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Abstract: We propose a simplified modeling approach for multi-phase reactor systems. The
model can be used to determine system characteristics, explore parameter sensitivity and
test control strategies. The model is based on the thermodynamic equilibrium assumption
and invariant inventories to make it computationally inexpensive. We show that the control
approach based on the overall inventories of the system can be effectively used for improved
performance of such reactor systems. A multi-phase reactor system - the vapor recovery reactor
used in carbothermic aluminum reduction process is considered to demonstrate the efficacy of
the proposed modeling and control approach.
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1. INTRODUCTION

Multi-phase reactor systems are used in a wide range of
applications such as in power plants, petrochemical and
chemical industries and in various other fields (Dudukovic
et al. (1999)). The multi-phase technology is gaining
attention because of their variability and ability to perform
reaction and separation in one process. In order to quantify
the performance and optimize these reactor systems in
the absence of any appropriate experimental technique to
measure a specified parameter in the multi-phase region
or for any expensive/harmful experiments, computational
modeling is the key.

Multi-phase reactor systems are difficult to model or to
be visualized because of complex phenomena like phase
change, significant variation in physical properties and
chemical reaction interactions. Also, the characteristics
of such systems rely mostly on different processes at
different scales. Hence, a consolidated analysis of all the
processes at different scales and at different phases is not
straightforward and can be of major challenge. Low order
models are often employed to help in process development,
scale-up, validation and process control.

Multi-phase systems are often modeled based on isother-
mal assumption with either a pseudo-homogeneous (Kheshgi
et al. (1992)) or a heterogeneous model (Hekmat and
Vortmeyer (1994)) along with plug flow for gas and liquid
phases. There are other studies (Rajashekharam et al.
(1998)) where the non-isothermal behavior is modeled by
implementing a one-dimensional pseudo-homogeneous en-
ergy balance. There are other simplified approaches and a
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detailed review of these approaches can be found elsewhere
(Dudukovic et al. (1999)).

Khadilkar et al. (1999) developed a model for unsteady-
state operation that captures the effect of multi-component
transport, multiple reactions, phase change, intra-reactor
wet-dry transition. Pellengrini et al. (2008) modeled a
hydrocracking Fischer Tropsch unit based on vapor-liquid
equilibrium. Jarungthammachote and Dutta (2008) used
Gibbs energy minimization method to predict the com-
position of the gas produced by gasifying a solid fuel in
a spouted bed. As a continuation of these studies, we
propose a modeling framework for a multi-phase reactor
system with a case study leading to modeling and control
of a gas-liquid-solid system.

The objective is to develop a model for multi-phase reactor
systems which has high accuracy, is computationally cheap
such that sensitivity, optimization and control studies can
be performed. The modeling approach is based on thermo-
dynamic and reaction equilibrium as it helps in studying
the phase behavior and other important properties at
the reaction conditions subject to nonideality of reaction
mixtures. Further, in order to obtain a reduced order
model, we represent the reactor systems based on invariant
inventories. This type of modeling helps in employing
an inventory based control as the dynamics involved are
relatively smooth and can be controlled effectively with
traditional control algorithms.

We choose inventories like total mass or total energy to
represent the state space of the system (Farschman et al.
(1998), Arendsen and Versteeg (2009)). More specifically
we use invariant inventories like energy and element mass
as they provide minimal state space representation of
an equilibrium system. We show that a non-equilibrium
multi-phase reactor can be modeled as a network of
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equilibrium stages interconnected by material and energy
flows. This method allows to use the structure of physical
processes for modeling. The differential equations thus
formed have a simple and rather fixed structure. This
also separates the model into thermodynamics (algebraic
equations) and transport (differential equations) modules,
allowing the use of special solution methods for each
module according to their own merits.

The passivity based inventory control of nonlinear systems
was developed by Ydstie and Viswanath (1994) and ap-
plied to transport reaction systems by Ruszkowski et al.
(2005). Inventory control has been successfully applied to
industrial systems such as float-glass manufacturing pro-
cess (Ydstie and Jiao (2004), particulate systems (Duenas
et al. (2008)) and power plant models (Chengtao and
Ydstie (2008)).

In the following sections, we discuss the modeling concept
based on invariant inventories and the thermodynamic
equilibrium calculations. Then, the dynamic reactor model
for a multi-phase system is presented followed by the
control concept. Subsequently, we demonstrate the work-
ability of the proposed approach through an industrial
multi-phase reactor - vapor recovery reactor used in car-
bothermic aluminum production.

