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Abstract: We revise in this paper the Partial Enumeration (PE) method for the fast computation of
a suboptimal solution to linear MPC problems. We derive novel robust exponential stability results
for difference inclusions to show that the existence of a continuous Lyapunov function implies Strong
Robust Exponential Stability (SRES), i.e. for any sufficiently small perturbation. Given the fact that
the suboptimal PE-based control law is non-unique and discontinuous, i.e. a set-valued map, we treat
the closed-loop system, appropriately augmented, as a difference inclusion. Such approach allows us
to show SRES of the closed-loop system under PE-based MPC. Application to a simulated open-loop
unstable CSTR is presented to show the performance and timing results of PE-based MPC, as well as to
highlight its robustness to process/model mismatch, disturbances and measurement noise.
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Notation. Given a vector x ∈ Rn, |x| denotes the 2-norm; given
a positive scalar r, we define Br = {x ∈ Rn, |x| ≤ r}; given a
sequence of vectors xk = {x( j)}k−1

j=0, we define ‖xk‖ = sup j |x( j)|;
if A is a subset of Rn and b ∈ Rn, we denote the set A +
b = {c = a + b| a ∈ A}.

1. INTRODUCTION

A significant amount of research activity of the last decade (or
so) in the field of Model Predictive Control (MPC) has been
devoted to the implementation of efficient methods for solving
the associated constrained optimal control problem, which for
linear systems subject to linear constraints and quadratic per-
formance function can be casted as a Quadratic Program (QP).
Several methods rely exclusively on efficient on-line calcula-
tions (Rao et al., 1998; Ferreau et al., 2008; Diehl et al., 2008),
whereas so-called Explicit MPC methods (Alessio and Bem-
porad, 2008; Bemporad et al., 2002) move the most expensive
calculations offline and the online computations are limited to a
table lookup involving simple matrix/vector multiplications and
inequality checks. However, due to the exponential explosion of
the required number of table entries with respect to the problem
size (number of inputs, states and constraints), Explicit MPC is
limited to small systems. A method that can be considered in the
middle field between Explicit MPC and online optimization is
Partial Enumeration (Pannocchia et al., 2007, 2009), in which a
table (with entries equivalent to those of Explicit MPC) of fixed
size is scanned online to find the optimal control input. If none
of the entries is optimal, a quick suboptimal input is computed,
but the table is updated to include the new optimal entry for
future decision times (while the least recently optimal entry is
discarded). In this way, as the time goes on, the table adapts to
? This work was supported by National Science Foundation (Grant CTS-
0456694) and TWCCC members. Corresponding author: G. Pannocchia.

the new operating conditions and contains only the entries that
are currently more likely to be optimal.

The objective of this paper is to revise the Partial Enumeration
(PE) approach and to make appropriate modifications with the
goal of showing its robust stability properties. To this aim we
develop novel tools for robust stability of suboptimal MPC,
and this represents the second (perhaps the most relevant)
contribution of this paper. The rest of this paper is organized
as follows. In Section 2 we revise the PE-MPC method, and in
Section 3 we derive from scratch novel robust stability tools
and apply such results to PE-MPC. A simulated application
to the control of an unstable CSTR is presented in Section 4,
conclusions are drawn in Section 5.

2. PARTIAL ENUMERATION MPC

2.1 Control problem and main assumptions

We consider LTI systems with input constraints:
x+ = Ax + Bu, u ∈ U ,

in which u ∈ Rm is the input, x ∈ Rn and x+ ∈ Rn are the
state and the successor state, respectively. U = {u|Du ≤ bu} is
compact and contains the origin in its interior (i.e. bu > 0). We
consider the problem of steering the state to a given target x̄
that satisfies x̄ = Ax̄ + Bū, with ū ∈ U. To this aim, we define
deviation state and input: x̃ = x− x̄, ũ = u− ū, and consequently
the deviation input admissible space is Ũ = {ũ|Dũ ≤ bu − Dū}.
In the sake of notation simplicity, we omit the dependance of
Ũ (and its derived sets) on ū. Given a deviation input sequence
vector ũ = [ũ(0)′, ũ(1)′, . . . , ũ(N−1)′]′, we define the following
cost function:
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VN(x̃, ũ) = 1
2

N−1∑
k=0

x̃(k)′Qx̃(k) + ũ(k)′Rũ(k)+

1
2 x̃(N)′Px̃(N), s.t. x̃+ = Ax̃ + Bũ, x̃(0) = x̃, (1)

and the following constrained optimal control problem:
min

ũ
VN(x̃, ũ), s.t. ũ ∈ ŨN , S ′u x̃(N) = 0 , (2)

where ŨN := Ũ × · · · × Ũ︸        ︷︷        ︸
N times

, and S u is defined in Assumption 1.

Assumption 1. The pair (A, B) is stabilizable, (Q,R) are pos-
itive definite, P = S ′sΠS s with Π solution to the Lyapunov
equation Π = A′sΠAs + S ′sQS s in which (As, S s) come from
the real Schur decomposition: A = [ S s S u ]

[
As Asu
0 Au

] [ S ′s
S ′u

]
, and As

contains all stable eigenvalues of A.
Remark 2. The constraint S ′u x̃(N) = 0 zeroes the unstable
modes at time N. Thus, VN(·) represents an infinite-horizon
cost, under the control ũ(k) = 0 (i.e. u(k) = ū) for all k ≥ N.

