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Abstract: A new data-driven methodology for optimizing time-variant profiles in batch
processes without the need for a first-principles model is applied to a batch cooling crystallization
to find the optimum cooling trajectory that minimizes the total amount of nucleation during the
crystallization. The method, Design of Dynamic Experiments (Georgakis, 2009), is an extension
of the classical Design of Experiments approach and can be applied to any process where time-
variant profiles, typically batch and semi-batch operations, are important for optimizing key
aspects of the process. As a data-driven approach with no first-principles model required for
process optimization, this methodology may be particularly useful for complex processes for
which no knowledge-driven model exists.
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1. INTRODUCTION

Batch crystallization is an important industrial unit oper-
ation, especially in the pharmaceutical and specialty/fine
chemical industries where high-value products are pro-
duced in small batches. Therefore, it is important to opti-
mize the operating conditions of the crystallization process
in order to produce crystals with the desired properties.
Optimization also reduces problems with downstream op-
erations, such as filtration, and reduces lot-to-lot vari-
ability. Optimization of batch crystallization process can
be a difficult task, especially for crystallization systems
that exhibit polymorphs, or crystals with geometries that
cannot be easily reduced to one dimension, since a more
complicated model is required to describe the system.

If a knowledge-driven (first-principles) model for a crystal-
lization process exists, then the process can be optimized,
otherwise, a process model must be derived experimen-
tally before optimization can occur. It should be noted
that a crystallization model is not a strict first-principles
model since nucleation and growth kinetics are typically
explained by an empirical relationship whose parameters
must be estimated from experiments. Batch crystallization
processes can also be optimized using a data-driven model
generated via the classical Design of Experiments (DoE)
approach. The major drawback of the DoE approach is the
inability to systematically evaluate dynamic profiles (i.e.,
cooling profile, flow profile, or supersaturation profile).
Dynamic profiles are an important aspect of batch pro-
cess optimization as optimal control trajectories typically
change with time during the batch.
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Temperature is an inexpensive variable to measure and
easy to control, therefore, cooling profile optimization for
batch crystallizers is a well-studied area. However, in order
to determine the optimum cooling trajectory, a knowledge-
driven model of the process is required. Choong and
Smith (2004) optimized temperature profiles for the batch
cooling crystallization of citric acid in water. Worlitschek
and Mazzotti (2004) optimized the temperature profile for
the batch cooling crystallization of paracetamol in ethanol
with the final particle size distribution defined as the
control objective. They also verified their simulated results
experimentally. Hu et al. (2005) and Sarkar et al. (2006)
optimized the temperature profile for a simulated, seeded
batch cooling crystallization of potassium sulfate in water.

In each of these papers, relatively simple crystallization
models are used in the optimization algorithm. Each model
consists of a one-dimensional population balance equation
(PBE) coupled with a mass balance equation. Similar
assumptions are made in each model: 1) size-independent
growth; 2) no crystal agglomeration or breakage; 3) a
nucleation rate equal to the sum of the primary and
secondary nucleation rates, and; 4) a perfectly mixed
crystallizer with crystals homogeneously distributed and
no crystal accumulation on the bottom of the crystallizer.

Ma et al. (2002) optimized the cooling profile for a potas-
sium dihydrogen phosphate (KDP) crystallization in wa-
ter. KDP is a needle-shaped crystal that is described by the
crystal length and width. A two-dimensional PBE model
was required to perform the optimization. This model
was slightly more complicated than the one-dimensional
models discussed earlier since an additional growth rate
term was required for the second dimension, but the model
still neglects crystal breakage, which was shown by Sato
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et al. (2008) to be an important consideration in a KDP
crystallization model for crystals with high aspect ratios.

