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Abstract: This paper presents a dynamic optimization procedure of grade changes of polyethy-
lene production. The optimization is built upon a novel modular Modelica library containing
e.g., non-linear DAE models for polyethylene reactors based on models currently used in non-
linear MPC of industrial reactors at Borealis AB. Using Optimica, which extends the Modelica
language with constructs for optimization problems, and JModelica.org, a novel framework
to translate such optimization problems into NLP problems, grade transition optimization
problems can be solved. The solution procedure and a transition example with optimal inputs
and outputs are given in the paper showing promising results.
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1. INTRODUCTION

In the chemical industry today, as in many other in-
dustries, there exists a problem of increasing the capital
productivity while the market competition has increased
the last decades. A way to overcome this is by contin-
uously developing and increasing the profitability of the
manufacturing process. The market today is highly vary-
ing, both in raw material pricing but also in terms of
demand of produced material. It is therefore important
that manufacturers can respond rapidly to these changes
and thereby increase their profit. In the polymer industry,
this is the case where manufacturers are forced to switch
between different polymer grades to suit market demand,
that is, running product campaigns on the same plant.
The campaign time can vary between a few days up to
weeks. It is therefore of importance that the transitions
are made in a way such that off-specification polymer,
i.e., polymer that does not fulfill grade specification of the
former grade nor the grade to be, is minimized. However,
also pricing of raw material and time, i.e., economics, must
be included in the transition cost, see e.g., van Brempt
et al. (2004). Additionally, also the production rate can
be used in a grade change, both for storage control and
market adaptation. For instance, if time is not of essence,
one may lower production rate at a transition and thus
producing less off-specification material. All the above
properties make a grade change an intricate optimization
problem to pose and to solve.

Not only is a single transition important, but also planning
of several grade changes must be comprised such that the
order of the grade changes minimizes the total loss, see e.g.
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Prata et al. (2008). Thus, a tool for production planning
at a higher level than automation and control is needed.

In this paper, a prototype for such a tool is presented. Us-
ing the Modelica language, which has received attention in
industry during the last decade, a novel model library has
been constructed. The reactor models, described by non-
linear differential algebraic equations (DAE), are currently
used for non-linear Model Predictive Control (MPC) of
industrial polyethylene reactors at Borealis AB. Using the
constructed library, an example of a grade transition for a
polyethylene reactor model will be optimized. A key con-
tribution of the paper is the formulation of the optimiza-
tion problem in the high level language Optimica using
the framework of JModelica.org, an open source project
targeted towards dynamic optimization. The foundation
of the optimization solution procedure is the constructed
Modelica library, giving simulation, optimization, and ver-
ification models.

The paper is organized as follows. Section 2 describes
the Borstar R© process, key parameters and how grade
transitions are performed in practice. Section 3 concerns
the modeling languages and optimization tool used when
solving the grade transition problem while Section 4 gives
an overview of the mathematical reactor model. Further,
Section 5 describes the Modelica library constructed and
Section 6 shows the optimization formulation and solution
of a grade transition problem. Finally, summary and future
work are given in sections 7 and 8.

2. BORSTAR PE

2.1 Polyethylene

Polyethylene belongs to the family polyolefins and its
properties vary much with the molecular weight. It is
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Fig. 1. Reactor chain of a Borstar R© process: Pre-
polymerization, Loop, and Gas phase reactor (GPR).

formed by the polymerization of the monomer ethylene
and the termination of polymer chains is controlled by
the ratio between hydrogen and ethylene. Comonomers
are added to control, e.g., density. The reaction used in
this paper is catalyzed using a Ziegler-Natta catalyst with
the advantage that the polymerization can operate at low
temperatures and pressures. By combining polymer with
low molecular weight and high molecular weight, a bimodal
molecular weight distribution can be achieved. This gives
the polymer good resistance and mechanical properties
and at the same time good processability.