We define X̃ as the set of x̃(0) for which problem (2)
has a solution, i.e., X̃ = {x̃ | ∃ũ : Dũ(k) ≤ bu −

Dū for all k = 0, 1, . . . ,N − 1 and S ′u(AN x̃ + AN−1Bũ(0) + · · · +
Bũ(N − 1)) = 0}, and we make the following assumption on the
input set and target.
Assumption 3. The set U is compact, and ū ∈ intU 1 .
Remark 4. S u is vacuous for stable systems, thus for any ū ∈
intU it follows that X̃ = Rn, and hence X̃ contains the origin in
its interior. For unstable systems S u is a full rank matrix, and for
any ū ∈ int(U) it is straightforward to show that X̃ is nonempty
and contains the origin in its interior.

2.2 Partial Enumeration: main definitions

As shown in (Pannocchia et al., 2010), problem (2) can be
written as the following convex parametric QP:

min
ũ

VN(x̃, ũ) = 1
2 ũ′Hũ + ũ′Gx̃ + 1

2 x̃′Px̃, (3a)

s.t. Dũ + Cū ≤ d, Eũ + Fx̃ = 0 . (3b)

Given the optimal point of this problem, ũ0, we denote with
(Da,Ca,da) the stacked rows of (D,C,d) such that Daũ0 +
Caū = da (i.e. the active constraints). We also denote with
(Di,Ci,di) the stacked complementary rows, i.e. such that
Diũ0 + Ciū < di (i.e. the inactive constraints). Since ũ0 is opti-
mal for (3), the following first-order optimality KKT conditions
hold:

Hũ0 + Gx̃ + D′aλ
0
a + E′µ0 = 0 , (4a)

Daũ0 + Caū = da , (4b)

Eũ0 + Fx̃ = 0, (4c)

λ0
a ≥ 0, (4d)

Diũ0 + Ciū ≤ di . (4e)
In (Pannocchia et al., 2010), we derive the following equivalent
set of conditions for ũ0 satisfying (4):

ũ0 = Γu(da − Caū) + Γx x̃, where (5a)[
ΨP
ΨD

]
z ≤

[
ψP
ψD

]
, z =

[ ū
x̃
]
, (5b)

Thus, we can express the optimal cost as follows:
V∗N(ū, x̃) = 1

2 z′V2z + v′1z + v0 . (6)
1 The main robust stability results presented in this paper can be extended to
case in which ū lies on the boundary of U, but several technical issues arise by
doing so. For this reason such case is not treated in this paper.

Explicit MPC (Bemporad et al., 2002) partitions (offline) the
space of z in a number of regions, each defined by the tuple:

(ΨP,ΨD,Γu,Γx, ψP, ψD,V2, v1, v0) . (7)
The on-line evaluation consists in finding the region for which
(5b) holds, and then computing ũ0 from (5a) and the optimal
objective value from (6). Several enhancements can be made to
reduce the storage requirements and also the online computa-
tions (Alessio and Bemporad, 2008). Still, Explicit MPC can
be effectively implemented for small dimensional systems, as
the number of regions grows exponentially with the problem
size. On the other hand, in Partial Enumeration, PE, (Pannoc-
chia et al., 2007) we store the tuples (7) for a fixed number
of active sets that were optimal at the most recent decision
time points. Online, we scan the table to check if, for given
parameters (ū, x̃), the optimality conditions (5b) are satisfied,
and in such case we compute the optimal solution from (5a).
However, given the fact that not all possible optimal active
sets are stored, it is possible that no table entry is optimal.
In such case we compute a suboptimal solution for closed-
loop control. Nonetheless, a QP solver is called afterwards to
compute the optimal solution ũ0, and thus derive the optimal
missing tuple (7). Whenever, this table entry becomes available,
it is inserted into the table. If after this insertion, the table would
exceed its maximum size (user defined), we delete the entry
that was optimal least recently. In this way, the table size is
fixed and hence the table lookup process is fast, but the table
entries are updated to keep track of new operating conditions
for the systems. In (Alessio and Bemporad, 2008) a table with
fixed number of entries is also proposed for fast evaluation,
but differently from PE the table is not updated during online
operation.