Batch antisolvent crystallizations are even more difficult
to model and, thus, optimize. Woo et al. (2006) performed
an antisolvent crystallization optimization which required
the use of a computational fluid dynamics (CFD) model
to properly simulate the solvent-antisolvent mixing that
occurred. Nowee et al. (2008) and Trifkovic et al. (2008)
mentioned the need for detailed solute-solvent-antisolvent
equilibrium data and kinetic parameters for the growth
and nucleation mechanisms in the solvent-antisolvent sys-
tem. This data is usually not readily available. An addi-
tional layer of complexity is introduced to these models
when the system includes agglomeration and breakage
and/or crystal polymorphs.

In this paper, we look at optimizing the cooling profile
for a batch crystallization using no prior knowledge of
the crystallization process. In the literature cited above,
an optimization of this nature typically requires a-priori
knowledge of the crystallization system and a detailed
first-principles model. Model formulation can be difficult,
especially when dealing with systems that have more than
one internal coordinate to track in the PBE and where
agglomeration and breakage occur or if the crystallization
system has one or more polymorphic forms.

Additionally, we apply a new methodology, Design of
Dynamic Experiments (DoDE), to a batch crystallization
model and show how a time-variant cooling profile can
be optimized without a knowledge-driven model. It should
be mentioned that the DoDE methodology is not meant to
replace first-principle models, rather, it is meant to provide
a means of optimizing dynamic profiles for batch processes
lacking a detailed, knowledge-driven model.

2. DESIGN OF DYNAMIC EXPERIMENTS

The Design of Dynamic Experiments methodology was
introduced recently by Georgakis (2009). The method is an
extension of the classical Design of Experiments approach.
The classical DoE approach allows for experiments to
be designed based on the number of factors (variables)
being considered and the number of levels (values) each
factor can assume. The factors in a DoE design are
static, meaning the factor can only describe one value
over the course of an experiment. The static nature of
the classical DoE method is a major limitation when
designing experiments for systems where a dynamic profile
is preferred over a static value for one or more of the factors
under study.

Design of Dynamic Experiments allows for the systematic
evaluation of time-varying profiles in the experimental
design through the use of dynamic factors. These dynamic
factors, along with any static factors considered in the
experiments, can be used to create a response surface
model (RSM), which can then be optimized. The optimum
values of the dynamic factors then provide the optimal
dynamic profile(s) for the system being studied. The
key strength of the DoDE methodology is its ability to
determine the optimum dynamic profile(s) for a system
without a detailed, knowledge-driven model.
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Fig. 1. Examples of possible cooling rates using the DoE
and DoDE methodologies. DoE can only evaluate
constant cooling rates whereas DoDE can evaluate
any constant or non-constant cooling rate profile.

As an example, consider the cooling rate for a batch
crystallization. In the classical DoE approach, only con-
stant (static) cooling rates can be considered. The DoDE
approach improves upon the DoE methodology by intro-
ducing dynamic factors that allow for non-constant cooling
rates to be incorporated into the experimental design. (See
Fig. 1 for a comparison of cooling rate profiles achievable
using DoE and DoDE.) The constant cooling rates from
the classical DoE approach give rise to linear cooling
profiles. The non-constant cooling rates from the DoDE
approach yield nonlinear cooling profiles. These nonlin-
ear profiles can correspond to controlled cooling (profiles
concave down) and natural cooling (profiles concave up)
(Davey and Garside, 2000) and are similar to the opti-
mum cooling profiles obtained from the optimization of a
knowledge-driven crystallization model (Worlitschek and
Mazzotti, 2004; Hu et al., 2005; Sarkar et al., 2006).

Non-constant cooling rates are introduced into the DoDE
experimental design via a parameterized set of orthogonal
polynomials; in this case, the shifted Legendre polyno-
mials. The parameters in the polynomial represent the
dynamic factors. The values of the dynamic factors control
the shape of the polynomial curve, which represents the
cooling rate profile.

