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Abstract: The conditions for closed-loop identifiability using routine operating data are largely unknown. In this 
paper, the closed-loop identifiability conditions for a first-order autoregressive process with exogenous input (ARX) 
that is regulated using a 3-parameter lead-lag controller and that has no external excitation will be examined using an 
analytical approach. Despite the convoluted nature of the intermediate results, the final conditions for absolute 
identification of the stable region can be concisely stated. These results suggest that the class of internal model 
controllers (IMCs) can, despite their aggressive behaviour, successfully identify an ARX model without any external 
excitation. As well, Monte Carlo simulations performed using MATLAB confirmed the analytical results that were 
obtained. Future work in this area can focus on extending the results to other model structures, to other types of 
controllers, and to higher order processes. 
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1. INTRODUCTION 

In control engineering, the identification of a model 
from closed-loop operation without any external 
perturbations is of prime importance for such control aspects 
as controller tuning, fault detection and isolation (FDI), and 
performance monitoring. Previous work has shown that, if 
the controller is of higher order than the process or with 
significant nonlinearities, then it is possible to identify the 
process successfully (Ljung, 1999). Furthermore, it has been 
shown that, if a reference signal is sufficiently persistently 
exciting to identify the open-loop process, then it is possible 
to identify the process from closed-loop data (Ljung, 1999). 
However, these statements are qualitative, in that they do not 
specify the exact (minimal or otherwise) requirements for 
closed-loop process identification. 

Recently, Gevers, Bazanella, and Ljubiša (2008) 
determined the conditions for closed-loop identification 
based on the sensitivity functions. In their paper, general 
autoregressive processes with exogenous input (ARX) with a 
transfer function given as 
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where na is the order of the A-polynomial and nb is the order 
of the B-polynomial and are regulated by a controller whose 
transfer function is given as 
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where nx is the order of the numerator of the controller and ny 
is the order of the denominator of the controller, were 
investigated in the presence or absence of a reference signal. 
It was determined that, in the absence of a reference signal, 
(Gevers, Bazanella, & Ljubiša, 2008) 

 
 �max , 0x a y bn n n n� � �  (3) 

must be satisfied in order for the system to be identifiable. 
This result only gives restrictions on the orders of the system, 
which is a qualitative description of the closed-loop 
identifiability conditions. 

 This paper has four objectives. The first objective is 
to quantify the parametric region of identifiability for a first-
order ARX process regulated by a lead-lag controller without 
any external excitation, that is, determine the region of 
identifiability as a function of the controller and process 
parameters. The second objective is to use the analytical 
results to determine the restrictions or limitations on 
identification of the process when the true process itself is 
unknown or uncertain. The third objective is to verify the 
analytical results using Monte Carlo simulations. A related 
issue is to explain, using the analytical results, the observed 
behaviour. The fourth and final objective of this paper is to 
verify closed-loop identifiability based on the conditions 
proposed by Gevers, Bazanella, and Ljubiša (2008).  
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2. THEORY 

2.1 Closed-Loop System to be Analysed 

Given a closed-loop process described similar to that 
described in Figure 1, where 
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Figure 1: Generic Closed-loop Process 

then the transfer function for the process can be written as 
(Ljung, 1999) 
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while the transfer function for the input can be written as 
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where yt is the output from the process, et is white noise, and 
ut is the input into the process. The reference signal, rt, is 
assumed to be equal to zero. The parameters �, �, �, �, and � 
are free parameters whose values can range over the real 
number line 
 . For simulating an autoregressive model 
with exogenous input (ARX), � is constrained to be in the 
interval ]-1, 1[, i.e. -1 < � < 1. Equations 

��

(5) and (6) can be 
rewritten as a closed-loop system in terms of the noise term 
as 
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 Based on Söderström and Stoica (1989), the 
consistency of the parameter estimates of an ARX model can 
be determined by solving the following system of equations: 
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where E is the expectation operator, �̂ is the estimated value 
of the parameter �, and �̂ is the estimated value of the 
parameter �.  

