ)dτ . The estimation equation is then

obtained as

y(t) =
[
−y[1](t) u[1](t)

] [ a
b

]
+ e[1](t) (3)

Or equivalently
γ(t) = φT (t)θ + ξ(t) (4)

where, γ(t) = y(t), φT (t) =
[
−y[1](t) u[1](t)

]
, θ =

[
a
b

]
,

ξ(t) = e[1](t). Equation (4) can be written for t =
t1, t2 · · · tN and combined to give the estimation equation

Γ = Φθ + ξ (5)
with

Γ(t) =

 γ(t1)
γ(t2)
. . .

γ(tN )

 , Φ(t) =

 φ(t1)
φ(t2)
. . .

φ(tN )


T

(6)

The parameter vector θ is then obtained as the least
squares solution

θ = (ΦTΦ)−1ΦTΓ (7)
So far we have considered a general input signal and the
methodology is valid for any type of input. However, the
step input offers a unique advantage in the estimation of
time delay.
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Consider a first order model with delay described by
dy(t)
dt

+ ay(t) = bu(t− δ) + e(t) (8)

where, δ is the time delay. If we follow the above integra-
tion approach, we end up with an estimation equation

y(t) + ay[1](t) = bu[1](t− δ) + ξ(t) (9)
It has been shown by Wang and Zhang (2001) that if the
input is a step, the integral of the delayed input term can
be decomposed to give an explicit appearance of the delay.
For a step input of size h, the integral of the delayed signal
can be expressed as

u[1](t− δ) = ht− hδ for t > δ (10)
Equation (9) can be written as

y(t) + ay[1](t) = bht− bhδ + ξ(t) (11)
Then the following estimation equation would give the
parameters along with the delay.

y(t) =
[
−y[1](t) ht −h

] [ a
b
bδ

]
+ ξ(t) (12)

Equation (12) can be written for t = td+1, td+2 · · · tN as in
eqn (6) and combined to give the set of estimation equation

Γ = Φθ + ξ (13)
Here, d is the time delay in terms of number of sampling
intervals (∆t), i.e. d = δ

∆t and N is the total number of
samples available. When the time delay is not an integer
multiple of the sampling interval, d is chosen as the nearest
integer in the positive direction. From the solution of (13)
we get θ that gives estimates of a, and b directly. The delay
is then obtained as δ = θ(3)/b.

So far we have described the methodology for the ideal
step input. Next sections describe how we can get the
estimation for different nonideal step inputs.

2.2 Saturated ramp

When an input is initially changed linearly and then kept
at a constant value, we get the so called saturated ramp.
Such an input can be expressed as a combination of two
ramps and can be presented mathematically as

u(t) =
1∑
i=0

pi [t− Li] Ω(t− Li) (14)

where p0 = h
L1

, p1 = −p0 and L0 = 0. h is the value of the
ramp signal at its saturation, L1 is the time of the input
to reach saturation and Ω is the unit step input defined as

Ω(t− Li) =
{

0 for t < Li
1 for t ≥ Li

(15)

So, we can express u(t− δ) as

u(t− δ) =
1∑
i=0

pi [t− Li − δ] Ω(t− Li − δ) (16)

As shown earlier for a process initially at a steady state,
the estimation equation can be expressed as in eqn (9)

y(t) + ay[1](t) = bu[1](t− δ) + ξ(t) (17)
The first order integral of the delayed saturated ramp
signal then becomes

u[1](t− δ) =
1∑
i=0

pi
2

[t− Li − δ]2 Ω(t− Li − δ) (18)

The estimation eqn (17) can then be written as

y(t) =−ay[1](t) + b

1∑
i=0

pi
2

[t− Li]
2 Ω(t− Li − δ)

+bδ
1∑
i=0

−pi [t− Li] Ω(t− Li − δ)

+bδ2
1∑
i=0

pi
2

Ω(t− Li − δ) + ξ(t) (19)

Or equivalently
γ(t) = φT (t)θ + ξ(t) (20)

where,

γ(t) = y(t) (21)

φ(t) =



−y[1]

1∑
i=0

pi
2

[t− Li]
2 Ω(t− Li − δ)

1∑
i=0

−pi [t− Li] Ω(t− Li − δ)

1∑
i=0

pi
2

Ω(t− Li − δ)


(22)

θ=
[
a b bδ bδ2

]T (23)
From θ we directly get a = θ(1) and b = θ(2). δ can
be obtained in a number of ways. On the basis of the
simulation results, we suggest to estimate it as δ =
θ(3)/θ(2).

