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Abstract: In this article, we propose an explicit integer optimization formulation for the design of 
reliable and robust (to uncertainty in reliability data) sensor networks. The robustness is achieved by 
incorporating simultaneous occurrence of different kinds of uncertainty in the failure rate data in the 
optimization formulation. We show the use of constraint programming to solve these combinatorial 
problems to global optimality and also evaluate the globally optimal pareto front between robustness and 
cost of these sensor networks. Such tradeoffs help the designer in making informed choices for the 
selection of sensor networks. The applicability of the proposed work has been demonstrated on a case 
study taken from literature. 
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1. INTRODUCTION 

The optimal placement of sensors in a chemical plant is 
necessary from the viewpoints of plant safety, fault detection 
and diagnosis, optimal control, and plant economics. The 
sensor network design problem can be viewed as selection of 
variables to be measured so as to satisfy criteria such as cost, 
observability, reliability, estimation accuracy, flexibility and 
robustness. Initial attempts for the design of optimal sensor 
networks involved the design of a graph based branch and 
bound type algorithm (Meyer et. al., 1994) to determine the 
minimal cost sensor network. A tree type enumeration 
procedure for the design of minimal cost network with 
constraints on precision, availability, resilience and error 
detectability has also been reported  (Bagajewicz, 1997). 
Later, this problem was posed as an explicit mixed integer 
non-linear programming (MINLP) optimization problem 
(Bagajewicz and Cabrera, 2002). This work also showed the 
conversion of MINLP to MILP at the cost of increasing the 
problem size and thus the computational burden. 
Nevertheless, this conversion enabled the guarantee of 
optimality. In sensor network literature, the concepts of 
reliability and network reliability were formalised in (Ali and 
Narasimhan, 1993). The concept of network reliability 
accounted for sensor failures and also indirectly incorporated 
the observability criterion. This work used a graph theoretic 
(Ali and Narasimhan, 1993,1995,1996) based greedy search 
algorithm to obtain the most reliable sensor network and 
hence did not guarantee the optimality of the solution. 
Moreover, these works did not consider the uncertainty in the 
reliability data. A duality between the reliability and the 
variance framework for non-redundant sensor network was 
shown by Kotecha & co-workers (Kotecha et. al., 2008a). 
This work enabled the solution of the precision problems by 
greedy search algorithms and the reliability problems by 
explicit optimization formulation. An integration of Genetic 

Algorithms (GA) with graph-theoretic concepts to solve the 
problem of optimal design of sensor network for linear 
processes was proposed by Sen & co-workers (Sen et. al., 
1998). By the use of GA, various problems such as 
optimizing cost, estimation accuracy and network reliability 
were solved. Strategies for designing sensor networks for 
reliable fault diagnosis were presented by Bhushan & 
Rengaswamy (Bhushan and Rengaswamy, 2002). This also 
considered the uncertainty in the fault occurrence probability 
data and the sensor failure probability data. 

An explicit optimization formulation based on the use of 
cutsets has also been proposed by Kotecha & co-workers 
(Kotecha et. al., 2008b) to design minimum failure rate 
networks for non-redundant sensor networks. These 
minimum failure rate networks also correspond to the 
maximum reliability network. This work considered the 
design of robust sensor networks in the presence of known 
and unknown levels of uncertainties in the failure rate data. 
However, this work did not account for the simultaneous 
occurrence of known uncertainty levels for some uncertain 
sensors and unknown uncertainty levels for other uncertain 
sensors. In the current article, we address this shortcoming by 
considering the more realistic scenario wherein some of the 
sensors are uncertain with their uncertainty levels known and 
some other uncertain sensors whose uncertainty levels are not 
known. Towards this end, we appropriately extend the cutset 
based explicit optimization idea in (Kotecha et. al., 2008b) to 
simultaneously incorporate different types of uncertainties in 
different sensors. This gives rise to a non-linear Integer 
Programming (IP) problem. We use Constraint Programming 
(CP), a domain reduction based technique, to solve these 
problems to global optimality. In most cases, the design of 
sensor networks is constrained by the monetary resources and 
there is a trade-off involved between the cost of the sensor 
network and the robustness. To study these trade-offs, we 
harness the ability of CP to determine all feasible solutions 

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT3.2

Copyright held by the International Federation of Automatic Control 79



 
 

     

 

and generate the necessary globally pareto-optimal fronts 
along with their realizations. 