2. MODELING CONCEPT

2.1 Process Invariants

Let us consider a high-dimensional networked system
represented as

ẋ = f(x) + g(d, x, u), y = h(x) (1)
where x is the state, u the control variable, d the distur-
bance and y the measured output. An inventory of the
system is defined to be an additive non-negative continu-
ous (C1) function ν : X → <+. Here X is the state space.
Additivity implies that the inventory of a system is equal
to the sum of the inventories of its subsystems.

Using continuity we have the inventory balance from (1)
dν(x)
dt

= pν(x) + φν(d, x, u) (2)

where

pν(x) =
∂ν

∂x
f(x), φν(d, x, u) =

∂ν

∂x
g(d, x, u)

Here pν(x) represents the drift or the production rate
while, φ represents the flux from the boundaries. Inven-
tories with pν(x) = 0 are called invariant inventories or
simply invariants.

For a chemical process, there exist many invariants. These
include mass, energy, momentum and elements or atoms
that are neither created nor destroyed. In addition we have
so called local invariants which may be molecular species
which do not enter in a chemical reaction in the piece of
equipment under consideration. Inventories E are said to
be global invariants for a chemical process if pE(x) = 0
for all x ∈ X. The local invariants C for a process system
(1) have pC(x) = 0 for all x ∈ Xo. Here Xo ⊂ X a sub-
set is the state space. These local invariants could be the

compounds or functional groups which do not undergo
chemical transformation during a specific process. For
example during a distillation process to separate methane
(CH4) and hydrogen (H2), the compounds CH4 and H2

are local invariants since they do not react, while elements
C and H are global invariants.

In general,we define invariants I if they satisfy the follow-
ing

pI(x) = 0 for all x ∈ Xo (3)
Here, Xo ⊆ X is the subspace for which (3) holds i.e.
X0 = {x : p (x) = 0 for x ∈ X} in the process.

2.2 The Equilibrium Assumption

By equilibrium systems we refer to a system that operate
under thermodynamic equilibrium and are not limited by
kinetics of mass transfer or reaction. There are many
examples of equilibrium systems in chemical industry
especially in metallurgical industry as they operate at
high temperature and large residence times. Many non-
equilibrium systems can be modeled as a network of
equilibrium systems where we introduce the hypothesis
of local equilibrium. The process dynamics of equilibrium
systems is only determined by the flow at the boundaries.
For kinetically controlled systems, the state of the process
with one or more limiting reactions can be written as

Z = (U, V, I, ξ) (4)
where ξ is the percentage conversion of each reaction that
is kinetically controlled or not at equilibrium. We postulate
that the minimal state Z of an equilibrium process system
is defined by the vector of invariant inventories

Z = (U, V, I) (5)
where U is the internal energy, V the volume and I the
moles of invariants present in the system. In a single
component system, I can correspond to the total mass.
The intensive variables are

w = (1/T, P/T,−µ/T ) (6)
where T is the temperature, P the pressure and µ the
chemical potential. In the multi-component system, I
represents a vector of masses or moles of the invariants
needed to describe the state. Thus the states of a high
dimensional model (1) is projected using invariants onto
the low dimensional manifold using the hypothesis of local
equilibrium.

dZ

dt
= φ(y, d, u), y = h(Z) (7)

The net transport φ(y, d, u) denotes the flows of mass,
energy and volume. The outputs y are intensive variables,
e.g. chemical potentials, temperature and pressure. The
function h(Z) is the mapping of the invariant states Z to
the output or measured variables y. One form of the func-
tion h(Z) could be the Gibbs free energy minimization that
maps the extensive variables like the invariant inventories
to the intensive variables. This mapping can be used since
the system is under thermodynamic equilibrium and its
free energy is minimum. Constitutive equations are used
to capture the transport phenomena rather than using the
momentum balance equation. Fig. 1 illustrates the idea.
The theoretical basis of the proposed modeling approach
can be obtained from Aggarwal (2009).
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Fig. 1. Multi-phase reactor model based on invariant
inventories and thermodynamic equilibrium