2.3 The staircase input

As mentioned earlier, the mathematical derivation for the
staircase input follows that of the piecewise step input as
described by Liu et al. (2007). We present here for the sake
of completeness of the set of inputs. The staircase input
can be expressed as

u(t) =
I∑
i=0

hiΩ(t− Li) (24)

where t0 = 0. We can express u(t− δ) as

u(t− δ) =
I∑
i=0

hiΩ(t− Li − δ) (25)

As shown earlier the estimation equation can be expressed
as in eqn(17) and the first order integral of the delayed
staircase signal then becomes

u[1](t− δ) =
I∑
i=0

hi [t− Li − δ] Ω(t− Li − δ) (26)

The estimation eqn(17) can then be written as

y(t) =−ay[1](t) + b

I∑
i=0

hi [t− Li] Ω(t− Li − δ)

+bδ
I∑
i=0

−hiΩ(t− Li − δ) + ξ(t) (27)
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Or equivalently
γ(t) = φT (t)θ + ξ(t) (28)

where,

γ(t) = y(t) (29)

φ(t) =


−y[1]

I∑
i=0

hi [t− Li] Ω(t− Li − δ)

I∑
i=0

−hiΩ(t− Li − δ)

 (30)

θ= [ a b bδ ]T (31)

2.4 Saturated sinusoid

For the saturated sinusoid, we take the approach to esti-
mate the step response from the sinusoidal response and
use the integral equation based step response method to
obtain the model. This approach has been outlined for
single and multiple sinusoidal inputs in [Ahmed et al.
(2009b)]. We show that the input can be changed initially
in a sinusoidal way and then kept constant to result in the
so called saturated sinusoid and we provide the methodol-
ogy to obtain the step response from the response due to
a saturated sinusoid that can be expressed as

u(t) =
2∑
i=0

qi sin [ω(t− Li) + νi] Ω(t− Li) (32)

A saturated sinusoid as in Fig. 1 whose saturation value
is h and the time to reach the saturation is L, can be
represented by the above equation for a set of values
q0 = −q1 = q2 = h, ω0 = ω1, ω2 = 0, L0 = 0,
L1 = L2 = L > 0, ν0 < π/2 and ν1 = ν2 = π/2. The
input can be expressed in the Laplace domain as

U(s) =
2∑
i=0

qi
βis+ µi
s2 + ω2

i

e−Lis (33)

where βi = sin(νi), µi = ω cos(νi). For the above values of
the parameters, the input expression simplifies to

U(s) = h
βs+ µ

s2 + ω2
+

hω2

s(s2 + ω2)
e−Ls (34)

where ω = ω0, β = β0, µ = µ0, L1 = L2 = L.

To obtain the step response from response due to other
inputs, we express the input output relation for a process
as

Y (s) = G(s)U(s) (35)
Here, G(s) is the process transfer function. If the input is
a unit step, we have U(s) = 1

s and the unit step response,
Ystep(s), can be obtained as

Ystep(s) = G(s)
1
s

(36)

Comparing (35) and (36) we get the relation to obtain the
unit step response from output data due to other type of
excitation signal

Ystep(s) =
Y (s)
sU(s)

(37)

In the case of the saturated sinusoid, from eqn (37) we get

Y (s) = sU(s)Ystep

=
[
h
s(βs+ µ)
s2 + ω2

+
hω2

(s2 + ω2)
e−Ls

]
Ystep(s) (38)