2.2 The Borstar R© Process

Bimodal polyethylene products are polymerized in cas-
caded reactors and the Borstar R© process consists of at
least three reactors, see Figure 1. The purpose of the
pre-polymerization reactor is to let the first part of the
polymerization on the surface of the catalyst particles to
be slow since a fast reaction may damage the particles.
The diluent is propane, which makes it possible to operate
above the critical thermodynamic point. This gives very
low solubility and the risk of fouling is decreased. The
first peak of the bimodal molecular weight distribution
is mainly formed in the loop reactor. In the subsequent
gas phase reactor (GPR), i.e., a fluidized bed reactor, the
second peak is formed with higher molecular weight, van
Brempt et al. (2004).

2.3 Key parameters

There exists a couple of key parameters that define a grade
specification. First, the split is the ratio of polymer formed
in the fluidized bed to the total polymer formed and gives
a measure of the distribution of the two bimodal peaks.

A common way to estimate the molecular weight is by
the melt flow indices, defined as the weight of polymer
extruded over a specified time interval and temperature
through an extrusion die with standard equipment, see
Fried (2003). When characterizing bimodal polyethylene, a
second key parameter is the melt flow ratio (MFR), defined
as the ratio between melt flow indexes of two different
gravimetric weights.

A third important key parameter is the density that must
be kept within a certain region to be on specification.
Other parameters, which are harder to measure, are odour
and taste.

2.4 Current Grade Change Practice

At current time, to go from one grade to another, operators
follow a recipe derived from earlier experiences which may

not be the optimal path. Input flows and control references
are often changed by operators in a discrete manner, i.e.,
steps, and the performance of the grade changes may vary.

Production planning, i.e., planning of several grade changes
ahead at higher production level, is often made in an ad hoc
manner using process know-how and experience of former
grade changes.

Hence, both at single transitions, but also at the produc-
tion planning stage, a tool for grade transition optimiza-
tion is needed.

3. MODELING LANGUAGES AND TOOLS

3.1 Modelica and Optimica

The modeling language used to express the mathemati-
cal model is Modelica which is a high-level language for
encoding of complex physical systems, supporting object
oriented concepts such as classes, components and inher-
itance. Also, text-book style declarative equations can
be expressed as well as acausal component connections
representing physical interfaces. This modeling paradigm
has significant advantages over the block-based paradigm
in the context of physical modeling. In particular, acausal
modeling systems do not require the user to solve for the
derivatives of a mathematical model. Instead, differential
and algebraic equations may be mixed, which then typ-
ically results in a differential algebraic equation (DAE).
Modelica also targets modeling of heterogeneous systems,
where components from different physical domains need to
be included in the same model. This situation is common
in realistic applications where e.g., the reaction kinetics
in a reactor, the thermal properties of the cooling sys-
tem, and the electrical and mechanical properties of the
mass transportation systems need to be investigated. In
this respect, Modelica differs from other modeling systems
such as gPROMS and VHDL-AML, see Process Systems
Enterprise (2007) and IEEE (1997), which are targeting
the chemical and electrical domains, respectively.

While Modelica offers strong support for modeling of
physical systems, the language lacks important constructs
needed when formulating dynamic optimization problems,
notably cost functions, constraints, and a mechanism
to select inputs and parameters to optimize. In order
to strengthen the optimization capabilities of Modelica,
the Optimica extension has been proposed, see Åkesson
(2008). Optimica adds to Modelica a small number of con-
structs, enabling the user to conveniently specify dynamic
optimization problems based on Modelica models.

In the context of dynamic optimization, the use of high-
level description formats is particularly attractive, since
the interfaces of algorithms for solution of such programs
are typically written in C or FORTRAN. Implementing
the optimization formulation for such an algorithm may
require a significant effort. In addition, once finalized, the
implementation is typically difficult to reuse with another
algorithm.