3. DYNAMIC REACTOR MODEL

Networked representations are developed by tessellating
the state space. We now develop a model for a multi-phase
reactor systems using the framework shown in Fig. 1. We
divide the multi-phase reactor system into n equilibrium
stages. Each stage is assumed to have homogeneous mixing
across all phases. The state Z for a single stage is defined
as

Z = (U, V,Ei) (8)
Here, U is the internal energy, V the volume and Ei the
total moles of element i. Using this definition of state the
inventory balance equation (7) for a single stage of the
system assuming constant volume can be written as.

dU

dt
=

Nc∑
j=1

∆(hjFj) (9)

dV

dt
= 0

dEi
dt

=
Nc∑
j=1

eij∆(Fj)

where,∆(x) = xinflow − xoutflow (10)
Here, Nc is the number of compounds present, Fj and
hj the molar flow and molar enthalpy of compound j
respectively and eij the number of atoms of element i in
compound j.

The output y is defined as a vector of intensive variables
y = (T, P,Cj) (11)

Here, T is the temperature, P the pressure and Cj the
concentration of compound j. The function h(Z) that
maps the state Z to output y is defined by Gibbs free
energy minimization.

(T, P,Cj) = Eq(U, V,Ei) (12)

We have used phase subscript to distinguish between
elements and compounds. It can be noted that the three
matrices are related by the following relation

Ei = eijCj (13)
The constitutive relations for transport are given by

Fj = vαACαj −DαjA∇Cαj (14)

Here, vα is the superficial velocity of phase α, A the cross-
sectional area, Dαj the diffusion coefficient of compound j
in phase α and ∇Cαj the gradient of compound concentra-
tion between stages. Equations (9), (12) and (14) together
represent the multi-phase reactor system. Equation (12)
calls the thermodynamic database and Gibbs free energy
minimization and replaces the kinetics of the conventional
modeling methods. Such a methodology is useful for multi-
phase systems where the kinetics involved are fast relative
to mass or energy transport.

The calculation of constrained equilibria by Gibbs free en-
ergy minimization can be formulated as follows (Koukkari
and Pajarre (2006)):

min(Cα, xαj , T, P ) G =
∑
α

Cα
∑
j

µjx
α
j

s.t. Chemical equilibrium constraints:

µj =
∑
i

eijλi

µj = µstdj (T ) for solid phase
µj = µstdj (T ) +RT ln γjxj for liquid phase
µj = µstdj (T ) +RT lnPxj for gas phase

Elemental mass balance constraints:
bi =

∑
α

Cα
∑
j

eijx
α
j ,
∑
j

xαj = 1

Heat balance constraints:
U =

∑
α

Cα
∑
j

Hα
j x

α
j

Volume balance constraints:
V =

∑
α

Cα
∑
j

ραj x
α
j

The computational speed of the equilibrium calculations
can be improved by making assumptions related to equi-
librium conditions like phases present, temperature ranges
etc. Commercial softwares like FACTSAGE available for
Gibbs free minimization calculations for metallurgical pro-
cesses.

4. STABLE INVERSION USING INVENTORY
CONTROL

In many scale-up, process design and optimization prob-
lems it is of interest to invert the process. In such cases, it
is necessary to find the flow parameters which give specific
states rather than finding the states which correspond
to a given flow scenario. In this section we show how
inversion can be achieved using inventory control (White
et al. (2006)). A control strategy which ensures that an
inventory asymptotically tracks a desired set point is called
inventory control. Inventory control provides a systematic
method of choosing input-output pairs (Alonso and Yd-
stie (1996, 2001), Ydstie and Alonso (1997)). It controls
process inventories ν to their set points ν∗ by choosing
the manipulated input variables so that the candidate
Lyapunov function decreases. In Farschman et al. (1998)
it was shown that the mapping

(φ+ p)T → (ν − ν∗) (15)
is passive with storage function

Ψ =
1
2

(ν − ν∗)(ν − ν∗) (16)
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The main limitation of invariant control is that it is
practically difficult to measure the inventory of a process
although it can be predicted using the intensive variable
measurements and the inventory based model. The ad-
vantage of inventory control is that it is based on the
unique minimum state representation. Hence invertibility
and minimum phase conditions should be satisfied. To
stabilize the system as represented in (2), Farschman et al.
(1998) implemented a Proportional Feedback-Feedforward
control like

φ(d, y, u) = −p(x)−Kc(ν − ν∗) + ν̇∗ (17)
where Kc is the controller gain. Inventory control is most
useful for invariant inventories or the term p is absent since
the modeling requirements are minimal. We refer to the
inventory control using invariants as “invariant control”.
In such cases, (17) can be written as

φ(d, y, u) = −Kc(ν − ν∗) + ν̇∗ (18)
The approach is quite general provided φ(d, y, u) is invert-
ible with respect to u and the zero dynamics are stable
i.e. convergence of inventories ν should also imply conver-
gence of higher order states x. These problems are more
commonly known as input multiplicity and nonminimum
phase behavior in control language (Kuhlmann and Bogle
(1997)).

