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Abstract: Multi-batch bioprocesses data, unlike the data from other industries, are highly
correlated due to the operation characteristics of the industry. In this work, pairwise Fisher
discriminant analysis (FDA) is successfully utilized to reveal the similarity between two batches.
In order to handle the mixture pattern for the data projected into the reduced feature subspace
represented by the first several generalized eigenvectors, the finite Gaussian mixture model is
adopted here to calculate the confidence region of each mixture. There are several challenges
facing application engineers when estimate finite mixture models (FMMs), such as initialization
of the expectation-maximization (EM) algorithm and determination of number of mixtures. In
this work, an initialization method based on the uniform prior distribution assumption and a new
method to determine the number of components of FMMs based on estimated density histogram
are proposed. The utility of the proposed method has been demonstrated in simulation studies.
Combined with the pairwise FDA, the method has been successfully applied to a large scale
multi-batch bioprocess data set.

Keywords: finite mixture models, Gaussian mixtures, Fisher discriminant analysis, histogram
density

1. INTRODUCTION

One features of the day-to-day operation in the biophar-
maceutical industry is that the cell culture goes through
several passages before being feeded into the production
bioreactor. Furthermore, at each passage, the cell is culti-
vated under batch or fed batch operation mode undergoing
different or same operation durations. The main purpose
of this work is to apply multivariate statistical analysis
methods to multi-batch bioprocess data, at present the
work is focusing on batch processes operating at the same
scale with different bioreactors. Facing with the large scale
industrial data set at different operational scales and from
different bioreactors, the pre-analysis of the data is an
important step to understand the statistical correlation of
the process. Fisher discriminant analysis (FDA), as one of
pattern recognition methods, has been applied to the pro-
cess data analysis (Chiang et al., 2001). When apply FDA
to industrial data sets, after projecting the benchmark
data into the reduced feature subspace some data sets
shows multi-mixture characteristics which may correspond
to the multiple operation regions. The objective of this
paper is to address the multi-mixture pattern using finite
mixture models (FMMs) (McLachlan and Peel, 2000). To
deal with the algorithmic difficulty coming with FMMs,
in this work, we address the initialization of the algorithm
and the determination of number of unknown components

with proposed approaches. Furthermore, the similarity be-
tween comparative and benchmark batches in the featured
space is defined. As shown in the following sections, the
proposed approach works well in simulation studies and is
successfully applied to a large scale industrial multi-batch
bioprocesses data set.

The rest of the paper is organized as follows: In section
2, the pairwise FDA is introduced as one of batch data
pre-analysis methods. Section 3 introduces finite mixture
models along with an improved expectation-maximization
(EM) algorithm. Methods for pre-analysis of industrial
data in the reduced featured subspace is introduced in
Section 4. The simulation studies of the proposed FMMs
algorithm are shown in Section 5. The utility of the method
is demonstrated with a large scale multi-batch bioprocess
in section 6. Section 7 ends the paper by conclusions.

2. FISHER DISCRIMINANT ANALYSIS METHOD

In multi-batch bioprocesses operation, after the collection
of operation data, the first challenge faced the applica-
tion engineer is to pre-analyze the data to explore the
statistical structure of different batches, i.e., the batch-
to-batch correlation information, before utilizing multi-
way data analysis methods such as multi-way principle
component analysis and multi-way partial least squares
(Nomikos and MacGregor, 1995; Kourti and MacGregor,

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT1.2

Copyright held by the International Federation of Automatic Control 19



1995). Discriminant analysis, as the method to explore em-
bedded patterns from different data sets, can be applied to
the data pre-analysis applications. In this research, aimed
at exploring the batch-to-batch correlation, pairwise FDA
is introduced. The objective of the pairwise discriminant
analysis for the multi-batch processes can be stated as
follows,

Given two data sets, X1 ∈ RN1×d and X2 ∈ RN2×d,
such that N1 and N2 stand for number of samples and d
stands for number of variable, the objective of discriminant
analysis is to obtain the matrix, A ∈ Rd×k, such that k ≤ d
and the projections of two data sets onto to the reduced
feature space represented by the first k column vectors
of A (loading directions of pair-wise FDA) maximize the
difference between these two data sets.