3.2 JModelica.org

JModelica.org is a novel Modelica-based open source
project targeted at dynamic optimization, see Åkesson
et al. (2009). JModelica.org features compilers supporting
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code generation of Modelica/Optimica models to C, a C
API for evaluating model equations and their derivatives
and optimization algorithms. The compilers and the model
C API has also been interfaced with Python, see for
instance Python Software Foundation (2009), in order to
enable scripting and custom application development. In
order to support formulation of dynamic optimization of
Modelica models, JModelica.org supports the Optimica
extension.

The JModelica.org platform contains an implementation
of a simultaneous optimization method based on orthogo-
nal collocation on finite elements, Biegler et al. (2002). Us-
ing this method, state and input profiles are parametrized
by Lagrange polynomials of order three and four, respec-
tively, based on Radau points. This method corresponds
to a fully implicit Runge-Kutta method, and accordingly
it possesses well known and strong stability properties.
By parametrizing the variable profiles by polynomials, the
dynamic optimization problem is translated into a non-
linear programming (NLP) problem which may be solved
by a numerical NLP solver. This NLP is, however, very
large. In order to efficiently find a solution to the NLP,
derivative information as well as the sparsity patterns of
the constraint Jacobians need to be provided to the solver.
The simultaneous optimization algorithm has been inter-
faced with the large-scale NLP solver IPOPT, Wächter
and Biegler (2006), which has been developed particularly
to solved NLP problems arising in simultaneous dynamic
optimization methods.

The choice of a simultaneous optimization algorithm fits
well with the properties of the dynamic optimization
problems treated in this paper and has been used also
in e.g. Flores-Tlacuahuac et al. (2006). In particular,
simultaneous methods handle highly non-linear systems
well, and also, state and input inequality constraints are
easily incorporated.

4. MATHEMATICAL PLANT MODEL

Modeling a series of reactors, as in Figure 1, is a task
including theoretical and empirical challenges. A resulting
model of such work at Borealis AB for the Borstar R©

process is today used on-site in a non-linear Model Pre-
dictive Control (MPC) software, OnSpot, see e.g. Saarinen
and Andersen (2003). Due to confidentiality reasons, the
full model can not be shown, however, the structure is
presented.

Inputs used in the model are for instance flows of ethylene,
hydrogen and propane, but also comonomer flows and
catalyst flows together with its specific properties. Several
outputs are available including substance masses, mass ra-
tios, mass flows, concentrations, MFR, density, production
rates and split factor.

Each reactor is modelled from material balances of the
general form

ṁ =
∑

j

qin
j −

∑

k

qout
k + r, (1)

where the inflows qin
j can be either from previous reactor

or a side feed, and outflows qout
k that go to the subsequent

reactor, a bleed, recycle, or product outlet. The model
is based on a catalyst activity profile along the reactors

and include polymerization and termination rates r from
monomer, comonomers and hydrogen.

The reaction kinetics are modelled with extended Arrhe-
nius expressions, as

ṙ = K1(x)eK2(x), (2)

and is dependent on the state of the reactor, x, in the
form of concentrations, pressures, and temperatures of the
reactants. The kinetics functions K1 and K2 are non-linear
in the state x.

The state of the Ziegler-Natta catalyst is of major impact
on the reactor performance and must hence be well mod-
elled. The catalyst properties, c, which is a part of the
reactor state x, is dependent on reaction rates but also on
the reactor state itself, i.e.,

ċ = K3(x, r), (3)

where K3 is a non-linear function.

Densities must be modelled and since it is possible to
operate above the critical thermodynamic point, this is a
major task. Amongst others, empirical non-linear expres-
sions dependent on the reactor state x are used, i.e.,

ρ = K4(x) (4)

The model contains, apart from the equations in Eq. (1)–
(4) additional algebraic equations. If the inputs and out-
puts of the model are denoted u and y, respectively, and
the algebraic variables are denoted w, the model can be
written in the general non-linear differential algebraic form

0 = F (ẋ, x, w, u)

y = g(x, w, u),
(5)

which will be used in the optimization problems.

To simplify modeling, some assumptions are made on the
control system of the reactors. Firstly, the heat produced
by the exothermic reaction can be handled by the cooling
system. Secondly, the reactor pressures are controlled by
outlet valves holding the pressures constant.