2.3 Partial Enumeration algorithms

In order to compute quickly a suboptimal input sequence when
the table does not include the optimal active set for the current
parameters (ū, x̃), several options can be considered. To this
end, a procedure based on violations of optimality conditions in
(5) is developed in (Alessio and Bemporad, 2008), and closed-
loop nominal stability is checked a posteriori. In (Pannocchia
et al., 2007) we used the previous shifted optimal sequence
in nominal conditions, thus guaranteeing nominal stability, or
the solution to a short-horizon MPC problem in the presence
of disturbances. Here, instead, we propose a slightly different
procedure that allows us to prove robust exponential stability
of the closed-loop under PE-MPC. The procedure requires
two points, the first one of which needs to be feasible and
its computation is discussed later in Algorithm 1. The second
point, instead, is the minimizer of (3a) subject to the equality
constraint (if present). More specifically, we define ũ∗ as the
solution to:

min
ũ

VN(x̃, ũ) s.t. Eũ + Fx̃ = 0 . (8)

As discussed in (Pannocchia et al., 2010), we have that
ũ∗ = Γ̂x̃, (9)

where the matrix Γ̂ can be computed offline. Next, we denote by
ũ+ = [(u∗(1) − ū)′, . . . , (u∗(N − 1) − ū)′, 0]′ the previous shifted
optimal sequence vector, where the inputs u(1)∗, . . . , u∗(N − 1)
were computed at the previous decision time, while ū is the
current input target. We now present the PE algorithm.
Algorithm 1. (General purpose PE). Require: Table with M entries,

each a tuple of the form (7); current parameters (ū, x̃); candidate sequence
ũ+, its cost V+

N if feasible (otherwise V+
N = ∞); maximum table size Mmax.

Copyright held by the International Federation of Automatic Control 8



1: {%Initialize} Set opt found=false.
2: while ( j ≤ M & opt found=false) do
3: Extract the j−th tuple from the table.
4: if ΨPz ≤ ψP then {%Entry is feasible}
5: if ΨDz ≤ ψD then {%Entry is optimal}
6: Compute optimal solution ũ from (5a). Put tuple j in first

position of the table. Set opt found=true.
7: else {%Entry is suboptimal}
8: Compute cost VN from (6).
9: if VN < V+

N then
10: Set ũ+ = Γu(da − Caū) + Γx x̃.
11: end if
12: end if
13: end if
14: end while
15: if opt found=false then {%No optimal entry found}
16: if V+

N = ∞ then {%ũ+ is infeasible}
17: Solve the LP:

min
q,s

1′(q + s) s.t. D(q − s) ≤ r1, E(q − s) = r2, q ≥ 0, s ≥ 0

with r1 = d−Cū−Dũ+, r2 = −Fx̃−Eũ+, 1 vector of ones. Redefine
ũ+ ← ũ+ + q − s, compute its cost V+

N .
18: end if
19: Evaluate ũ∗ from (9), and compute the largest t ∈ [0, 1] such that

D(ũ∗ − ũ+)t ≤ d − Cū − Dũ+. Set ũ = ũ+(1 − t) + tũ∗.
20: {%Table update, performed after returning ũ} Solve the QP (3), and

find the optimal tuple (7). If M = Mmax, delete the entry that was
optimal least recently (hence M ← M − 1). Insert the new entry in first
position of the table, set M ← M + 1.

21: end if
22: return (Sub)optimal sequence ũ, updated table.

Remark 5. The “feasibility recovery” step (Line 17) is required
only if the system is open-loop unstable and either the target
has changed from the previous decision time or a disturbance
occurred. In the nominal case without target change, such step
is not performed because ũ+ is feasible. Line 17 is the only
“expensive” computation in Algorithm 1 and is justified by
closed-loop stability reasons of an open-loop unstable system.
Also notice that Line 19 computes the largest feasible step from
ũ+ to ũ∗; if ũ∗ is feasible it follows that t = 1.

If the input constraints are: umin ≤ u ≤ umax, i.e. the constraint
matrix/vector are given by D = [I − I]′ , d = [u′max − u′min]′,
we propose a tailored enhanced strategy.

Algorithm 2. (Enhanced PE for box constraints). Same as Al-
gorithm 1, with Lines 15–19 replaced by the following.

1: Set (D̂, d̂) empty matrix/vector. Set feas found=false.
2: while feas found=false do
3: Solve the following (equality-constrained) QP:

min
ũ

VN (x̃, ũ) s.t. D̂ũ = d̂, Eũ + Fx̃ = 0 , (10)

Let (ũ∗, λ∗) be the associated minimizer and Lagrange multipliers for
D̂ũ = d̂, respectively.

4: if Dũ∗ ≤ d then {%Feasible solution found}
5: Define V∗N = VN (x̃, ũ∗). Set feas found=true.
6: if V∗N ≤ V+

N then
7: Set ũ = ũ∗.
8: else
9: Set ũ = ũ+.

10: end if
11: else {%Infeasible solution: add/remove constraints}
12: Define (D̂, d̂) as the rows of (D,d) for the violated inequalities plus

the rows of the previous (D̂, d̂) with nonnegative multipliers.
13: end if
14: end while

Remark 6. In Algorithm 2, when ũ∗ violates any inequality
such constraints are regarded as equalities, and ũ∗ is recom-
puted. When a given constraint (say an upper bound) is included

in (D̂, d̂), there is no need to check feasibility with respect to
the parallel (say lower bound) constraint. Also notice that (10)
reduces to solving a square linear system.