The modeling approach can be used to control other
intensive variables of interest based on the concept of
cascade control (Aggarwal (2009)). The concept is to apply
invariant control with a dynamic set point, where the
set point of the invariant is varied such that the actual
controlled variable follows its set point. For example, if
energy is the controlled invariant and temperature is the
actual variable to be controlled, then we apply invariant
control on the energy while the set point of the energy
invariant is varied by U̇∗ = −KT (T − T ∗).

5. CASE STUDY: MODELING AND CONTROL OF
THE VAPOR RECOVERY REACTOR USED IN
CARBOTHERMIC ALUMINUM PRODUCTION

The Carbothermic process is based on a high-temperature
reduction reaction occurring between aluminum oxide and
carbon. The components at high temperature react to form
molten aluminum and CO gas. Due to high temperatures
in the process (∼2273 K), large amounts of aluminum and
aluminum sub-oxide gases are formed and a significant
amount of aluminum is lost. For the process to be energy
efficient and economically viable, it is necessary to recover
the aluminum in these gases. It is preferable to regain
the vapors as aluminum carbide which can be fed into
the smelter stage (Garcia-Osorio and Ydstie (2004)). To
achieve this, it is proposed to include a Vapor Recovery
Reactor (VRR) in the process.

The VRR (Fig. 2) consists of a moving bed of carbon
particles into which a continuous stream of off gases
(aluminum, aluminum sub-oxide and carbon monoxide) is
fed from the main reactor. The gases enter at the bottom
of the column at 2100 (K) approximately. They move up
the column while reacting with the carbon and forming
aluminum carbide. The main chemical reactions taking
place are:
Al2O + C 
 2Al + CO

Fig. 2. Vapor Recovery Reactor (VRR)

Al2O3 + 3C 
 2Al + 3CO
4Al + 3C 
 Al4C3

Depending on the composition and temperature, oxy-
carbide slag containing mixture of aluminum oxide and
carbide in liquid phase could also form. The slag formation
complicates the dynamics of the reactions as there are gas-
solid, liquid-solid and gas-liquid reactions taking place in
the reactor.

The conventional methods of modeling a reactor require
the kinetics of the chemical reactions to be explicitly
stated. However, there is little kinetic data available for
VRR. However, there has been extensive studies on the
thermodynamic properties of the compounds involved.

We assume that VRR is operating under complete ther-
modynamic equilibrium. This assumption implies that at
any spatial point in the VRR, there is instantaneous ther-
mal and chemical equilibrium across all phases present.
This assumption is based on the argument that due to
high operating temperatures, the chemical reactions are
very fast and reach equilibrium almost instantaneously.
Previous studies (Fruehan et al. (2002), Garcia-Osorio and
Ydstie (2004)) have shown that there can be mass transfer
resistance due to diffusion of gases to the solid surface.
This would prevent the VRR from operating under equilib-
rium. These resistances can be included by implementing a
population balance model to capture the reaction kinetics
(White et al. (2006), Balaji et al. (2009)).

A high dimensional dynamic model of VRR can be ob-
tained from Garcia-Osorio and Ydstie (2004). A low di-
mensional dynamic model of VRR was simulated by divid-
ing the reactor system into n equilibrium stages (see Fig.
1). It is assumed that each equilibrium stage is operating
isothermally.

dEi
dt

=
Nc∑
j=1

eij∆Fj (19)

Fj = vαACαj

Cj = Eq(T, P,Ei)

For the present work we have developed our own equi-
librium module as it can be easily and efficiently inte-
grated with other modules of heat and mass transfer.
The minimization is performed by calculating the total
Gibbs free energy for every phase combination possible.
The feasible phase combination with minimum free energy
then gives the global minima. For the given combination of
compounds and assumptions there were five 3-phase and
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Fig. 3. Simulation results of dynamic VRR model in
MATLAB/Simulink

four 2-phase cases possible. The data for standard chemical
potentials and activity coefficients was taken from FACT
databases (Pelton and Degterov (1999)). The results from
our routine were found to be in good agreement with
FACTSAGE.