To give

Ystep(s) =
s2 + ω2

hs(βs+ µ)
Y (s)− ω2e−Ls

s(βs+ µ)
Ystep(s) (39)

From the above equation we see that the sinusoidal re-
sponse can be passed through a filter and added to the
delayed step response to get the step response of the
process. As shown in Fig. 3, Simulink can be used for
this purpose where the filters are 1

F1(s) = s2+ω2

hs(βs+µ) and
1

F2(s) = ω2

s(βs+µ) The parameters and the delay then can

Fig. 3. Simulink model to obtain the step response from
the saturated sinusoidal response.

be obtained by using the estimation equation (5) for the
step response method by replacing y(t) by ystep(t) and
with h = 1.

2.5 Filtered step

A filtered step can be expressed in the Laplace domain as

U(s) =
1

λs+ 1
h

s
(40)

So the estimation equation for this input becomes

Y (s) =
b

s+ a

1
λs+ 1

h

s
e−δs (41)

After rearrangement

λY (s) +
Y (s)
s

+ aλ
Y (s)
s

+ a
Y (s)
s2

= b
h

s3
e−δs (42)

The equation in the time domain can be obtained as

λy(t) + y[1](t) + aλy[1](t) + ay[2](t) = bh
(t− δ)2

2
(43)

Or equivalently
γ(t) = φT (t)θ + ξ(t) (44)

where,

γ(t) = y(t) + y[1](t)

φ(t) =


−λy[1](t)− y[2](t)

ht2

2
−ht
h

2


θ=

[
a b bδ bδ2

]T
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2.6 Implementation issues

Different issues related to the industrial application of
the step response has been studied in the literature. The
presence of unsteady initial conditions has been studied
by Ahmed et al. (2008); Hwang and Lai (2004); Liu
et al. (2007). The effect of disturbances has also been
studied [Ahmed et al. (2009a)]. The methods proposed
in this paper can be readily extended to apply to step
response with transient initial state and in the presence of
disturbances.

The estimation equation (13) is valid for t > δ. So, to
formulate it we need the unknown δ. To overcome this
problem an initial guess of the delay is used and the
estimation equation is solved. If the initial guess is far
away from the real delay, this procedure may have to be
repeated. For the initial guess, process knowledge can be
used. In the absence of process information we suggest
choosing a small time delay. Extensive simulation results
show that even when the initial guess is much smaller
than the real delay, the estimation procedure needs to be
repeated only 4− 5 times to get a convergent result.

The least squares solution for the estimation equation (13)
is given by

θLS = (ΦTΦ)−1ΦTΓ (45)
The properties of the estimated θLS depend on the er-
ror term ξ in (13) that evolves due to the noise in the
output measurements. Typically, the measurement noise
is considered to be zero mean white noise or filtered white
noise. In the presence of a colored noise, the least squares
solution may not be unbiased. Even if the measurement
noise is assumed to be white with zero-mean, the inte-
gration operation results in a colored error term. So, the
LS solution is not unbiased even for a white measurement
noise and we need a bias elimination scheme. To get an
unbiased estimate of the parameters, different techniques
can be used. We use the instrumental variable (IV) method
proposed by Young (1970) which is commonly used in
continuous-time identification; see e.g. Ahmed et al. (2007)
and Garnier et al. (2003). To generate the instruments, the
least squares solution is used to get the predicted values
of the output. The instrument matrix is then derived by
replacing y(t), in the regressor by their predicted values,
ŷ(t) i.e. for the first order process, the instrument vector
equivalent to the regressor in eqn(12) is given by

ψ(t) =
[
−ŷ[1](t) ht −h

]T
The instrument matrix is then obtained in the same way as
the regressor is obtained by (6). The instrumental variable
estimate of the parameters is given by

θIV = (ΨTΦ)−1ΨTΓ (46)
The IV procedure can be repeated. However, no additional
step is necessary as the repetition can be embedded within
the updating steps for δ.