The paper is organized as follows: The following section 
gives the proposed mathematical formulation followed by a 
section briefly explaining constraint programming and the 
determination of pareto optimal fronts. A case study from the 
literature is then presented and the results are discussed. We 
conclude the article by summarizing the developments in this 
article and present possible future extensions of this work. 

2. MATHEMATICAL FORMULATION 

2.1  Minimum failure rate networks 

The following formulation determines the most reliable 
network by minimizing the network failure rate. 

 ˆmin λ  (1) 
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In the above formulation, λ̂ corresponds to the network 
failure rate defined as the maximum failure rate amongst all 
variables as given in (2). It was shown in (Kotecha et. al., 
2008b) that minimizing λ̂  is exactly equivalent to 
maximizing network reliability which is defined as the 
minimum reliability amongst all variables (Ali and 
Narasimhan, 1993). Constraint (3) ensures that the 
unmeasured variables do not form a cycle. S denotes a subset 
of the set of vertices V subject to the criterion that the 
cardinality of S (number of nodes in S) is greater than 2.  

'E denotes the set of edges connecting the nodes present in 
S. Constraint (3) is written for all subsets of V with 
cardinality greater than 2. Constraint (4) ensures that the 
number of unmeasured variables is equal to the total number 
of independent mass balance equations. Constraints (3) and 
(4) together ensure that the unmeasured variables form a 
spanning tree in the graph G (Deo, 1974) thereby ensuring 
the observability of all variables for a non-redundant sensor 
network design (Ali and Narasimhan, 1993). The failure rate 
of a measured variable should be equal to the failure rate of 
the sensor used for measuring it whereas the failure rate of an 
unmeasured variable should be equal to the sum of the failure 
rates of the sensors used for estimating the failure rate. 
Constraints (5) determine the nominal failure rate of a 
variable without considering any uncertainty. The first term 
on the RHS of this equation corresponds to direct 

measurement of the variable (corresponding to 0ix = ), while 
the second term (corresponding to 1ix =  ) incorporates all 
possible ways of indirectly estimating the thi  variable based 
on other measurements. For the latter case, since there is only 
one cutset involving variable which will have all other 
variables (other than i ) measured, only one term in the 
summation of the second term on RHS will be active. 
Constraints (7) ensure that at least one variable in each cutset 
is not measured. These are redundant as the problem is 
defined completely even without the inclusion of these cuts. 
However, these have been included as they were observed to 
substantially reduce the computational burden while solving 
the above integer nonlinear programming formulation using 
Constraint Programming (CP). The inclusion of these cuts 
does not involve any additional effort as the cutsets have to 
be anyway determined for writing the expressions for the 
failure rates in (5). The algorithm for determining all the 
cutsets in a graph is presented in (Kotecha et. al., 2008b).  

The above basic formulation does not consider uncertainty in 
the failure rate data. However failure rate (or reliability) data 
is rarely precisely known. Two different scenarios of 
uncertainty in the failure rate data of a given sensor: known 
and unknown levels of uncertainty were considered in 
(Kotecha et. al., 2008b). In the known scenario, it was 
assumed that the worst case (highest) failure rate value is 
available, while in the unknown case the worst case value is 
not known. In both cases, however, a nominal (most likely) 
value is assumed to be known. In the case of unknown level 
of uncertainty, the amount of uncertainty a network can 
tolerate was maximized and in the case for known level of 
uncertainties, the worst case network failure rate was 
minimized. However, their work did not consider the 
practical scenario of both known and unknown levels of 
uncertainty occurring simultaneously, i.e. when the worst 
case failure rates of some sensors are known whereas for 
some other sensors these are unknown. The following 
formulation considers this scenario by defining a measure for 
robustness in the presence of simultaneous uncertainty. 

2.2  Maximization of Robustness Index 

The robustness index RI is defined as  

 ( )ÛRI e λ= −  (8) 