6. SIMULATION RESULTS

We performed dynamic simulations of VRR for various
input values of solid and gas velocities. For each run we
measured the output mole fraction of carbide in the solid
outlet when the system reaches a steady state. The carbide
mole fractions in the solid outlet as a function of the solid
velocity for different gas velocities is shown in Fig. 3.

It can be observed that for a given gas velocity (vgas),
the carbide Al4C3s output increases with decreasing solid
velocity (vsolid) and reaches a constant value of 1 below
a certain point. This is because for a given gas velocity,
the amount of aluminum to be recovered is fixed. So as we
decrease the amount of carbon feed by decreasing the solid
velocity, the percentage conversion of carbon to increases
till the point when all the carbon is converted into carbide
and the mole fraction of carbide at the exit is 1.

On the other hand, if we increase the gas velocity, the
amount of aluminum to be recovered from gases increases
and hence the mole fraction of carbide in the solid outlet
increases. Also the threshold solid velocity for which the
outlet fraction becomes 1 increases with increasing gas
velocity.

6.1 Comparison with Design Relation

To test the validity of the simulations we compared the
result with the design relation obtained from overall mass
balances of the VRR. The design relation is given as:

xoutAl4C3s
=

1
4 (γCinAlg + 2γCinAl2Og

)(
vsolid

vgas

)
CinCs
− 1

2γC
in
Alg
− 2γCinAl2Og

(20)

The carbide mole fractions in the solid outlet calculated
by the dynamic simulations and the design relation are
compared in Fig. 4. It can be observed that the simulation
and design relation curves overlap each other. This verifies
that the proposed model predicts the outlet compositions
accurately.

Fig. 4. Comparison of design relation with simulation
results

Fig. 5. Control of invariants for VRR (controlled variable,
set point and manipulated variable)

6.2 Control of Invariants for VRR

The concept of invariant control is applied to VRR dy-
namic model in MATLAB/Simulink. The objective of the
controller is to maintain a desired level of output mole
fraction xoutAl4C3s

by manipulating the feed rate of solid
carbon i.e. vsolid. The inlet gas composition and the flow
rate are determined by the main reactor in the process and
is considered as a disturbance variable.

We apply invariant control to achieve this objective. There
are 3 invariants in the system i.e. EAl, EC and EO. We
choose moles of aluminum EAl as the controlled invariant.
Based on experience and previous process data, the set
point of Al inventory required to achieve a desired level of
output mole fraction xoutAl4C3s

can be calculated. If the set
point of the actual controlled variable is known, then the
set point for the chosen invariant can be calculated. In this
study, we assume that the set point of the Al inventory is
known. From (18), the control law can be written as

φAl = −Kc(EAl − EAl∗) (21)
The net flux of Al into the reactor can be expressed in
terms of flux of compounds like

φAl = ∆(FAlg + 2FAl2Og
)− 4F outAl4C3s

(22)
Using the expression for flow in (18) we get the following
control law for vsolid

vsolid =
−Kc(EAl − EAl∗)−∆(FAlg + 2FAl2Og

)
4ACoutAl4C3s

(23)

Fig. 5 shows the results of the controller performance.
The plot shows the variation in Al inventory with a set
point change. The manipulated variable is also shown in
the figure. Fig. 6 shows the actual output variable xoutAl4C3s

.
From the results obtained, we can see that the dynamics is
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Fig. 6. Control of invariants for VRR (the actual controlled
variable and the inventory based controlled variable

relatively smooth and the controller is stable. By control-
ling the invariant inventories, the actual controlled variable
- the percentage conversion is controlled effectively. The
dynamics of xoutAl4C3s

are slower than that of Al inventory
and hence it takes longer time to reach steady state.

Thus, by exploiting the thermodynamic equilibrium and
the invariant inventories of the system, a relatively simple
model can be developed and at the same time a stable and
effective control can be implemented. In the future works,
we plan to compare and analyze the control results of the
proposed approach with other conventional methods.
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