3. ROBUST STABILITY RESULTS

In (Grimm et al., 2004), Teel and coworkers showed that under
standard assumptions, the origin of a linear closed-loop system
ξ+ = Aξ + BκN(ξ), with κN(ξ) being a nominally stabilizing
MPC-generated control law, is robustly asymptotically stable.
This result relies on continuity of κN(ξ), which however holds
only when the optimal solution to the MPC problem is attained.
Unfortunately, the suboptimal MPC law is not continuous, even
for linear systems, and furthermore it is not a unique function of
the state ξ as it also depends on the initial guess input sequence.
These facts prevent us from establishing readily even nominal
stability. This point was discussed in (Scokaert et al., 1999) in
the context of nonlinear MPC to show that suboptimal nonlinear
MPC, under appropriate restrictions, is nominally asymptoti-
cally stabilizing. We note that the suboptimal input computed
by PE also depends on the entries contained in the working
table and hence the outcome for the same state and initial guess
input sequence may be different with different working tables.
Thus, in this paper we treat the suboptimal MPC law as a set-
valued map, and we derive from scratch novel results for robust
exponential stability of difference inclusions (Kellett and Teel,
2004) and show that such results apply to PE-MPC.

3.1 General stability results for difference inclusions

Let F(·) be a set-valued map from Ξ ⊆ Rn to subsets of Rn,
with 0 being the equilibrium point, i.e. F(0) = {0}; let φ(ξ, k)
be a solution at time k of the difference inclusion ξ+ ∈ F(ξ)
starting from an initial condition ξ(0) = ξ ∈ Ξ. Rawlings
and Mayne (2009, pp.196–203) provide an introduction to
MPC with difference inclusions. We also consider a perturbed
difference inclusion ξ+ ∈ F(ξ + e) + p, and we denote with
φep(ξ, k) a solution to the perturbed difference inclusion at time
k with initial condition ξ(0) = ξ for given state and additive
disturbance sequences ek = {e( j)}k−1

j=0, pk = {p( j)}k−1
j=0.

Definition 7. (Exponential Lyapunov function). A function V :
Rn → R≥0 is an exponential Lyapunov function in the set Ξ for
the difference inclusion ξ+ ∈ F(ξ) if there exist positive scalars
a, a1, a2, a3 such that ξ ∈ Ξ implies that:

a1|ξ|
a ≤ V(ξ) ≤ a2|ξ|

a, max
ξ+∈F(ξ)

V(ξ+) ≤ V(ξ) − a3|ξ|
a .

Definition 8. (Exponential Stability). The origin of the differ-
ence inclusion ξ+ = F(ξ) is said to be exponentially stable (ES)
on Ξ, 0 ∈ Ξ, if there exist positive scalars b and λ, λ < 1, such
that for any ξ ∈ Ξ all solutions φ(ξ, ·) satisfy:

φ(ξ, k) ∈ Ξ, |φ(ξ, k)| ≤ bλk |ξ| for all k ∈ I≥0 .

We have the following result.
Lemma 9. If the set Ξ is positively invariant for difference
inclusion ξ+ = F(ξ) and there exists an exponential Lyapunov
function V in Ξ, 0 ∈ Ξ, then the origin is ES on Ξ.

Proof. From the definition of V , we have that ξ ∈ Ξ implies:
max
ξ+∈F(ξ)

V(ξ+) ≤ V(ξ) − a3|ξ|
a ≤ V(ξ) − a3/a2V(ξ) ≤ γV(ξ) ,

with γ = 1 − a3/(2a2). Notice that a2 ≥ a3, hence 0 < γ < 1.
Since φ(ξ, k) ∈ Ξ for all k, we can write: |φ(ξ, k)|a ≤ V(φ(ξ,k))

a1
≤
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γkV(ξ)
a1
≤

γka2 |ξ|
a

a1
. From this, we obtain: |φ(ξ, k)| ≤ bλk |ξ| in which

λ = γ1/a and b =
(

a2
a1

)1/a
, and we observe that 0 < λ < 1. �

Definition 10. (Robust Exponential Stability). The origin of the
difference inclusion ξ+ = F(ξ) is said to be robustly expo-
nentially stable (RES) on Ξ, 0 ∈ Ξ, with respect to state and
additive disturbances if there exist positive scalars b and λ,
λ < 1, and for each ε > 0 there exists δ > 0 such that for
all ξ ∈ Ξ and all disturbance sequences ek,pk satisfying:

0 < max{‖ek‖, ‖pk‖} ≤ δ, φep(ξ, k) ∈ Ξ for all k ,

the perturbed solutions φep(ξ, ·) satisfy |φep(ξ, k)| ≤ bλk |ξ| + ε.
Lemma 11. If there exists a continuous exponential Lyapunov
function V on Ξ, then the origin of the difference inclusion
ξ+ ∈ F(ξ) is RES on Ξ w.r.t. state and additive disturbances.