Where e is the uncertainty that can be tolerated by the 
network in each uncertain sensor when the uncertainty level 
is not known. Ûλ is the network failure rate while considering 
the worst case failure rates for sensors with known levels of 
uncertainty and also simultaneously assuming that the 
nominal failure rate of all sensors with unknown levels of 
uncertainty have increased by e . In case of only one type of 
uncertainty, (Kotecha et. al., 2008b)  considered either 
minimization of  Ûλ  (when uncertainty levels in uncertain 
sensors were known) or maximization of e (when uncertainty 
levels in uncertain sensors were now known). However, in 
presence of simultaneous uncertainties just focusing on 
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minimizing Ûλ or maximizing e will not be sufficient as a 

sensor network with low values of Ûλ may not result in high 
values of e and vice-versa. Hence in this article we combine 
these two objectives as in (8). The resulting optimization 
formulation then is, 

  max RI  (9) 
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Constraints (10) to (12) are as explained earlier. Constraints 
(13), (14), and (15) calculate the failure rates of variables in 
the presence of uncertainties. In particular, (13) is written for 

the variables whose sensors have no uncertainty in their 
failure rate data. Constraint (14) is written for the variables 
which have sensors with known levels of uncertainty whereas 
(15) is written for the variables which have sensors with 
unknown levels of uncertainty. Constraint (16) ensures that 
the cost of the sensor network is below the available 
monetary resources. Constraint (17) allows for the selection 
of only those networks whose nominal failure rate is below a 
critical threshold value, and (18) ensures that the worst case 
network failure rate does not exceed the threshold value 
of ˆU

cλ . Constraints (17) and (18) can be viewed as 
performance constraints. For a feasible network, the value of 
ˆU
cλ cannot be less than ĉλ . Similarly, the value of  ĉλ  cannot 

be smaller than *λ̂ .  

Remark: It should be noted that RI  will always be negative 
since the tolerable uncertainty is always bounded between 0 
and *ˆ

smallλ λ−  whereas the worst case network failure rate 

( )Ûλ cannot be less than *λ̂ . Hence, if no uncertain sensors 

are selected then smallRI λ= − . 

2.3  Minimization of  the cost 

The objective function for the minimization of the cost of 
sensor network is given by the following expression  

 ( )min 1i i
i N

c x
∈

−∑  (21) 

Subject to Constraints (10) to  (20) 

For the sake of brevity, we restrict with the above two 
objectives of cost minimization and RI maximization. 
Several other objectives as shown in (Kotecha et. al., 2008b)  
can also be considered.  

Like most other engineering problems, the sensor network 
design problem is very often associated with multiple 
objectives. In this case, the multiple objectives can be 
considered to be maximization of robustness index and the 
minimization of the sensor network cost. A key feature of 
multi-objective optimization problems that differentiates 
them from single objective optimization problems, is that it is 
often not possible to simultaneously optimize all the 
objectives, instead these problems are usually characterized 
by a set of optimal solutions characterizing the trade offs. The 
trade-off solutions are typically represented as a pareto-
optimal front consisting of the set of non-dominated solutions 
(Deb, 2001). A solution is said to be non-dominated if it is 
feasible and there is no other feasible solution which has 
better values for all the objectives. 

In this article, we have used constraint programming to 
determine the multiple solutions for the single objective 
problem and the determination of pareto fronts for the multi-
objective problems. In the subsequent section we briefly 
explain constraint programming. 
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3. CONSTRAINT PROGRAMMING 

Constraint Programming (CP) is an intelligent enumeration 
based search technique that uses constraint propagation as its 
inference engine and continuously reduces the domain of its 
variables to reach feasible solutions. It was developed in the 
Computer Science and Artificial Intelligence community and 
has been widely used to solve combinatorial feasibility 
problems. However, it solves an optimization problem by 
transforming it into a feasibility problem. The important 
merits of CP include (i) easier modeling because of its 
expressive power (ii) guarantee of global optimality even for 
non-convex problems and (iii) ease of determination of 
multiple optimal solutions. The constraint programming 
technique can be considered to consist of two distinct parts 
namely constraint propagation and a search technique. 
Constraint propagation is used to reduce the domain of 
variables till all the variables are assigned a unique value 
from their domains. If any of the variable domain becomes 
empty, it means that there is no feasible solution. However, in 
the absence of a unique value for the variables from their 
domains, a non deterministic choice is made and constraint 
propagation is carried further. If this choice does not yield a 
solution, backtracking is done to make another choice and the 
procedure is repeated. The process of making a non 
deterministic choice is called as choice point selection and 
reaching infeasibility for a particular choice point is known as 
failure. A detailed algorithm on the working of CP can be 
obtained from literature (Kotecha et. al., 2008b). We next 
briefly discuss CP based strategies for determining multiple 
solutions of a single objective optimization problem and the 
determination of pareto optimal solutions for a multi-
objective optimization problem.  