Fisher discriminant analysis is a linear discriminant analy-
sis methods, the pairwise FDA is to find optimal directions
that maximally separate the two data sets. Mathemati-
cally, it can be stated as follows (Anderson, 1984),

SbA = SwAΛ (1)

such that

Sb =

2
∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T (2)

Sw =

2
∑

i=1

ni
∑

j=1

(xij − x̄i)(xij − x̄i)
T (3)

are the sampled between groups covariance matrix, Sb,
and the sampled within groups covariance matrix Sw,
respectively. x̄ is the overall mean of two data sets,
x̄i is the mean vector of the ith data set, and xij is
the jth sample of the ith variable. Equation (1) can be
regarded as the symmetric general eigenvalue problem
see (Golub and Loan, 1996) with A ∈ Rd×k(k ≤ d)
as the generalized eigenvectors and the diagonal matrix
Λ ∈ Rk×k as the generalized eigenvalues. For each batch
data, the projection to the first k FDA directions can be
calculated as follows,

T FDA
1 = X1A (4)

T FDA
2 = X2A (5)

where X1 and X2 are benchmark data and comparative
data, respectively. T FDA

1 and T FDA
2 are FDA score ma-

trices, notice that the latter one can be calculated on-line.
Compare to PCA, the FDA does not need to scale the data
since it utilizes the with-in and between group sampled
covariance matrices as indicated in equation (1).

3. FINITE MIXTURE MODELS

Finite mixture models (FMMs), as one of parametric prob-
abilistic models, has been applied to processes modelling
and monitoring recently (Ou and Martin, 2008; Yu and
Qin, 2008). It assumes that process data is generated from
a finite mixture model as follows,

p(x|θ) = ΣK
i=1αipi(x|θi) (6)

such that x ∈ Rd is a random variable generated from
p(x|θ), pi(x|θi) is the ith mixture’s probability function
with parameter θi, αi is the mixing probabilities that

satisfy
∑K

i=1 αi = 1, K is the number of mixtures, θ is the
parameters of FMMs composed of ai, θi for i = 1, · · · , K.
The FMMs has the potential to handle processes under-
going multiple operation regions, which can be regarded
as the tradeoff between linear and nonlinear modelling
approaches. Due to the complex correlation and the curse
of dimensions of the industrial data, the direct application
of FMMs to process monitoring and modelling is diffi-
cult. However, when combined with dimension reduction
method such as FDA or principle component analysis
(PCA), it can catch the multi-mode nature of the process
in the reduced subspace. In this work, the FMMs are
adopted to handle that data with mixture characteristics
in the reduced feature subspace represented by the first
several loading directions of FDA or PCA.

There are several challenges facing application engineers
when use FMMs (McLachlan and Peel, 2000; Figueiredo
and Jain, 2002). Firstly, as the FMMs are traditionally ob-
tained by the expectation-maximization (EM) algorithm
which is an iterative algorithm highly depended on the
initial value. Furthermore, the choose of number of mix-
tures for data with unknown number of mixtures is still an
unsolved problem. Finally, the EM algorithm occasionally
converges to the boundary of the parameter space, i.e.,
ends up with one or several αi = 0 along with almost
singular covariance matrices. In this work, several methods
are introduced as tentative approaches to resolve these
problems.

3.1 Expectation-maximization algorithm

Given N samples of random variable, x, denoted as X ∈
RN×d, the likelihood function can be defined as the joint
density function of X .

L(X |θ) = p(x1, x2, · · · , xN |θ) (7)

where xi is the ith sample of the X . If the samples are
mutually independent, the log likelihood function can be
regarded as the summation of the log finite mixture density
as follows,

logL(X |θ) =

N
∑

i=1

log

K
∑

j=1

αjpj(x
i|θj) (8)

The objective of EM algorithm is to estimate, θ, and to
specify number of components K, given the data matrix
X and the initial guess of the FMMs’ parameters. If
one assumes that each sample, xi, generated from only
one mixture density, pm(·|θm), an auxiliary binary vector
zi ∈ RK×1, can be introduced such that if xi is generated
from mth mixture, zi

m = 1, otherwise zi
m = 0. After

introducing zi into equation (8), the log likelihood can
be expressed as follows,

logL(X, Z|θ) =

N
∑

i=1

K
∑

j=1

zi
jlog[αjpj(x

i|θj)] (9)

Based on this formulation, the EM algorithm is an iterative
computation of maximum-likelihood estimates when the
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observations can be viewed as incomplete data (Dempster
et al., 1977).