Proof. From the proof of Lemma 9, we have that for all ξ ∈
Ξ \ 0 the following strict inequality holds: maxξ+∈F(ξ) V(ξ+) <
γV(ξ) for some γ < 1. We now require the following Lemma
proved in (Pannocchia et al., 2010).
Lemma 12. For every µ > 0, there exists δ > 0 such that, for all
(ξ, e, p) ∈ Ξ×δB×δB that satisfy ξ+e ∈ Ξ and F(ξ+e)+ p ⊆ Ξ,
the following condition holds: V(ξ+) ≤ max{γV(ξ), µ} for all
ξ+ ∈ F(ξ + e) + p.
Now, assume that φep(ξ, k) ∈ Ξ for all k ∈ I≥0. Then,
by induction we can write: a1|φep(ξ, k)|a ≤ V(φep(ξ, k)) ≤
max{γkV(ξ), µ} ≤ max{γka2|ξ|

a, µ}, from which we obtain:
|φep(ξ, k)| ≤ max{bλk |ξ|, (µ/a1)1/a} in which λ = γ1/a and
b = (a2/a1)1/a. Finally, we define ε = (µ/a1)1/a and write:
|φep(ξ, k)| ≤ max{bλk |ξ|, ε} ≤ bλk |ξ| + ε, which completes the
proof by noticing, as in the proof of Lemma 9, that λ < 1. �
Remark 13. The definition of RES and also that of Robust
Asymptotic Stability (RAS) in (Grimm et al., 2004) assume
that there exist “nice” and small perturbation sequences ek,pk
such that the perturbed solutions φep(ξ, ·) remain in Ξ at all
times. The next definition only assumes that the perturbations
are sufficiently small, while feasibility of φep(ξ, ·) is implied.
Definition 14. (Strong Robust Exponential Stability). The ori-
gin of the difference inclusion ξ+ ∈ F(ξ) is said to be strongly
robustly exponentially stable (SRES) on Ξ, 0 ∈ Ξ, with respect
to state and additive disturbances if there exist a compact set
C ⊆ Ξ and positive scalars b and λ, λ < 1, and for each ε > 0
there exists δ > 0 such that for all ek,pk satisfying:

max{‖ek‖, ‖pk‖} ≤ δ ,

for all ξ ∈ C the perturbed solutions φep(ξ, ·) satisfy:

φep(ξ, k) ∈ C for all k, |φep(ξ, k)| ≤ bλk |ξ| + ε .

Theorem 15. (Strong Robust Exponential Stability). If 0 ∈ int Ξ
and there exists a continuous exponential Lyapunov function V
on Ξ, then the origin of the difference inclusion ξ+ ∈ F(ξ) is
SRES on Ξ with respect to state and additive disturbances.

Proof. Let c be a positive scalar such that C = {ξ ∈ Rn :
V(ξ) ≤ c} ⊆ Ξ, i.e. C is a sublevel set contained in Ξ. Notice
that Ξ is compact and that 0 ∈ intC. From the proof of Lemma 9
and from Lemma 12 we have that for each µ > 0, there exists a
δ1 > 0 such that the following condition holds:

max
ξ+∈F(ξ+e)+p

V(ξ+) ≤ max{γV(ξ), µ} ≤ γV(ξ) + µ

for all (ξ, e, p) ∈ Ξ × δ1B × δ1B that satisfy ξ + e ∈ Ξ and
F(ξ+e)+ p ∈ Ξ, in which 0 < γ < 1. We also have that for each
ρ > 0, the condition maxξ+∈F(ξ+e)+p V(ξ+) < V(ξ) − ρ holds for

all (ξ, e, p) ∈ Ξ × δ1B × δ1B that also satisfy V(ξ) > r∗ =
µ+ρ
1−γ .

Define the sublevel set R = {ξ : V(ξ) ≤ r∗} and choose
µ and ρ sufficiently small that R ⊂ C (hence R ⊂ Ξ). We
now observe that for all ek,pk satisfying max{‖ek‖, ‖pk‖} ≤ δ1,
the following conditions hold: (i) if ξ ∈ R, it follows that
maxξ+∈F(ξ+e)+p V(ξ+) ≤ γr∗ + µ ≤ µ+γρ

1−γ ≤ r∗, and hence the
solutions φep(ξ, k) remain in R for all k ∈ I≥0, (ii) if ξ ∈ C \ R,
the solutions φep(ξ, k) remain in C for all k ∈ I≥0 and enter R
in finite time. This proves that there exists a compact set C ⊆ Ξ
such that if ξ ∈ C the solutions φep(ξ, k) remain in C at all
times. We can apply Lemma 11 to show that there exist positive
scalars b and λ, λ < 1, and for each ε > 0 there exists a δ,
0 < δ ≤ δ1 such |φep(ξ, k)| ≤ bλk |ξ| + ε for all ek,pk satisfying
max{‖ek‖, ‖pk‖} ≤ δ. �

3.2 Nominal and robust stability of Partial Enumeration MPC

We now prove the main (nominal and robust) stability results
of the closed-loop using Partial Enumeration MPC. In the
following results we denote by ũ = [ũ(0)′, ũ(1)′, . . . , ũ(N −1)′]′
the suboptimal control sequence returned by Algorithm 1 (or 2)
for a given initial state x̃(0) = x̃. Furthermore the target pair
(x̄, ū) is regarded as fixed, for the results in this section.
Lemma 16. The set X̃ is positively invariant for the closed-loop
system x̃+ = Ax̃ + Bũ(0).