The cooling rate profile in this study was constructed
from the first three shifted Legendre polynomials. These
polynomials were selected as they represent a simple set
of orthogonal functions. Two dynamic factors, a1 and a2,
are multiplied in front of the second and third polynomial
components, respectively, to give a cooling rate described
by (1).

dT

dτ
=

Tf − T0

tc
[1 + a1(1− 2τ) + a2(1− 6τ + 6τ2)] (1)

Where T is temperature (◦C), T0 and Tf are temperatures
at the beginning and end of the batch, respectively, tc is
cooling time (hr), and τ is non-dimensional time (t/tc).

The design space for the dynamic factors was determined
by placing constraints on the cooling rate. For the set of
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experiments used in this paper the following constraints
were used:

(1) The temperature profile must be monotonically de-
creasing throughout the crystallization.

dT

dτ
≤ 0 (2)

(2) The cooling rate at the beginning and end of the crys-
tallization cannot be greater than the linear cooling
rate.

dT (0)
dτ

≥−1 (3)

dT (1)
dτ

≥−1 (4)

It should be noted that in an industrial setting the cooling
rate constraints would be set by the capacity of the cooling
system. We chose our profiles to start within the linear and
controlled cooling regime as these profiles tend to minimize
the amount of nucleation in a seeded batch crystallizer due
to the lower supersaturation values generated by the slower
cooling rates at the beginning of the crystallization (Davey
and Garside, 2000).

By placing constraints (2)-(4) on the cooling rate (1), the
following inequalities are found in terms of the dynamic
factors.

a1 − a2 ≥ 0 (5)
−a1 − a2 ≥ 0 (6)
−a1 + a2 ≥−1 (7)

a1 + a2 ≥−1 (8)

The inequalities are plotted as lines in Fig. 2 and the inter-
section of the equalities related to these four lines bound
the design space of the dynamic factors that produce the
desired temperature profiles. The solid circles in Fig. 2
represent the nine experimental points for a two-factor
(a1, a2) three-level full factorial design. Fig. 3 depicts five
of the nine temperature trajectories. Note that all nine
temperature trajectories are bound from above and below
by the (−0.5,−0.5) and (0.5,−0.5) profiles, respectively.

We now apply the DoDE technique to a batch crystalliza-
tion simulation and show how the method can be used to
optimize a dynamic cooling profile without the use of a
first-principles model.

3. CRYSTALLIZATION SIMULATION

The experimental results in this paper were simulated us-
ing a paracetamol crystallization model reported by Wor-
litschek and Mazzotti (2004). The crystallization is simu-
lated in a seeded batch crystallizer. The model assumes
that only secondary nucleation and size-independent
growth occur within the crystallizer. A one-dimensional,
homogeneous PBE is used to model the system and is
solved using the Method of Moments (MOM) technique.
Each experiment simulated a 15-hour seeded, paracetamol
batch crystallization with cooling times that ranged from
12-14 hours. In order to add variability to the data, a 2%
normally-distributed random error (multiplicative) was
added to the zeroth moment at the end of each simulated
experiment.
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Fig. 2. Design space for the dynamic factors, a1 and
a2, shown as the intersection of the four inequalities
given by (5)-(8). Closed circles represent experimental
points.
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Fig. 3. Temperature profiles for different values of (a1,a2)
inside the design space. All profiles meet the con-
straints set by (2)-(4). The linear cooling profile (con-
stant cooling rate) is marked with open circles for
reference.

4. RESULTS

We now illustrate how the Design of Dynamic Experi-
ments methodology improves upon the classical Design
of Experiments method and show how DoDE is able to
find an optimal, nonlinear cooling trajectory for a seeded
paracetamol batch crystallization without the use of a
first-principles model.

In order to compare DoDE to the classical DoE approach,
there must be at least one static factor that is shared
between the two design methods. We chose cooling du-
ration, tc (hr), as the static factor. Three cooling times
were evaluated: 12, 13, and 14 hours. The cooling time was
defined in terms of the coded variable, a3, as tc = 13 + a3

where a3 = {−1, 0, 1}. The 13-hour cooling time with a
constant cooling rate was considered to be the base case
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crystallization scenario for which all subsequent DoE and
DoDE results are compared.