 It should be noted that, according to the inequality in 
(3), the first order ARX system should be identifiable for any 
combination of controller and process parameters. 

2.2 Symbolic Expectation Operator 

In order to solve (9), symbolic calculation of the 
expectoration operator is required. Since there does not exist 
an appropriate method for symbolically determining the 
expectation operator, a new method was derived that allows 
easy computation of a symbolic expectation. 

A general ARMA process can be written as 
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where ny represents the number of autoregressive components 
in the process and nMA represents the number of moving 
average components. The parameter �  is a real number, 
while � can be imaginary. If � is imaginary, then there will be 
a corresponding imaginary term that is the complex conjugate 
of �. Thus, it can be assumed that the imaginary poles come 
in pairs. Equation (10) can be obtained by performing partial 
fractioning of the general ARMA transfer function. Rewriting 
(10) as an infinite series in terms of the error gives 
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Thus, the k-lag cross-correlation between two signals, ut and 
yt, that are expressed in a form similar to (10) can be written 
as 

  (12) 
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 Since, it can be assumed that the error terms are white noise, 
(12) can be simplified using the following property of white 
noise (Ljung, 1999) 
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It should be noted that (14) only applies if the following 
condition is satisfied 

 1j i� � "  (15) 

 Furthermore, the two middle sums in (14) are only valid for 
terms such that   

  (16) 
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Using MATLAB’s symbolic mathematics toolbox, a 
symbolic expectation operator programme was written that 
will return the cross-covariances based on solving (14). 

3. ANALYTICAL RESULTS 

3.1 Analytical Conditions for Identifiability 

Using (14), all of the covariances in (9) were 
calculated. Next, the matrix was inverted to obtain the 
parameter estimates, �̂ and �̂ . The equations for the 
parameter estimates were extremely long. Finally, the 
parameter estimates were equated to the true parameter 
values to obtain a system of equations with two equations. 
The solution to this system of equations gave the conditions 
for identifiability. 

 Two primary conditions for identifiability were 
obtained. The first condition for identifiability is:  

 
� �

� �
�  (17) 

The second condition can be derived by noting that, in order 
to obtain identification over the stable region, (7) must be 
stable. This essentially implies that the roots of the 
denominator must lie inside the unit circle (in terms of z). 
Combining  (17) with this stability requirement for (7) gives 
the second condition for identifiability: 

 1� � �� � "  (18) 

Additional conditions for identifiability can be 
classified as trivial, since these deal with the case when (14) 
fails to be summable, or either of the parameters to be 
identified is zero. The results are summarised in Table 1. It 
should be noted that the same corresponding signs are taken 

based on the location, while if the parameter is specified as 
the variable itself, then any value of that parameter applies. If 
� = 0, then a pure AR model is being fitted. In this case, the 
system is only stable for | �| < 1, which is confirmed by Table 
1. Furthermore, it can be seen that � and � have conditions 
that are often complementary. The conditions stated in terms 
of � can be rewritten in terms of the system parameters � and 
�. Finally, it can be noted that some of the conditions do not 
have any real significance. For example, if any of the 
parameter values are imaginary numbers, then the system is 
undefined, unless there is a corresponding complex conjugate 
number that would combine to give 2 real numbers. 

Table 1: Summary of the Trivial Conditions. It should be noted that, 
if there is a choice of signs, then the same sign location should be 
selected for each of the choices. 

Case � � � � � 
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3.2 Discussion of the Analytical Conditions for Identifiability 

 The above conditions for identifiability raise some 
interesting issues. Firstly, the condition given by (17) 
suggests that the coefficient of the second order term in the 
denominator of the closed-loop transfer function (see (7) and 
(8)) must equal zero, that is, 

 0�� ��� �  (19) 

This would suggest that, if the order (in terms of z-1) of the 
denominator of the transfer function for the closed loop 
system is greater than the corresponding order of the 
numerator, then there are issues with identifiability. Thus, it 
would seem that the orders of the numerator and denominator 
must be at least equal. It is possible, but unproven, whether 
the numerator’s order (in terms of z-1) can be greater than that 
of the denominator. In other words, it is not known whether 
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the number of parameters in the numerator can be greater 
than the number in the denominator. 