Proof. Let ũ = (ũ(0), ũ(1), . . . , ũ(N − 1)) be the solution
computed by Algorithm 1 for the initial state x̃(0) = x̃, and
assume that x̃ ∈ X̃. Then, for x̃+ = Ax̃ + Bũ(0) we consider the
sequence ũ+ = (ũ(1), ũ(2), . . . , ũ(N − 1), 0), and observe that
it is feasible w.r.t. to Dũ ≤ bu − Dū and such that S ′u(AN x̃+ +
AN−1Bũ(0) + · · · + Bũ(N − 1)) = 0. Thus, x̃+ ∈ X̃. �

Lemma 17. There exists a constant c > 0 such that the
(sub)optimal solution ũ computed by Algorithm 1 for the initial
state x̃(0) = x̃ satisfies |ũ| ≤ c|x̃| for all x̃ ∈ X̃.

Proof. We first consider any x̃ ∈ Br ⊂ X̃ and show that the
result holds provided that r > 0 is sufficiently small. If the
optimal solution is found in the table, i.e. from Line 6 and when
x̃ is sufficiently small, the optimal solution ũ coincides with
the “unconstrained” minimizer ũ∗ = Γ̂x̃ because such point
gives the lowest cost and it is feasible w.r.t. to the constraint:
Dũ + Cū ≤ d because 0 < d − Cū. If instead a suboptimal
solution is computed from Line 19, since ũ∗ is feasible for x̃
sufficiently small we have that t = 1, i.e. the computed solution
is again the “unconstrained” minimizer. Therefore, there exist
positive constants c′ and r such that |ũ| ≤ c′|x̃| for all x̃ ∈ Br.
To complete the proof, we take account of the remaining case
in which |x̃| ≥ r. We define η = maxũ∈ŨN |ũ| (which is finite
because U is compact and so are Ũ and ŨN) and set c =
max(c′, η/r). We then have that ũ computed by Algorithm 1
satisfies the required inequality |ũ| ≤ c|x̃| because: (i) for |x̃| < r
we have |ũ| ≤ c′|x̃| ≤ c|x̃| as discussed above; (ii) for |x̃| ≥ r, we
have |ũ| ≤ η ≤ η(|x̃|/r) ≤ c|x̃|. �
Theorem 18. (ES under PE-MPC). The origin of the closed-
loop system x̃+ = Ax̃ + Bũ(0), is ES on X̃.

Proof. We denote with ũ+ the suboptimal solution computed
for the successor state x̃+, and we observe that: x̃+ = Ax̃ +
B[I 0]ũ and ũ+ ∈ G(x̃, ũ) in which G(·) is a set-valued map,
because ũ+ depends on: the state x̃+ = Ax̃ + B[I 0]ũ, the initial
guess obtained by shifting ũ but also on the current working
table. The following conditions hold. i) VN(x̃, ũ) ≥ a1|(x̃, ũ)|2
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for some a1 > 0 because VN(·) is quadratic and strictly convex
in its arguments, as discussed in (Pannocchia et al., 2010).
Similarly, there exists some a2 > 0 such that VN(x̃, ũ) ≤
a2|(x̃, ũ)|2. ii) There exists a c > 0 such that |ũ| ≤ c|x̃| for all
x̃ ∈ X̃, from Lemma 17. iii) VN(x̃+, ũ+)−VN(x̃, ũ) ≤ − 1

2 (x̃′Qx̃+

ũ(0)′Rũ(0)) ≤ −ã3|(x̃, ũ(0))|2 ≤ −ã3|x̃|2 ≤ −a3|(x̃, ũ)|2 for a3 =
1
2 ã3 min{1, 1/c2} for some ã3 > 0, where in the last inequality
we have used that |x̃| ≥ 1

c |ũ|. Thus, we have that VN(x̃, ũ) is
an exponential Lyapunov function for the extended closed-loop
system, expressed as a difference inclusion: (x̃+, ũ+) ∈ F(x̃, ũ).
We also have that X̃ × ŨN is forward invariant for the extended
closed-loop difference inclusion. Hence, there exist positive
scalars b̃ and λ, λ < 1, such that for all initial extended state
(x̃, ũ) ∈ X̃ × ŨN the following condition holds for all k ∈ I≥0:
|(x̃(k), ũ(k))| ≤ b̃λk |(x̃, ũ(0))|. If we denote φ(x̃, k) = x̃(k), we
can now write: |φ(x̃, k)| ≤ |(x̃(k), ũ(k))| ≤ b̃λk |(x̃, ũ(0))| ≤ bλk |x̃|,
with b = b̃(1 + c). �
Theorem 19. (SRES under PE-MPC). The origin of the closed-
loop system x̃+ = Ax̃+Bũ(0), is SRES on X̃with respect to state
and additive disturbances.

