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Abstract: We address the automated drug target identification problem for pharmaceutical research.  It is 
often the case in pharmaceutical industry to bring a new promising target to clinical trials only to find 
that it has serious safety concerns or lack of efficacy.  A gene downstream or upstream in the pathway 
can be a remedy, however, finding such an alternative target using existing in-silico or bench tools can be 
extremely labor-intensive. Recently, increasing amounts of information and observations have been 
compiled from different areas of biological research and deposited on databases.  In this work we propose 
a novel computational method to quantify indirect relationships between the objects of biological 
research of interest by using existing relationships from text mining databases to automate the search for 
novel biological targets. We applied our method to analyze 9575 proteins in Ariadne database and create 
a rank-ordered list of proteins that are most similar to the original query. We also compared our method 
with the Jaccard similarity index for link prediction performance. Our method outperformed the Jaccard 
method in predicting the existing links for 9575 proteins in the database.  
Keywords: Target identification; Text mining databases; Similarity Score; Link Prediction; Biological 
networks; Network Connectivity; Bipartite Networks, Information Retrieval, In-silico. 
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1. INTRODUCTION 

Biological processes are the result of interactions involving 
hundreds of thousands of molecular entities. These 
interactions form complex networks. To understand diseases 
and find new drug targets in a systematic way, it is essential 
to understand the topology of these networks. It is often the 
case in pharmaceutical industry to bring a new promising 
target to clinical trials only to find that it has serious safety 
concerns or lack of efficacy.  A gene downstream or 
upstream in the network might be a solution, however, not all 
pathways are known, and finding such an alternative target 
using existing in-silico or bench tools can be extremely labor-
intensive. A method that can automatically find implicit 
relationships between network nodes(proteins, diseases, 
drugs, compounds etc.) can be invaluable in the search of 
new target. Increasing amount of information is compiled 
into biological network format. Text mining is the automated 
way of collecting the relationships between biological entities 
through co-occurrences within electronically available 
records (Wren et al, 2004). It aims at collecting and retrieving 
useful hidden relations from these resources of information. 
Therefore, text mining databases represent different sets of 
pre-compiled information on biological relationships and 

associations, interactions and facts which have been extracted 
from the biomedical literature. 

 In this work we propose a novel computational method of 
drug target discovery by quantifying indirect relationships 
between the nodes of biological networks using interactions 
retrieved from mining databases. This method can also be 
used to annotate diseases with similar etiology, reposition 
existing drugs, or discover adverse events for the targets.      
                                 
This paper is organized as follows. In the next section we will 
briefly summarize our method for quantifying the similarity 
between biological objects based on their network 
connectivity. Section 3 will assess the performance of our 
method compared to a commonly used existing information 
retrieval method. Finally, section 4 will present the 
concluding remarks.  
 
2. METHODS 
Our model is based on a computational approach that 
quantifies the relevance of two biological objects such as 
genes, proteins, compounds, complexes, drugs, diseases 
(hereafter referred to simply as “objects” or “entities”)  by 
comparing their common connections against a random 
network model obtained through the databases. Denoting an 
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object of interest with ‘ A ’, one can identify other objects ‘ B ’. 
(Fig. 1). 

 

Fig. 1. Random bipartite network model for entities A  and 
 B

The text mining database information can be represented as a 
directed bi-partite network. In graph theory a bipartite graph 
is graph whose vertices can be divided into two sets. This is a 
directed graph where the relations between the nodes are 
represented as arrows with originating from a source node 
and ending in a sink node. Out-degree of a source node in a 
directed graph is the number of edges (arrows) originating 
from the node and in-degree of a sink node is the number of 
arrows ending in a sink node. In other words an out-degree is 
the number of distinct objects that a source node (first set 
object) is effecting and in-degree is the number of distinct 
objects a sink node ( second set object) is being effected by a 
source node(first set object). Figure 1 is a directed bi-partite 
graph model where the random network model is sought 
using the parameters of the network. It consists of two sets of 
nodes. The first set nodes are the source nodes A  and and 
the second set nodes are the sink nodes . Each 
node in both sets refers to certain biological object. The 
parameters are the out-degrees of the pair of the entities 

B
7CC1 ,...,

A  
and  and in-degrees of objects in the second set along with 
the number of entities in this set. Out-degrees of 

B
A  and  

are represented with and , whereas in-degrees are 
denoted as " .   is the total number of entities 
in the second set of the bi-partite graph.  Let us denote the 
parameter set that we obtain from the database with,

B
1N  

S

" #SS ,

2N
# Sxxx ,..,, 21

xxx ,..,,, 212N,$ N1% .  
 