Secondly, an internal model controller where the 
controller parameters are defined as 
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should be able to identify the true process parameters for all 
parameter values, since it can be easily verified that the 
conditions given by (17) and (18) are satisfied for all possible 
values of � and �.  This suggests that, despite the fact that the 
internal model controller is an aggressive controller, it can 
always identify the correct model using routine operating 
data. However, there is an interesting problem with using an 
internal model controller and routine operating data. In order 
to tune the internal model controller, the true model 
parameters are required. Thus, in practice, there could 
potentially exist an iterative procedure that alternates between 
model identification and controller tuning.  

 Thirdly, the requirement of knowing the true 
parameter values and the consequent inability to identify the 
model raise the issue of whether, if starting from arbitrarily 
close enough initial estimates of the parameters, an iterative 
approach will identify the true parameter values. This 
iterative approach would involve initially guessing some 
parameter values and designing a controller, which would 
then be improved upon using the newly identified parameter 
estimates. This process would be repeated until the parameter 
estimates stopped changing. The question is then whether or 
not the parameters obtained converge to the true parameter 
values. This observation could lead to interesting research in 
iterative, closed-loop identification.  

 Fourthly, the inequality presented in (3) (Gevers, 
Bazanella, & Ljubiša, 2008), is always satisfied in this 
example. However, the analytical results suggest that this 
condition is insufficient to describe the identifiability of the 
process. It would seem that when the inequality reaches its 
lower bound, zero, the true parameter values need to be 
known (in order to avoid the issues mentioned in point three 
above), and the controller must satisfy some rather restrictive 
conditions in order to guarantee identifiability. Thus, solely 
considering the orders of the polynomials in the numerator 
and denominator is insufficient to guarantee identifiability. 

4. SIMULATION RESULTS 

4.1  Simulation Set-Up 

In order to verify the analytical results that were 
obtained above, a Monte Carlo simulation was performed. 
The following parameters were used: 

$ 10,000 data points were simulated for each process.  

$ 1,000 simulations of the process were run. Changing 
the number of simulations run did not change the 
observed results. 

$ Parameter estimates were averaged to obtain the 
mean values for the parameters. The 95% 
confidence intervals for the parameters were 
calculated using the following formula 

 

 �
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 where N is the number of simulations performed, �̂
is the mean value of the parameter estimate, t is the 
value of Student’s t-test, and Var 
 ��̂  is the 
variance of the parameter estimates.  Since the 
sample size selected for the Monte Carlo simulation 
is sufficiently large, the estimate’s bias will be used 
to verify consistency. This can be verified by 
computing the 95% confidence intervals for the 
estimated parameter values. 

$ The following values were used for the process 
parameters � = 1 and � � ]-1, 1]. 

Three different types of controller were designed: 

I. An internal model controller, which satisfies all of 
the constraints given above. The values for the 
controller are given by (20). It is expected that this 
controller should estimate the correct parameter over 
all of the given range. 

II. A modified internal model controller, which only 
satisfies the condition given by (17). Its parameter 
values are given as 
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It is expected that this controller should obtain the 
correct parameter estimates only over the region for 
which the condition given by (18) is satisfied, that is, 

 1.0 0.9�� " "  (23) 

III. A controller, whose parameters are given as 

  (24) 
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 This controller does not satisfy either of the 
conditions and should not provide unbiased 
estimates throughout the region. There may also be 
regions for which the process is closed-loop stable, 
but closed-loop unidentifiable. 
   

4.2 Simulation Results and Discussion 

Figure 2 presents the parameter estimates for � and 
� as a function of the true value of � for the controller given 
in Case I. It can be seen that the controller identifies the 
correct parameter values for all stable process systems. It is 
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clear that the confidence intervals for the parameter estimates 
are small and include the true values. Hence, there is no 
evidence suggests that the parameter estimates are biased. 