The cooling profile was optimized by minimizing the
amount of secondary nucleation during the crystallization.
In terms of the moment equations, we monitored the
zeroth moment (m0), which represents the total number
of crystals in the crystallizer at any time. The zeroth
moment at the end of the crystallization was taken as the
response variable, which was used to construct response
surface models for each of the DoE and DoDE designs.
The response surface model, along with constraints (5)-(8),
were then used to find the optimum operating conditions
that minimized the amount of secondary nucleation.

4.1 Classical Design of Experiments

The DoE experiments evaluated one factor, the cooling
time. The cooling rate was held constant and the crystal-
lizer was cooled linearly from 30◦C to 10◦C for each of the
three cooling times. When the crystallizer reached 10◦C,
the temperature was held constant until the batch time of
15 hours was reached, at which point the simulation was
terminated. At the end of the crystallization, the value
of the zeroth moment was recorded. The total number
of crystals at the end of each crystallization are given
in table 1. The total number of crystals decreases as the
cooling time increases.

Table 1. DoE Results
Batch Time m0 x 10−11 Improvement

(hrs) (crystals/m3) (%)
12 2.78 -12.5
13 2.47 0
14 2.26 8.6

An improvement metric was calculated in order to deter-
mine how one crystallization compared to another in terms
of minimizing the amount of nucleation taking place. The
improvement measures the percent reduction in the total
number of crystals at the end of a crystallization compared
to the toal number of crystals at the end of the base case
crystallization. A negative improvement value indicates an
increase in the total number of crystals as compared to
the base case. Improvement values are listed in table 1.
Based on this very simple DoE we are able to improve the
crystallization process by 8.6%

4.2 Design of Dynamic Experiments

Design of Dynamic Experiments is an extension of the
DoE methodology, therefore, we can use any of the DoE
Designs (see Montgomery, 2005) to construct our DoDE
experiments. We evaluated three factors in our simulated
DoDE experiments. The static factor, a3, which controls
the cooling time, and the two dynamic factors, a1 and a2,
which control the cooling rate profile. Each of the factors
was assigned 3 levels so that a second-order response
surface model (RSM) could be fit to the experimental data.
A second-order RSM is given by (9):

y = β0 +
∑

i

βiai +
∑

i

∑

j

βijaiaj +
∑

i

βiia
2
i + ε

i = 1, 2, 3 j = 2, 3 i < j
(9)

where y is the response variable, β are the model param-
eters to be estimated, ai are the independent variables
(factors), and ε is the model error.

Three experimental designs were evaluated for the simu-
lated DoDE experiments: 1) a 33 full factorial design with
three center points; 2) a central composite design (CCD)
with three center points, and; 3) a D-optimal design with
three center points. The center point experiments were
added to the designs to estimate experimental error and
to test the model for lack of fit. The lack of fit statistic is
one method of checking model adequacy.

The 33 full factorial design requires the largest number of
experiments when compared to a central composite or D-
optimal design (see table 3). The extra experiments allow
for a more comprehensive analysis of the design space and
result in a smaller variance in the predicted model re-
sponse, but in most cases there are too many experiments
required for it to be a time/cost effective experimental
design. The central composite design requires fewer exper-
iments since the experiments are only run at the corners
and axial points of the design space. The reduction in the
number of experiments results in a larger variance in the
predicted model response, but if designed correctly, this
variance can be minimized.

A graphical representation of the experimental designs for
the full factorial and CCD designs are shown in Figs. 4 and
5, respectively. The design space for the full factorial and
central composite design was shifted using the following
variable substitution with respect to the second dynamic
factor, a′2 = a2 + 0.5, where a′2 is substituted into the
response surface model for a2. This substitution was made
to make the design points symmetric around the origin of
the design space. By doing this, we reduce the number of
cross-correlated parameters in the model when compared
to the non-shifted design space.