Random graph is a method to model the possible ways for A  
and  to connect to the objects of the second set. This 
allows us to quantify the randomness of 

B
A  and  having 

common downstream objects.  We then compare the 
observed common downstream connections against this 
random graph model to quantify the similarity between 

B

A , 
and .  B
 
Let us define the two different events on this bi-partite graph. 
First event is the number of common entities that A  and  
are connected and second event is the identity of these 
common entities. The joint probability of these two events 
can be represented with following expression; 

B

 

 " #& '%|,,...,, 21 kimmmMP k $$                                   (1) 

,where M  is the list of the identities of the common 
downstream entities, and is the number of common entities.  
Using the definition of joint probability distribution, one can 
write the following equation;  

i

 
 
                                                                                              (2) 

 

In this equation  & '%|kiP $  is the probability of first event 
given the parameters, and " #& '%,|,...,1 kimmM kP $$  is the 
conditional probability of second event conditional on the 
first event given the parameters.  
The first term in this equation, & '%|kiP $

1N 2N
 can be derived as 

a function of the parameters; ,  and . In figure 2, a 
random configuration of bipartite graph for 

S
A  and  is 

shown. Connections that are common for the pair are 
represented with solid, whereas node specific connections are 
displayed by dashed lines.  

B

 

 
Figure 2. Example of A  and  having common second set 
entities, , . 

B
2C 3C

 
In order to derive the probabilistic distribution for the number 
of common objects that A  and  share, we start with 
enumeration of different possibilities. The number of 
combinations of the  connections that 

B

1N A   can make with 

 different second set objects is calculated by the following; S
 
      
               (3) 
One can obtain similar equation for ; B
      
              (4) 
 
Let L  denotes the total number of combinations of A   and 
B  connections to any  and  second set objects. 1N 2N L  can 
be calculated as the multiplication of the combinations of 
both cases; 
 
      
                         (5) 
 
The number of combinations for A  and B  having k  
common downstream objects (second set objects or sink 
nodes) can be represented as follows; 
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Once k  connections of A  and B  are fixed, they have 
& 'kN (1  and & 'kN (2  connections remaining respectively. 
The number of objects available in the second set is reduced 
to & 'kS ( . The number of ways that the remaining 
connections of A  could be chosen out of & 'kS (  entities can 
be calculated as follows;  
 

       (7) 
 
 

This will fix the number of all 1N  connections of A  and 
there will be & '1NS (  objects left for & 'kN (2  remaining 
connections of B . The number of combinations for 
remaining connections of B  for the remaining objects is 
represented as follows;  
 
 
      
            (8) 
 
The overall number of combinations that A  and B  are 
connected to k  common objects will be the denoted with D
.It can be written as;  
 
 
      
 `                        (9) 
 
The probability that A  and B  are connected to k  common 
objects is the ratio of the total number of combinations of A  
and B  are connected to k  objects in common to the total 
number of combinations that the pair is connected to objects 
Uin any possible wayU. The probability is written as;  
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After cancelations, we obtain;   

          (11)

    

 
This expression can be approximated by a Poisson 
distribution.  
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,where +  is  a function of   1N , 2N  and S while ,  is the 
normalization factor. It normalizes the cumulative 
distribution to one at  & '21 ,min NNi $  as the probability is 
not defined beyond this point. This approximation allows us 
to obtain a compact representation for the probability term. It 
is less computationally intensive. The aim is to derive a 
compact similarity score function between two objects that 
makes sense intuitively starting from a formal probabilistic 
framework. 
                                                                     
To check the validity of the approximation we calculated sum 
of absolute deviation of the equation (11) from the Poisson 
approximation for all possible values of 

& '" #21,min,...,1,0 NNi $  at different values of 1N  and 2N  . 
This corresponds to the deviation of cumulative distributions 
for Poisson and equation (11). We defined the percentage 
deviation as follows;  
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In figure (3), we illustrated the calculation the value of E  on 
an example. The absolute deviation of Poisson approximation 
corresponds to the sum of lengths of the dotted lines.  
 