On the other hand, instead of assuming that one sample
comes from only one mixture density, given the estimated

parameters of FMMs, θ̂ at the tth iteration, one can cal-
culate the posteriori probability of ith sample generating
from the mth mixture, wi

m, based on Bayes law as follows,

wi
m = p(zi

m = 1|xi, θ̂(t)) (10)

=
p(xi, zi

m = 1, θ̂(t))

p(xi, θ̂(t))
(11)

=
αmpm[xi|θ̂m(t)]

∑K
j αjpj[xi|θ̂j(t)]

(12)

After introducing wi
m into equation (8), the log likelihood

can be obtained as follows,

logL(X, W |θ̂(t)) =

K
∑

j=1

N
∑

i=1

wi
j log[αjpj(x

i|θ̂j(t))] (13)

−
K

∑

j=1

N
∑

i=1

wi
j logwi

j (14)

The calculation of posteriori probability, equation (12), is
the expectation step of the algorithm, while the estimation
of α and θ at the (t+1)th iteration is the maximization step
of the EM algorithm, which can be expressed as follows,

αm(t + 1) =

∑N
i=1 wi

m

N
for m = 1, · · · , K. (15)

θ̂(t + 1) = argmax
θ

[logL(X, W |θ̂(t))] (16)

where equation (16) is the maximum-likelihood (ML)
estimator of θ. When the mth mixture is the Gaussian
probability density distribution as follows,

p(x|θm) =
(2π)

d

2

√

|Σm|
exp{−

1

2
(x − µm)T Σ−1

m (x − µm)},(17)

the ML estimator of θ at the (t + 1)th iteration can be
calculated as follows (Harville, 1997),

µ̂m(t + 1) = (

N
∑

i=1

wi
m)−1

N
∑

i=1

xiwi
m

Σ̂m(t + 1) =

∑N
i=1 (xi − µ̂m(t + 1))(xi − µ̂m(t + 1))

T
wi

m

(
∑N

i=1 wi
m)−1

for m = 1, · · · , k.

3.2 Initialization of EM algorithm

As an iterative algorithm, the EM method has the ini-
tialization problem, i.e., it could end up the local opti-
mal for the inappropriate initial guess of the parameters.
Figueiredo and Jain (Figueiredo and Jain, 2002) discuss
the issue and propose the method for initial values for the
covariance matrices of FMMs with Gaussian mixtures. In
this work, we adopt their approach for the initialization

of covariance matrices while use histogram to choose the
initial values of the mean vectors. For the Finite Gaussian
mixture models, the approach is very intuitive: the initial
values of mean vectors should be in the neighborhood
of high histogram density region of the data if the data
have mixture characteristics. Given N samples of random
variable, x, denoted as X ∈ RN×d and the hyper-rectangle
Bk of the size h1×h2×· · ·×hd in Rd where hk is calculated
with equation (24), the histogram probability density can
be defined as

p̂(x) =
νk

Nh1h2 · · ·hd
for x ∈ Bk where

∑

k

νk = N

for a generic hyper-rectangular bin, Bk, contains νk points.

The initial values of the mean vectors of the EM algorithm
are chosen as center points of the bins with higher than
uniform distribution histograms as follows,

p̂(x) ≥
N

Total number of bins
(18)

The initial values of αm are calculated as

αm =
1

Number of initial mixtures
. (19)

3.3 Determination of Number of Mixtures

Another challenge facing the engineer when apply FMMs
is how to determine the number of mixtures. In recent
years, several criterions have bee proposed which in-
clude minimum massage length (MMLC) (Figueiredo and
Jain, 2002), informational complexity (ICOMP) (Bozdo-
gan, 1993), normalized entropy (NEC) (Biernacki et al.,
1999), Laplace-empirical (LEC) criterions (McLachlan and
Peel, 2000) along with the traditional Bayesian inference
(Schwart, 1978) (BIC) and Akaike’s information (Akaike,
1974) (AIC) criterions. The traditional AIC criterion can
be formulated as follows,

AIC(θ̂) = logL(X, W |θ̂) + 2 × km (20)

where km is the number of independently adjustable
parameters of FMMs, i.e., in Gaussian finite mixture case
is

km = K[
d(d + 3)

2
+ 1] − 1 (21)

where K is the number of mixtures, d is the dimension of
random variable, x.