The D-optimal design is a computer-generated design
based on an exchange algorithm that selects a group of
experiments from the design space and begins exchanging,
one experiment at a time, different design points until
the optimal design criterion is met (Montgomery, 2005).
The optimality criterion for the D-optimal design is to
minimize the determinant of the (XT X)−1 matrix.

min
(
|(XTX)−1|

)
(10)

where X is the matrix of regressors. This design criterion
(10) minimizes the amount of correlation between the
parameter estimates, and, as a result, provides the best
estimates for the model parameters for the number of
specified experiments in that design space (Montgomery,
2005).

The D-optimal design used for our experiments consisted
of 10 experiments, the minimum number of experiments
required to estimate parameters for a three-factor, second-
order response surface model. A graphical representation
of the D-optimal design is shown in Fig. 6.

The D-optimality criterion can also be used to compare
the relative efficiency, Deff , of two designs using (11)
(Montgomery, 2005):
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Fig. 4. Graphical representation of experimental points for
the full factorial design (a′2 = a2 + 0.5). The same
values of the dynamic factors are tested at each level
of a3 in the full factorial design.
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Fig. 5. Graphical representation of experimental points for
the central composite design (a′2 = a2 + 0.5).
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Fig. 6. Graphical representation of experimental points for
the D-optimal design.

Deff =
(

|(XT
2 X2)−1|

|(XT
1 X1)−1|

)1/p

(11)

where X1 and X2 are the regressor matricies for design one
and two, respectively, and p is the number of parameters
in the response surface model.

Comparing the relative efficiencies of the CCD and D-
optimal designs to the full factorial design, we see that the
CCD is only 46% as efficient and the D-optimal design is
only 38% as efficient as the full factorial design. Efficiency
is lost as the number of experiments decrease, therefore,
the type of design, and thus the precision of the estimated
model parameters, must be weighed against the time/cost
required to perform the experiments.

Second-order response surface models were fit to the data
for each of the experimental designs using linear least
squares regression in JMP. All of the models were signif-
icant at a significance level of α = 0.05. The parameter
estimates and 95% confidence interval for each RSM are
given in table 2. Parameters with values of zero were found
to be nonsignificant.

The lack of fit statistic for the full factorial and central
composite design was significant, which indicates that the
second-order response surface models might not be the
best fit for the data. This result contradicts the results
of the residual error analysis (not shown). In all cases,
analysis of the residuals showed that they were normally

distributed indicating that the models did indeed fit the
simulated experimental data adequately. At this point, the
best explanation for the significant lack of fit result has
to do with how error was introduced to the model. The
induced error was proportional to the value of the zeroth
moment, but when performing the analysis of variance on
the RSM the error is assumed to be additive.

The results of the DoDE experiments are summarized in
table 3 along with the results of the classical DoE analysis.
The R2(adjusted) values, which take into consideration
the number of factors in the model, are all close to 1,
indicating that most of the variability in the system is
accounted for by the model. The optimum values for
each factor were all found to be in the same area of the
design space for all three DoDE designs. The predicted
and simulated zeroth moment for each design agree nicely.
It is also seen that each optimized case predicts approx-
imately the same number of crystals at the end of each
crystallization simulation. This shows that the CCD and
D-optimal designs are able to find optimum values close
to the values determined from the full factorial design
using far fewer experiments. Each of the DoDE designs
gave an improvement of approximately 24% over the base
case scenario compared to the 8.6% improvement from the
classical DoE method. The results of the DoDE analysis
give a 17% improvement over the optimum DoE case
(14 hours, constant cooling rate). This is an impressive
improvement, especially since a first-principle model was
not required.