Moreover, it is also assumed that the polymer and the
gases/fluids are well mixed and the temperatures are
uniform in the reactors.

5. MODELICA MODEL LIBRARY

The novel Modelica library, which is the core of a grade
transition tool, includes the following sub-packages,

Connectors define how the physical interface between
one reactor or input source to another reactor or output
sink is modelled. A connector holds both flow variables,
such as gas/fluid or polymer flows, but also potential
variables such as mass ratios of the flows and catalyst
properties. There are two types of connectors in the
library, one for pure gas/fluid flow and one for both
polymer and gas/fluid flow combined.

Interfaces is a package that defines input and output
structure for different reactor types by using the defined
connectors. Note that the interface models do not con-
tain any equations concerning reactor models, only the
interfaces are defined.

ReactorModels contains the mathematical descriptions,
i.e., non-linear DAEs, of e.g., the reactors in the reactor
chain in Figure 1. The models are extended from the
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interface package, giving it a predefined input-output
structure. This gives the possibility to have more than
one model for a certain reactor, but at the same time
have an identical interface. This is very useful when dif-
ferent model fidelities are desired, e.g., for optimization
and verification of results.

Source/Sink withhold sources and a sink. One source for
pure gas/fluid and one for gas/fluid and catalyst and a
sink retrieving both gas/fluid and polymer. They use
the defined connectors such that they can be interfaced
with the reactors.

Templates package holds different templates of setups,
i.e., definition of reactor setups to be used later in
experiments and optimization. Note here that the tem-
plate models only defines the structure of a setup, i.e.,
replaceable parts retrieved from the Interfaces package,
not actual mathematical models.

Experiments withholds models that extend from the
template models. Into the experiment models different
reactor models can be inserted from the ReactorModels
package. Note the modularity due to ease of exchanging
reactor models, e.g., model fidelities, while maintaining
the same over all structure.

Optimization withholds models extended from the Tem-
plate package where different reactor models have been
inserted, analogous to the Experiment package. These
models are used by the JModelica.org framework when
solving for stationary points of the reactor chain cor-
responding to a grade or when solving the dynamic
optimization problem of finding the optimal trajectories
of a grade transition problem.

Constants contains physical constants, both theoretical
and empirical, and is used by the reactor models in the
ReactorModels package.

6. OPTIMAL GRADE TRANSITION EXAMPLE

In this example we will consider a grade transition of
the first reactor. The ReactorPackage described in the
previous section is used to set up the models to be
subjected to optimization while the construction of cost
function, constraints and optimization options will be
encoded using Optimica constructs. The model is then
passed on to the JModelica.org framework obtaining the
optimal grade transition trajectories.

6.1 Grade Transition Definition

The grade transition considered will include three main
objectives,

(1) Increase production rate by 20%.
(2) Increase hydrogen-ethylene ratio by 20%.
(3) Keep amount of polymer in reactor within bounds

during grade transition.

It is known that a change in the ethylene-hydrogen ratio
is well correlated with the melt-flow index, one of the key
parameters. The constraint on amount of polymer in the
reactor is due to, besides volume constraint of reactor, also
avoidance of plugging the reactor.

The outputs used in the optimization problem are a subset
of the model output y. Specifically, introduce the following
notation for the controlled outputs,

Table 1. Normalized grade definitions/recipe.

Grade 1 Grade 2

ys 1 1
yr 1 1.2
yhe 1 1.2

yr = production rate of polymer in the reactor

yhe = ratio of hydrogen and ethylene.

ys = amount of polymer in the reactor

The two grades, Grade 1 and Grade 2, can now be defined
using Grade 1 as a normalizer, see Table 1.

As the optimization problem is posed on the Pre-
polymerization reactor, there is no polymer inflow to the
reactor. Besides the catalyst inflow that is considered con-
stant, three inflows are available for control, i.e.,

up = propane input flow

ue = ethylene input flow

uh = hydrogen input flow.