In this work, we propose a new criterion based on the
difference between the histogram of the over-fitted finite
Gaussian mixture models and the histogram of the data.
The histogram difference criterion (HDC) assumes that
the finite Gaussian mixture with unknown number of
component can be approximated with over-fitting of the
data (Miloslavsky and van der Laan, 1978), which is quite
intuitive given that the over-fitted model approximates the
probability density function well enough. Mathematically,
the HDC can be formulated as follows,

HDC(θ̂) = ‖vec(MHDC)‖ (22)

where vec(·) is the vectorization operator, ‖ · ‖ is the two-
norms operator, MHDC is a multi-dimension array defined
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as the difference of histogram density at pre-defined bins,
Bk, as

MHDC =
1

Nc
p̂2(x) − p̂1(x) (23)

where p̂1(x) is the histogram calculated based on data,
p̂2(x) is the histogram calculated based on Nc times Monte
Carlo simulated data generated from estimated FMMs
with different number of components. As will show in the
simulation studies, the HDC performs better than AIC
when data have complicate mixture patterns.

3.4 Proposed algorithm to estimate FMMs

At the first step, the histogram of the data in the reduced
feature space is generated. The size of bins is calculated
based on the multivariate normal distribution with diago-
nal covariation matrix as follows (Scott, 1992),

hk = 3.5σ̂kN1/(2+d) for k = 1, · · · , d (24)

where σ̂k is the estimated standard deviation of kth vari-
able. The initial mean vectors are chosen based on Eq. 18,
the initial mixing probabilities of FMMs are calculated
based on Equation (19). Assume initial diagonal covari-
ance matrix, the kth diagonal term is calculated as follows
(Figueiredo and Jain, 2002),

σ̂k =
1

10d
trace(Sx) for k = 1, · · · , d (25)

where Sx is the sampled covariance matrix of the data.
After obtaining the initial guess of FMMs parameters,
the EM algorithm is adopted to iteratively estimated the
parameters until they converge. Based on the estimation
of the parameters of FMMs with km components and the
definition of local density for each mixtures at certain
confidence level as,

ρ̂k =
Number of samples inside the kth ellipse

Area of the kth ellipse
(26)

for k = 1, · · · , m. one can delete one mixture at one
time. After taking account of local density of the kth

mixture through a appropriate parameter, β, one avoids
deleting mixtures with high local density and small mixing
probabilities (i.e. one deletes the mixture with the minimal
αm as defined in equation (15) such that ρ̂k > β ) as shown
in the following section.

After obtaining the estimated parameters with the number
of mixtures from kmax to kmin, one can plot the HDC
for m = kmin, · · · , kmax and find the appropriate order of
FMMs when HDC starts to increase.

4. PRE-ANALYSIS PATTERNS IN THE FEATURED
SUBSPACE

Combined with PCA, FMMs have been successfully uti-
lized to monitor the industrial processes recently (Choi
et al., 2004; Thissen et al., 2005). It has been shown
that when benchmark data representing normal operation
condition (NOC) have mixture characteristics in the first
two PCs subspace, the confidence density contour obtained
by FMMs is more accurate. In this work, as shown in

the industrial case study (Lin, 2008), when apply FDA to
multi-batch bioprocess data some batches show mixture
patterns in the first several discriminant directions. The
pre-analysis procedure in this paper is as follows: Firstly,
FDA is applied to discriminate the difference between the
benchmark batch and the comparative batch. Data from
both batches are projected onto the first several loading
directions of FDA. Secondly, the pattern projected onto
one pair of FDA directions, for example, the first two FDA
directions, is captured by FMMs. The similarity between
the comparative and benchmark data is defined as follows,

Sbc =
N1

Ntotal
(27)

where N1 is the number of samples in comparative batch
falls into at least one confidence contour defined by the
FMMs model estimated with the benchmark batch, and
Ntotal is the total number of samples in comparative
batch. If certain sample in the comparative batch falls
into at least one Gaussian mixture contour of the FMMs
estimated from the benchmark data, one can conclude
that the sample falls into the confidence density contour
of the benchmark batch. Follows the same procedure,
one can obtain the similarity of comparative batch using
equation (27). For multi-batch bioprocess data, we adopt
the pairwise FDA and calculate the similarity for each pair
of batches as the measurement of statistical correlation of
two batches (Lin, 2008).