3.1  Determination of Multiple Solutions 

CP can be used to determine the multiple solutions (or 
realizations; solutions with equal objective function values) 
of an optimization problem by using a two step strategy 
without the addition of any traditional cuts. The first step is 
the solution of the problem (say P) to determine the optimal 
solution. The second step involves the determination of all 
solutions of a feasibility problem with an additional 
constraint which ensures that only the optimal solutions of P 
are feasible. A detailed description for the determination of 
all multiple solutions can be obtained from (Kotecha et. al., 
2008b). 

3.2  Determination of Pareto-Optimal front 

CP can be used to determine the globally optima pareto front 
because it does not suffer from the drawbacks of the 
traditional methods used for solving multi objective 
techniques. In particular, it does not require any a priori 
knowledge about weights on the individual objectives or the 
precedence of the various objectives or the performance level 
in the various objectives. A detailed discussion on various 
aspects of this procedure is elaborated in [Kotecha at. al., 
2010]. 

4. CASE STUDY 

In this section, we demonstrate the use of the proposed 
formulations on a widely discussed case study taken from the 
literature (Bagajewicz, 1997, Bagajewicz & Cabrera, 2002). 
The flowsheet in Figure 1 has 24 variables and 11 equations 
(overall mass balances corresponding to 11 units). There are 
24

11C  combinations for choosing 13 variables to be measured 
for a non-redundant sensor network design. However, all 
these combinations do not form observable networks. 

1 2 3 4 5 

98 176 1
11 

15 17 19 20 

22 23 24 12 14

5 16 

8 

6 7 9 4 2 

1321

18 10 3 1

 

 
Fig. 1.  Schematic of the Case Study 
 

The failure rates and cost of the sensors used in this article 
are given in Table 1 (Kotecha et. al., 2008b)a. The number of 
tree constraints is 2570 and the number of distinct cutsets is 
148. The number of cutsets for each variable is given in 
Table 1. The following three different scenarios are 
considered for the uncertain sensors. 

Scenario I: An unknown uncertainty level is considered in the 
sensors for measuring variables 1, 2, 3, and 4 whereas known 
levels of uncertainty was considered in the sensors for 
measuring variables 9, 10 and 20. The levels of uncertainty in 
these sensors were 3, 2 and 6 times their nominal failure 
rates. The value for the critical worst case failure rate ˆU

cλ  is 
taken to be 120.  

Scenario II: This scenario is similar to that of Scenario I 
except that the critical worst case failure rate is 150 instead of 
120. 

Scenario III: Here, we consider the sensors for variables 5 
and 11 to be uncertain with known levels of uncertainty. The 
worst case failure rate for these sensors is 3 and 5 times 
greater than their nominal value in Table 1. We also consider 
variables 2, 9, and 14 as uncertain with unknown level of 
uncertainties. The value for the critical worst case failure rate 
ˆU
cλ   is considered to be 120. 

4.1 Results:  

We first present results for the single objective optimization 
of minimizing the cost and maximizing the robustness index. 
This is followed by the evaluation of trade-off between these 
two objectives simultaneously. The results reported are 
generated using ILOG CP Solver (ILOG, 2003). 

11 10 
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Table 1.  Data for case study 

Var i  Failure rate 

iλ  

Sensor cost 

ic  

Number of 

cutsets 

iC  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

13 
19 
21 
25 
10 
20 
15 
19 
12 
10 
11 
19 
16 
17 
19 
28 
14 
19 
14 
11 
20 
22 
11 
16 

32 
16 
10 
7 

50 
15 
27 
23 
35 
46 
44 
20 
25 
24 
19 
5 

31 
17 
29 
42 
12 
8 

38 
26 

84 
84 
30 
108 
93 
120 
120 
36 
90 
54 
33 
58 
30 
30 
33 
33 
61 
50 
46 
30 
33 
64 
61 
46 

4.2 Determination of minimum cost network:  

Table 2 shows the minimum cost networks for all the above 
three scenarios. For Case I, the minimum cost network is 261 
and is characterized by 10 realizations. All these 10 
realizations have -111 as their robustness index. The designer 
can choose any of these solutions based on some other 
criteria. For Case II, the minimum cost network is 261 but is 
characterized by 38 solutions. This is because the value of ˆU

cλ  
can increase till 150 whereas in Case I it was restricted to 
120. Hence, there are more number of optimal solutions. Of 
these 38 solutions, 36 solutions have a maximum robustness 
of -111. For Case III, the minimum cost network is 261 with 
23 realizations. Of these, 7 realizations have a maximum 
robustness index of -87. 