3. RESULTS

In this section we present identification results obtained
using the nonideal step input signals. For this simulation
study first and second order processes are considered.
Simulink is used to generate the data and to filter the

output signals. In simulink, processes and filters are rep-
resented by the continuous-time transfer function blocks
and variable-step ode45 is used as the solver. In generating
noise corrupted data, the sampled noise free outputs are
corrupted with discrete-time white noise sequences. The
noise to signal ratio(NSR) is defined as the ratio of the
variance of the noise to that of the noise free signal. Monte
Carlo simulations are carried out by changing the random
noise sequences which is done in Matlab by changing the
seed. A total of 500 data points are used for each cases.
The end time of data collection is chosen as the settling
time of the processes. The instrumental variable method
is used for the simulation study. The initial guesses of the
delay were equal to one sampling intervals.

3.1 First order modeling

Figure 4 shows the estimation results of a process having
the following transfer function

G(s) =
1.25

20s+ 1
e−7s (47)

The parameter vector in terms of gain, time constant (τ)
and time delay for the process is [τ K δ] = [20 1.25 7]
whose equivalent in terms of the parameter vector of the
estimation equation is [a b δ] = [0.05 0.0625 7]. Although
parameters are estimated as [a b δ], we present them in
terms of [τ K δ]. Here the mean values of the parameters
from 100 Monte Carlo simulations are plotted along with
their standard deviation. The dotted lines show the true
value of the corresponding parameters. The NSR for this
case is 10%. The estimation results show that for the

Fig. 4. Parameter estimation results using the different
input. M1- staircase, M2- saturated sinusoid, M3-
saturated ramp, M4- filtered step .

particular process and for the set of input signals, the
saturated sinusoid and the filtered step performed better
than the staircase and the saturated ramp in terms of the
bias and variance of the estimates. Detailed study of the
effect of the signal parameters on the estimation results
and a comparative study of the different types of inputs
are to be investigated further.

Figure 5 shows the effect of noise on the parameter
estimates for the above example where the filtered step
input is used. It is seen that for a wide range of noise to
signal ratio, satisfactory estimates can be obtained.

Copyright held by the International Federation of Automatic Control 357



Fig. 5. Effect of noise on parameter estimates. Input-
filtered step .

3.2 Second order modeling

Identification results for a number of second order pro-
cesses are presented in Table 1. The parameters are the
mean values of 100 estimates. The numbers in the paren-
theses are their standard deviations. We consider both
underdamped and overdamped processes. Processes with
a zero are also considered. The examples include both
minimum phase and non-minimum phase processes. The
input signal used for this study is a saturated sinusoid.
The NSR for each of these cases is 10%.

Table 1. True and estimated models of different
second order processes.

True model Estimated model

1.25e−0.6s

9s2+2.4s+1

1.25(±0.005)e−0.58(±0.27)s

9.07(±0.81)s2+2.42(±0.25)s+1

(2s+1)e−1s

9s2+2.4s+1

(1.97(±0.78)s+1(±0.004))e−1(±0.4)s

9.02(±0.65)s2+2.45(±0.35)s+1

(−5s+1)e−1s

9s2+2.4s+1

(−4.9(±0.3)s+1.2(±0.01))e−0.97(±0.3)s

9(±0.74)s2+2.43(±0.2)s+1

1e−0.2s

0.25s2+0.7s+1

1(±0.01)e−0.205(±0.09)s

0.26(±0.1)s2+0.71(±0.12)s+1

4. CONCLUDING REMARKS

A set of excitation signals described as nonideal step inputs
are introduced for identification of continuous time mod-
els. The corresponding estimation equations that allow the
simultaneous estimation of the model parameters and the
delay are derived. These inputs are applicable to variables
that cannot be changed instantaneously in a step manner.
By applying such inputs, large deviation of the process
outputs can also be avoided. A set of such inputs are
introduced offering the user to choose from a number of
options that suits to their specific variables. Simulation
results are presented for first and second order processes
and the estimated model parameters demonstrate the effi-
ciency of the proposed methods in terms of their accuracy
and consistency.
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