5. SIMULATION CASES STUDY

The simulation example is a four-component finite Gaus-
sian mixture model (Figueiredo and Jain, 2002) with
different mixing probabilities as α1 = α2 = α3 = 0.3
and α4 = 0.1, respectively. The mean vectors of it are
µ1 = µ2 = [−4,−4]T , µ3 = [2, 2]T and µ3 = [−1,−6]T ,
while the covariance matrices are:

Σ1 =

[

1 0.5
0.5 1

]

; Σ2 =

[

6 −2
−2 6

]

Σ3 =

[

2 −1
−1 2

]

; Σ4 =

[

0.125 0
0 0.125

]

respectively. As we can see in Fig. 1 that for this simulation
example there are mixtures with the same mean but
different covariance matrices further more there is one
mixture inside another mixture. 900 samples are generated
from this example, the hesitation results are shown in
Fig. 1. The AIC and HDC indices are shown in Fig. 2
and Fig. 3, respectively. The results shown that the EM
algorithm sequentially deletes one mixture at one time.
HDC correctly indicates four component FMMs, while
AIC indicates three component FMMs which is a under-
fitting model of the example. The result demonstrates
the capability of HDC under the complicate mixture
distribution situation and indicates that it may be more
suitable for real data sets.

6. INDUSTRIAL CASE STUDY

In this section, two batches of fermentation data from two
different bioreactors are analyzed. There are ten measure-
ments that include desolved oxygen tension (DOT), pH,
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Fig. 1. The result of the estimation of the four-component
Gaussian mixture model with the EM algorithm (β =
1.5).
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Fig. 2. The Akaike information criterion indices for the
four-component Gaussian mixture model with differ-
ent numbers of components.
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Fig. 3. The difference histogram criterion indices for the
four-component Gaussian mixture model with differ-
ent numbers of components.

temperature, air flow rate, etc.. The data are not shown
here for proprietary reason. The data are analyze with
proposed method for demonstration purpose. These two
batches are not scaled before the application of pair-wise
FDA. The data are projected into the feature subspace de-
fined by the first two FDA directions before the estimation
of FMMs.

The AIC and HDC indices are shown in Fig. 5 and Fig.
6, respectively. While AIC indicates three mixtures, HDC

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

x 10
−3

−0.155

−0.154

−0.153

−0.152

−0.151

−0.15

−0.149

−0.148

−0.147

FDA 1

F
D

A
 2

3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
−3

−0.156

−0.155

−0.154

−0.153

−0.152

−0.151

−0.15

−0.149

−0.148

−0.147

FDA 1

F
D

A
 2

Fig. 4. The FMMs estimation result for two batches data
come from different bioreactors (β = 2).

indicates a 7-component FMM which is adopted here. The
projected data in the reduced feature subspace are shown
in Fig. 4, the figure on the left hand side is the estimated
FMMs with 95% confidence contour, while the figure on
the right hand side shows the data from the comparative
batch in the featured subspace defined by the benchmark
data. As one can see, the comparative batch partly falls
into the confidence region of the benchmark data with
Sbc = 0.12.
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Fig. 5. The Akaike information criterion indices for two
fermentation batches from different bioreactors case
at different numbers of components of FMMs.

7. CONCLUSIONS

In this work, the pair-wised Fisher discriminant analysis
is utilized to pre-analyze the multi-batch data from the
pharmaceutical industry. Patterns in the reduced feature
subspace defined by the first several FDA directions are
captured by finite Gaussian mixture models. The high
density regions of the data are chosen as the initial mean
vectors of the FMMs. The histogram density difference of
the sampled data and of estimated FMMs is adopted here
as a criterion to choose the number of components of the
FMMs. The simulation and industrial studies demonstrate
the utility of the proposed method for estimating FMMs,
the histogram difference criterion (HDC) shows advantage
over Akaike information criterion (AIC).
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Fig. 6. The difference histogram criterion indices for two
fermentation batches from different bioreactors case
at different numbers of components of FMMs.
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