4.3 Determination of maximum robustness index:  

The result for maximizing robustness for the three scenarios 
is presented in Table 3. The maximum achievable robustness 
for Case I and II is -81. This is not surprising since an 
increase in ˆU

cλ (as in Case II) does not affect the maximum 

robustness as ûλ is to be minimized. However, the number of 

optimal solutions can increase as ˆU
cλ is increased. However, 

for the current scenario the number of optimal solutions for 
both the cases remains the same. 

Table 2.  Results for the minimum cost followed by 
maximum robustness index  

 Min 
Cost  

Realizations Max RI Realizations 

Case I 261 10 -111 10 

Case II 261 38 -111 36 

Case III 261 23 -87 7 

Of these realizations, the minimum cost network is 288 units. 
The maximum robustness index for Case III is -10. The value 
-10 is the maximum possible value ( )smallλ− that robustness 
index can have and is characterized by networks which do 
not employ any of the 5 uncertain sensor networks. 

Table 3.  Results for the maximum robustness cost 
followed by minimum cost 

 Max RI Realizations Min 
Cost 

Realizations 

Case I -81 72 288 1 

Case II -81 72 288 1 

Case III -10 60 289 1 

4.4 Determination of Pareto front between RI and cost:  

In this section, we evaluate the trade offs between the 
objectives of cost and robustness. Figure 2 shows the pareto 
front for all the three scenarios mentioned above.  
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Direction of Pareto Optimality

 

Fig. 2. Pareto front between Robustness Index (RI) and cost 

For easy interpretation, the pareto fronts are plotted between 
RI− and cost instead of RI and cost. Since RI−  is to be 

minimized, the direction of pareto points is towards the 
origin. The pareto front for Case I is characterized by 24 
pareto points. However, only 4 of these points are distinct 
(A1-D1) and others are the realizations of these pareto points. 
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Of the four pareto points, only two are characterized by 
realizations and the remaining two have single realizations 
each. The designer can choose to operate at any of these four 
points and can select a realization depending on other criteria. 
Similarly, the pareto front for Case II is also characterized by 
(A2-D2) exactly the same four pareto points. However, the 
points C2 and D2 have more realizations than their 
counterparts in C1 and D1. For Case III, the pareto front has 
7 distinct pareto points and a total of 99 pareto points. It can 
be seen that point E3 coincides with B1(and B2). As 
expected, it can be seen that the points in Table 2 and Table 3 
for each of the case form the extreme points of the pareto 
front. Thus these trade offs can guide the designer in 
selecting a suitable network. Moreover, the realizations 
provide additional flexibility to the designer as they allow the 
consideration of other objectives other than the two presented 
in this article. 

5. CONCLUSIONS 

In this work, we have presented an explicit optimization 
formulation for the design of robust reliable sensor networks 
with simultaneous occurrence of known and unknown 
uncertainty levels in the failure rate data. We have shown the 
efficiency of CP in solving these combinatorial problems to 
global optimality and the ease in obtaining the realizations. 
Also, we have presented the trade off between the robustness 
index and cost of the sensor network in terms of the globally 
optimal pareto front to aid in selection of a suitable network. 

NOMENCLATURE 

N set of sensors 
U set of sensors with unknown levels of uncertainty 
K set of sensors with known levels of uncertainty 
G  graph with V nodes and E edges 

,V E   set of all nodes and edges in graph G  
TC  set of all the cutsets 

',S E  set of nodes S V⊂ , edges in S  
iC  set of all cutsets involving the thi variable 

*,ic C  cost of  sensor, total monetary allowance 
m total number of process units without the inclusion                                                       
of the environment node 
n total number of variables in the process plant                                                                                                                                       
(cardinality of the set N) 
λ  failure rate of sensor at time t 

U
iλ  maximum failure rate for the thi  uncertain sensor 

ĉλ  critical/threshold nominal network failure rate 
ˆU
cλ  critical/threshold worst case network failure rate in 

the presence of failure uncertainties 
smallλ  minimum nominal failure rate among the uncertain 

sensors with unknown level of uncertainty 
ix  binary variable, equals one to indicate a sensor not     

being selected and zero otherwise 
e  uncertainty in each of the sensors with unknown 
level of uncertainty 

îλ  nominal failure rate of the thi variable 
ˆU
iλ  failure rate of the thi variable in the presence of 

uncertainty 
*λ̂  optimal nominal network failure rate 

*ˆUλ  optimal worst case network failure rate 
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