In the dynamic optimization problem, these three inputs
are the decision variables and constraint on their deriva-
tives will be set due to limitations on e.g., pumps, external
control loops and safety precautions.

6.2 Finding Stationary Points

Prior to and after the grade transition, the system is in
steady state representing on-specification production and
correct production rate. Hence, at start and final time,
t = t0 and t = tf , the system fulfills the static equations

0 = F (0, x◦, w◦, u◦)

y◦ = g(x◦, w◦, u◦),
(6)

where y and u are the considered inputs and outputs,

u = [up ue uh]
T

, y = [ys yr yhe]
T

,

and x represents the reactor internal states. Note that
the two stationary points will give different solutions
(x◦, w◦, u◦, y◦) to the non-linear algebraic equation
above, where superscript ◦ indicates constant value.

The two different grades concerned in the transition are
only defined by the output y as specified in the recipe
in Table 1. The first step in the grade change solution
procedure is to find the two stationary points correspond-
ing to the two grades in terms of reactor states x and
input flows u. This is achieved using a constructed model
in the optimization package where the system inflows are
free variables. A grade is defined by setting the outputs as
fixed and all state derivatives to 0 in the model while other
variables such as e.g., outflows and mass ratios are free
and are given reasonable initial values for the optimization
problem. The constructed model is utilized by the JMod-
elica.org framework, which compiles the model and casts
the system in Eq. (6) into an optimization problem. The
resulting NLP problem contains approximately around 200
variables and is solved rapidly.

By initializing the model with different grades, the station-
ary points corresponding to Table 1 are calculated. Note
that not only are the inflows corresponding to the two
grades given as a result of the optimization problem, but
also the full state vector of the reactor is given and can be
used as references in the dynamic optimization problem
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later on. However, in this paper only the output y and
input u will be used.

6.3 Dynamic Optimization of Grade Transition

In the dynamic optimization problem, the optimal tran-
sition trajectories between the two grades are found. In
the previous section, start and end points were calculated.
Hence, there is access to both initial values and reference
values of all variables of the system.

As mentioned in Section 6.1, constraints on the input flows
must be set. Constraints on the outputs are also set, since
it is desired to reach Grade 2 in a pre-specified way. In this
example, it is desired that the production rate yr does
not have an overshoot, while the amount of polymer in
the reactor ys does not vary more than ±5% compared to
initial value during the transition.

A quadratic cost function is constructed that includes
deviations from Grade 2 specifications expressed in out-
puts and inputs solved for in the previous section. It also
includes the inflow derivatives giving an option to control
the smoothness of the input signals.

Introducing the reference vectors

yref =
[

yref
s yref

r yref
he

]T
, uref =

[

uref
p uref

e uref
h

]T
,

comprising the stationary solution of Grade 2, and the
diagonal weighting matrices Q∆y, Q∆u and Qu̇, the op-
timal control problem representing the transition can be
formulated as

min
up,ue,uh

tf
∫

t0

[

∆y
∆u
u̇

]T [

Q∆y 0 0
0 Q∆u 0
0 0 Qu̇

] [

∆y
∆u
u̇

]

dt (7)

subj. to 0 = F (ẋ, x, w, u)

y = g(x, w, u)

0 ≤ h(x, w, u)

ymin ≤ y ≤ ymax

u̇min ≤ u̇ ≤ u̇max,

where the deviation vectors are defined as

∆y = y − yref, ∆u = u − uref,

and the initial values at time t = t0 are defined by the
steady state solution for Grade 1 in the previous section.