 

Figure 2: (above) Estimated � as a function of the true �; 
(below) Estimated � – True � as a function of the true � for 
Case I. 

 Figure 3 presents the parameter estimates for � and 
� as a function of the true value of � for the controller given 
in Case II. It can be seen that the controller identifies the 
correct parameter values only in the region given by (23). It 
can be noted that, unlike for Case I, where the system was 
identified at � = 1, in this case, the system is not identifiable. 
This is expected given the condition stated in (18). Similarly 
to Case I, it can be concluded that the parameter estimates are 
unbiased where the system is stable. 

Finally, Figure 4 presents the parameter estimates 
for � and � as a function of the true values of � for the 
controller given in Case III. Although for most of the region, 
where the condition stated in (18) is satisfied, the estimated 
parameter values appear to match the true values, there 
appears to be a rather large confidence interval for the 
parameter estimates around -0.7. In order to investigate this 
region, a more detailed simulation of the region for which � � 
[-0.8, -0.7] was performed. Figure 5 presents the parameter 
estimates for � and � as a function of the true values of � for 
the smaller region identified above and the same controller as 
for Case III. Clearly, Figure 5 shows that there appears to be 
a discontinuity in the identified parameter values around the 
point -0.72. In fact, the behaviour of the curve around this 
point strongly resembles that of a hyperbolic curve. 

In order to determine the value of the discontinuity, 
the roots of the numerator and denominator of the transfer 
functions defined by (7) and (8) can be equated 
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Figure 3: (above) Estimated � as a function of the true �; 
(below) Estimated � – True � as a function of the true � for 
Case II. 

Simultaneously solving (25) based on the values of the 
controller parameters given in (24) and assuming that � = 1 
shows that the discontinuity has the exact value 
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18
� � �  (26) 

It can be noted that the negative sign was taken in (25) in 
order to obtain a solution. The positive solution did not 
provide any points of interest. Furthermore, the remaining 
root of the denominator lies inside the unit circle. Thus, it can 
be concluded that, although the closed-loop system is stable, 
it cannot be identified. In fact, if a simulation is performed at 
this exact point, the parameter estimates are effectively 
infinity. 
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Figure 4: (above) Estimated � as a function of the true �; 
(below) Estimated � – True � as a function of the true � for 
Case III. 

In control theory, when pole-zero cancellations 
occur, then it is said that a given mode is uncontrollable or 
unidentifiable (Chen, 1999). The above result would suggest 
that, for controllers that fail to satisfy the aforementioned 
conditions ((17) and (18)), simultaneous pole-zero 
cancellations occur that result in an inability to identify the 
correct parameter values. 

 Finally, it can be noted that, in Figure 5, the 
confidence intervals do not necessarily cover the true 
parameter value. Thus, it can be concluded that the parameter 
estimates are biased. This is especially pronounced around 
the discontinuity. This behaviour is to be expected given the 
analytical results. 

5. CONCLUSIONS 

 In this paper, the conditions for identifiability for a first-
order ARX process regulated by a lead-lag controller were 
analytically derived. It was furthermore shown that 
controllers that do not satisfy these conditions fail to be 
identifiable for all parameter values located in the stable 
region of the controller despite satisfying the conditions for 
identifiability proposed by Gevers, Bazanella, and Ljubiša 
(2008).  The results obtained in this paper can be extended to 
include different types of model structures and controller. 
 Future work will focus on extending the results to other 
model structures, other types of controllers, and to higher 
order processes. The main difficulties with extending the 

results are obtaining sufficient computational power to 
resolve the messy algebraic equations and resolving issues 
related to the solution of non-ARX models.  
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Figure 5: (above) Estimated � as a function of the true �; 
(below) Estimated � – True � as a function of the true � for 
Case III for the region [-0.8, -0.7]. 
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