Proof. From the proof of Theorem 18, we have that VN(x̃, ũ)
is an exponential Lyapunov function and X̃ × ŨN is forward in-
variant for the nominal extended difference inclusion (x̃+, ũ+) ∈
F(x̃, ũ). Also VN(·) is trivially continuous (it is quadratic in x̃
and ũ), and hence we can apply the result of Lemma 11 to
obtain that the origin of the extended closed-loop difference
inclusion is SRES on X̃ × ŨN . Notice that we can express the
compact set appearing in the definition of SRES as C × ŨN

because ŨN is compact and the PE algorithm always computes
a feasible solution. If we denote with φep(x̃, k) = x̃(k), there
exist positive scalars b̃ and λ, λ < 1, and for each ε > 0,
there exists a δ > 0 such that for any (x̃, ũ(0)) ∈ C × ŨN , we
can write: |(φep(x̃, k), ũ(k))| ≤ b̃λk |(x̃, ũ(0))| + ε for all state and
additive disturbance sequences with norm less than δ. Hence for
any x̃ ∈ C, we can now write: |φep(x̃, k)| ≤ |(φep(x̃, k), ũ(k))| ≤
b̃λk |(x̃, ũ(0))| + ε ≤ bλk |x̃| + ε, with b = b̃(1 + c). �

4. APPLICATION TO AN UNSTABLE CSTR

4.1 Process description

We consider a Continuous Stirred Tank Reactor (CSTR), in
which the irreversible exothermic reaction A→ B takes place
in the liquid phase and heat is removed from a cooling jacket.
The system is described by (Pannocchia and Rawlings, 2003):

dh
dt = Fi−F

S
dcA
dt =

Fi(cAi−cA)
S h − k0 exp

(
− E

T cA

)
dT
dt =

Fi(Ti−T )
S h +

−∆Hrk0 exp
(
−

E
T

)
cA

ρCp
−

UP(T−Tc)
S ρCp

(11)

The controlled variables are the liquid level h, and the reactor
temperature T . The third (unmeasured) variable is the molar
concentration of A, denoted by cA. The manipulated variables
are the outlet flow rate F and the coolant temperature Tc. It is
assumed that the inlet flow rate Fi, temperature Ti and concen-
tration cAi act as unmeasured disturbances. The model param-
eters are described in (Pannocchia et al., 2010). In reference
conditions the two manipulated variables assume the following
values: F = F̄ = 0.10 m3/min, Tc = T̄c = 300 K, and con-
sequently the CSTR model admits three steady states. We con-
sider the problem of controlling the CSTR around the middle-
conversion unstable steady state, associated to the following

state values: h = h̄ = 0.664 m, cA = c̄A = 0.50 kmol/m3,
T = T̄ = 350 K.

4.2 Offset-free MPC implementation

In the controller we use the linear discrete-time model:

x+ =

[
1.00 −0.0730 −0.145

0 0.977 0.0388
0 0 1.16

]
x +

[
−0.00806 0.0995

0.165 −0.0424
−0.00995 −0.137

]
u

y =
[

0.0945 −0.299 0.162
1.12 0.0215 −0.0571

]
x

(12)

obtained via closed-loop identification using a sampling time of
3 sec. The (scaled) input and output vectors are:

u =

 F−F̄
S 1

Tc−T̄c
S 2

 , y =

 h−h̄
S 3

T−T̄
S 4


in which the scaling factors are: S 1 = 0.1 m3/min, S 2 = 5 K,
S 3 = 0.5 m, S 4 = 5 K. We consider: umax = −umin = [1 1]′.

Due to the inherent model error between the “true” nonlinear
plant (11) and the linear model (12), and since we do not
measure the states of (12), we implement an output feedback
offset-free MPC as described in (Pannocchia and Rawlings,
2003). A steady-state Kalman filter is used to compute the state
estimates of the following augmented system:

x̂+ = Ax̂ + Bu + Bdd̂ + wx

d̂+ = d̂ + wd

y = Cx̂ + Cdd̂ + wy

(13)

in which d̂ is the (fictitious) integrating disturbance state, and
wx, wd, wy are uncorrelated Gaussian zero mean random vari-
ables. The disturbance model matrices are: Bd = B, Cd = 0, and
the Kalman filter gain for (13) is computed assuming the noise
covariances: E(wxw′x) = C′C, E(wdw′d) = I, E(wyw′y) = 5·10−2I.
Let (x̂, d̂) be the augmented state estimates at a given time, and
let ȳ be desired (not necessarily reachable) controlled-variable
setpoint. We solve the constrained target calculation problem to
compute the reachable state and input targets:

min
x̄,ū

(Cxs + Cdd̂ − ȳ)′Q̄(Cxs + Cdd̂ − ȳ) + ū′R̄ū

s.t. x̄ = Ax̄ + Bū + Bdd̂, umin ≤ ū ≤ umax (14)

in which we use the following weighting matrices Q̄ = I,
R̄ = 10−3I. Finally, we define the deviation variables: x̃ = x −
x̄, ũ = u − ū and we readily recover the constrained control
problem formulation (2) by noticing that x̃+ = Ax̃ + Bũ. In the
control problem we use: N = 100, Q = C′C, R = 1.26I and we
notice that the terminal constraint matrix S u has two columns
because the system (12) has two unstable modes (a marginally
unstable mode associated to the tank level and purely unstable
mode associated to operating point).

4.3 Simulation results and comments

We present the simulation results obtained by controlling the
nonlinear system (11) with the MPC algorithm described in the
previous paragraph over a period of 6 hours (Ns = 7200 sample
times). Different controllers are considered: QP-MPC uses an
active set QP solver, PEM-MPC (with M = 1, 10, 25, 50 or
200) use the PE Algorithm 2 with a table (initially empty) of M
entries . The scaled level and temperature measurements (fed
to the Kalman filter) are assumed to be corrupted by uncorre-
lated random Gaussian noise with covariance 10−4I. Setpoint
changes occur randomly on each output, with a probability of
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Table 1. Performance and timing results: non-
linear plant with disturbances.