The cooling profile for the optimized DoE and DoDE
experiments are show in Fig. 7. It is clearly seen that
the optimum DoDE profile is nonlinear. The profile is
similar to the profile obtained by Worlitschek and Mazzotti
(2004), but an exact comparison cannot be made as we did
not have the initial crystal distribution and seed mass used
by the authors.

The particle size distributions (PSD) were reconstructed
for the optimum DoE and DoDE temperature profiles
using a method presented by Giaya and Thompson (2004)
(see Fig. 8). In each case the seed crystals grow by the
same amount but the amount of nucleation that occurs
using the optimum DoDE cooling profile is less than
what is produced with the optimum DoE profile. This is
due to the nonlinear nature of the cooling profile. The
low cooling rate achieved by the DoDE profile at the
beginning of the crystallization reduces the initial amount

Table 2. DoDE RSM Parameter Estimates and
95% Confidence Intervals

33 + 3cp* CCD + 3cp* D-opt. + 3cp
(x10−11) (x10−11) (x10−11)

β̂0 2.14± 0.0530 2.21± 0.0619 2.52± 0.0701

β̂1 1.06± 0.0925 1.07± 0.156 1.95± 0.531

β̂2 0 0 1.44± 0.321

β̂3 −0.297± 0.0327 −0.259± 0.0492 −0.311± 0.0405

β̂12 2.19± 0.641 2.14± 0.881 1.68± 1.01

β̂13 −0.292± 0.113 −0.261± 0.220 −0.310± 0.135

β̂23 0.114± 0.113 0 0

β̂11 1.91± 0.320 1.83± 0.520 2.19± 0.360

β̂22 1.54± 0.320 1.34± 0.520 1.47± 0.333

β̂33 0.0647± 0.0530 0 0
*a2 replaced by a′2 in RSM
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Table 3. DoDE Results Summary

Optimum Values m̂0±CI x 10−11 m0 x 10−11 Improvement
Design # Exp R2(adj) a1 a2 a3 (crystals/m3) (crystals/m3) (%)

33 + 3cp 30 0.977 -0.29 -0.33 1 1.8± 0.074 1.87 24.4
CCD + 3cp 17 0.968 -0.30 -0.30 1 1.8± 0.12 1.87 24.5

D-optimal + 3cp 13 0.992 -0.23 -0.36 1 1.8± 0.087 1.88 23.8
Classical DoE 3 - - - 1 - 2.26 8.6

0 5 10 15
10

12

14

16

18

20

22

24

26

28

30

T
 (
°C

)

Time (hr)

 

 

DoE Optimum

DoDE Optimum

Student Version of MATLAB

Fig. 7. Optimum cooling profiles from the DoE and DoDE
designs. The DoDE method is able to determine
optimum nonlinear cooling trajectories.
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Fig. 8. Reconstructed particle size distributions for the
optimal DoE and DoDE cooling trajectories.

of supersaturation in the crystallizer, thus, reducing the
total amount of nucleation.

5. CONCLUSIONS

The Design of Dynamics Experiments methodology was
applied to a simulated batch crystallization and it was
successfully shown that an optimum time-variant cooling
profile could be achieved in order to minimize the total
amount of nucleation without the need for a first-principles
model. This is an important finding for complex crystal-

lization processes for which no knowledge-driven model
exists.

The DoDE methodology was compared to the classical
DoE approach and was shown to reduce the total amount
of nucleation by 17% when comparing the optimum results
of the two methods. It was also shown that the central
composite and D-optimal designs performed well when
compared to the full factorial design. Optimum values for
the dynamic factors were found in the same area of the
design space in each case and each design improved upon
the base case crystallization by approximately 24%.

We are currently applying the DoDE methodology to a
concentration-controlled batch crystallization simulation.
Preliminary results show that DoDE is able to determine
an optimum nonlinear supersaturation trajectory without
the use of a first-principles model. An experimental study
will be performed to corroborate these findings.
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