An optimization model of the problem utilizing Optimica
constructs and the ReactorPackage can easily be encoded,
see Listing 1. The algebraic contraint, i.e., 0 ≤ h(x, w, u),
is encoded in the reactor model while the constraints
on outputs and inflow derivatives are encoded in the
optimization model below. For details on the Optimica
syntax, see Åkesson (2008).

optimization ReacOpt (objective =cost(finalTime ),

startTime =0.0, finalTime =1)

extends OptimizationParameters ;

extends ReactorPackage.Optimization.OptModel ;

equation

der(cost) = q_yr*(yr - yr_ref )^2

+ q_ys*(ys - ys_ref )^2

+ q_yhe *(yhe - yhe_ref )^2

+ q_up*(up - up_ref )^2

+ q_ue*(ue - ue_ref )^2

+ q_uh*(uh - uh_ref )^2

+ q_up_dot *( up_dot )^2

+ q_ue_dot *( ue_dot )^2

+ q_uh_dot *( uh_dot )^2;

constraint

yr <= yr_ref ;

ys <= ys_ref *1.05;

ys_ref *0.95 <= ys;

up_dot <= u_p_dot_lim ;

-up_dot <= u_p_dot_lim ;

ue_dot <= ue_dot_lim ;

-ue_dot <= ue_dot_lim ;

uh_dot <= uh_dot_lim ;

-uh_dot <= uh_dot_lim ;

end ReacOpt ;

Listing 1. Optimization model ReacOpt defining grade
change optimization problem using Optimica con-
structs.

6.4 Optimal Grade Transition Trajectories

Using the JModelica.org framework and the optimization
model in the previous section resulted in an NLP problem
to be solved by IPOPT. The original optimization problem
has 14 differentiated variables and 163 algebraic variables.
The resulting NLP problem contains about 20.000–40.000
variables depending on collocation point selection. Using
an Intel R© CoreTM2 Duo CPU@3.00GHz, a solution is
obtained in approximately 5-30 minutes depending on
number of variables and initial values.

Figures 2–4 show the resulting optimal trajectories for
the grade transition problem. Note that the trajectories
have been scaled, either such that initial value is 1 or
by constraint and the total transition time is equal to
1. Both inflows u and controlled outputs y tend to the
desired reference values specified by the static optimization
problem while all constraints are fulfilled.

Since the production rate yr is to be increased, the reaction
rate of ethylene is increase by changing the ethylene feed,
see Figure 2. To be able to keep the amount of polymer in
the reactor near a constant value, the inflow of diluent is
also increased. This, together with pressure control loops,
increases the outflow of both polymer and gases/fluids
of the reactor. However, ethylene and diluent feeds are
not increased at maximum speed, see Figure 3, since the
objective of correct hydrogen-ethylene ratio yhe is also
taken into consideration. There is a constraint on how
much the hydrogen inflow can be increased which is active
during the beginning of the transition. This constraint is
the main limiter of the grade transition time considering
the chosen optimization criteria.

From Figure 4, it is seen that the constraint of no overshoot
in the production rate yr is fulfilled. Also, the mass of
polymer in the reactor during the transition is almost
constant, which is due to the high availability of diluent.

7. SUMMARY

This paper has presented a novel modular Modelica library
built upon existing non-linear DAE models currently used
at Borealis AB in an industrial non-linear MPC controller
for the Borstar R© process. The key contribution of the pa-
per is the use of Optimica constructs to pose grade change
optimization problems and the JModelica.org framework
for compilation and generation of C code utilized by an
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Fig. 4. Scaled optimal outputs at grade transition – mass of
polymer in reactor ys, reaction rate yr and hydrogen-
ethylene ratio yhe.

NLP solver. The grade transition solution procedure has
been shown and examples of optimal input and output
trajectories with constraints have been calculated The ex-
ample has shown e.g., where one of the limitations during
a grade transition can be found.

8. FUTURE WORK

Due to the modularity of the Modelica library the opti-
mization can easily be extended to include more than one
reactor, which is work in progress and shows promising
results. In the example shown, only three input flows have
been used as optimization variables. However, in a reactor
chain, each reactor has input flows but also controlled
output flows such as bleed flows, increasing the number
of optimization variables and degrees of freedom. Cur-
rent work in progress is also concentrating on using more
outputs than is shown in the example. This includes key
parameters such as split factor, MFR and densities.
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