Controller J Aver. CPU time Max. CPU time Opt. Rate
QP-MPC 497.2 381 ms 27800 ms –
PE1-MPC 500.4 4.2 ms 138 ms 0.907
PE10-MPC 500.4 2.6 ms 139 ms 0.960
PE25-MPC 500.4 2.0 ms 140 ms 0.977
PE50-MPC 500.4 1.9 ms 148 ms 0.980
PE200-MPC 500.4 1.8 ms 152 ms 0.983

Table 2. Performance and timing results: linear
plant without disturbances.

Controller J Aver. CPU time Max. CPU time Opt. Rate
QP-MPC 274.5 118 ms 22800 ms –
PE1-MPC 273.4 1.5 ms 74.2 ms 0.979
PE10-MPC 273.4 1.5 ms 76.5 ms 0.980
PE25-MPC 273.4 1.5 ms 73.5 ms 0.981
PE50-MPC 273.4 1.2 ms 76.5 ms 0.991
PE200-MPC 273.4 1.2 ms 76.8 ms 0.991

0.005 (i.e., on average, one every 10 minutes), whereas random
disturbances on Fi, cAi and Ti occur with a probability of 0.05
(i.e., on average, one every minute). To compare the perfor-
mance of the different controllers we evaluate the closed-loop
cost over the simulation period: J = 1

2
∑Ns

k=0(y(k)−ys(k))′(y(k)−
ys(k)) + (u(k) − ū(k))′R(u(k) − ū(k)) in which ys(k) = Cx̄(k) +
Cdd̂(k) is the reachable output target at time k and ū(k) is the
corresponding input target. Performance results are reported in
Table 1, along with the average and maximum CPU time re-
quired to solve (2) (using Octave 3.2.3 on a 2.53 GHz MacBook
Pro), and with the optimality rate. We also report in Table 2
the corresponding results that one would obtain in the nominal
case, i.e. when the plant is exactly (12) and no disturbances
and/or noise are present.

From Tables 1 and 2 we immediately observe that the difference
in performance between using optimal (QP-based) and subop-
timal (PE-based) is negligible 2 . Furthermore all (optimal and
suboptimal) controllers show a large degree of robustness (see
Table 1). It is also interesting to observe that when the table
size increases, as expected, the optimality rate increases. The
differences in (average and maximum) CPU times between QP-
based and PE-based MPC are particularly noticeable (roughly
two orders of magnitude) 3 . The effect of the table size on
timing is a bit more complicated to analyze. While a larger
table slightly increases the maximum CPU time, it decreases
the average CPU time. To understand these results it must be
kept in mind that the table scanning time is only a fraction
of the overall CPU time, as a relevant portion of it is spent
to compute a suboptimal solution (as detailed in Algorithm 2)
when the optimal solution is not in the table. Thus, since the use
of a larger table implies a higher optimality rate, PE resorts less
frequently to the suboptimal computation steps. Nonetheless, J
is essentially identical for all PE-based MPC, and this occurs
because the sub-optimal steps described by Algorithm 2, which
are executed when the current table does not contain the optimal
tuple, often returns the optimal solution.

2 In the nominal case of Table 2, the fact that optimal (QP-based) MPC shows
worse performance than suboptimal (PE-based) MPC occurred “by accident”,
due to the use of finite horizon MPC and because a new set-point change may
occur before the variables have settled from the previous set-point change.
3 Octave uses a null-space active set QP solver. Such solvers usually have good
average performance but may experience large CPU time in some “bad” cases.

5. CONCLUSIONS

In this paper we revised the Partial Enumeration (PE) method
for solving more efficiently the constrained optimal control
problem that arises in linear MPC, especially for large-scale
systems (Pannocchia et al., 2007, 2009).

We proved here that such suboptimal MPC algorithm is nomi-
nally exponentially stabilizing, and most importantly it is expo-
nentially stabilizing in the presence of arbitrary (but sufficiently
small) perturbations. Such novel results are based on consider-
ing the (non-unique and discontinuous) suboptimal control law
u = κN(x) as a set-valued map. Consequently, the closed-loop
system is described by a difference inclusion, and we proved in
this paper nominal and robust exponential stability for arbitrary
perturbations under two main assumptions: the origin of the
closed-loop system is in the interior of its region of attraction
and a continuous Lyapunov function exists for the difference
inclusion. Then, we showed that the closed-loop system (ap-
propriately augmented) obtained using the proposed PE-MPC
algorithm satisfies such assumptions.

We presented an application to the control of a nonlinear un-
stable CSTR in which the designed suboptimal (PE-based)
controllers successfully faced the perturbations inherently gen-
erated by the nonlinear process vs. linear model mismatch,
by process parameter disturbances and by measurement noise.
Despite the presence of such upsetting disturbances closed-
loop stability is maintained and the performance difference with
respect to optimal (QP-based) MPC is negligible, while the
CPU times are two orders of magnitude lower.
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