 
Figure 3. Deviation of Poisson distribution for 101 $N ,

252 $N , 50$S  
 
In figure (4), the curves for various E  values are shown at 
different values of 1N  and 2N . The area under each curve 
shows the region for the values of  1N  and 2N  where 
Poisson approximation exceeds the given percentage 
deviation. For example the deviation of Poisson 
approximation is less than 10%  when one of the objects has 
four or more connections ( 41 4N ) and the other object 
connected to less than 34% of all second layer objects (

SN 56 34.02 ). 1N  and 2N  can be used interchangeably 
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and the area under the curves remain same for different 
values of S  . This figure shows that Poisson distribution is a 
reasonably good approximation for a large span of 1N  and 

2N  values. 

 
Figure 4. Deviation of Poisson approximation for different  

1N and 2N values. 
One can also derive the conditional probability term on the 
right hand side of equation (2). In figure (5), a possible 
connection pattern is shown for illustration purposes. k   is 
the number of shared entities between A  and B  (in this 
example there are two common entities) , M  shows the list 
of common entities and X is the set of in-degree values for 
these commonly shared objects.  
 

 
Figure 5. Example of A  and B  having common second set 
entities, 2C , 3C  with their in-degrees.  

Let us consider the general case for k  common objects. The 
number of possible ways for A  and B  to be both connected 
to a particular second set object (sink node) with a given in-
degree of ix   is equal the number of 2-combinations of ix  . 
In other words, it is the number of combinations that two 
objects (A and B ) can be connected to  a particular object 
that is known to have  ix objects connected to it. It can be 
calculated as;  
 
      
                     (14) 
  
In this equation the number of combinations where A and 
B are both connected thi object is denoted by ic .  

The number of possible connections of A  and B to Uany U k  
objects with known in-degrees in the downstream is written 
as follows; 
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In this equation there are k  embedded summation terms 
corresponding to k  common objects. Each common object 
can be chosen out of S  different objects. For large S , this 
summation term would be difficult to calculate. Therefore we 
introduce the following approximation.  
       
            (16) 
 
Here we assume that all ic  terms are equal to an average ĉ  
term. If (16) is plugged into expression (15), we obtain the 
following approximation,  
 
      
            (17) 
 
One can represent the number possible ways that A  and B  
are connected to k  UparticularU objects as follows; 

7
$

$
k

i
icT

1
           (18) 

The probability that A - B  pair are connected to k  particular 
objects is calculated as the ratio of the number of 
combinations that this pair is connected to k  Uparticular 
Uobjects to the number of different ways that they are 
connected to  Uany U k  objects.  
 
      
            (19) 
 
 
Plugging expression (19) and (12) into expression (2), we 
obtain  
 
                                                                                                                    
                                                                                        (20)                    
 
 
This equation gives us the probability of two entities having 
k  common downstream objects from the set M .  It is 
derived based on a random bi-partite network model using 
the parameter set, % . The similarity between the pair of 
entities; A  and B is assumed to be based on the statistical 
significance of their common connections according to the 
probability of occurrence in a random network model. To 
quantify the significance of an observed connectivity 
structure of the pair that has common downstream entities, 
we defined the following score function;  
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Hence, the lower the probability of occurrence for a random 
model is, the more significant the event is and therefore the 
higher the score. One can write score in an open form as 
follows; 
 

 
                                                        
      (22) 
 

 
One can use Sterling approximation for the term, & '!log k ; 

& ' & ' kkkk (8 log!log                   (23)                                                                                                                         
 
Using (23), expression for +  in (12) and rearranging the 
terms, expression (22) can be rewritten as follows;   
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This equation can be further simplified by the following 
assumption;   
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Finally, one can obtain the following expression;  
   
      
      
      
                                          
 
                                                                                            (26) 
 
 
This function gives us the similarity score between A  and 
B  based on the network structure and properties.  In this 
expression, & 'cS ˆlog 2  is a network domain-dependent 
constant. A network domain can be defined as part of the 
network with all biological interactions of a certain type. 
Examples of such domains can be transcriptional regulation, 
protein binding, protein modification and any other biological 
function that connects one biological entity to another. Each 
domain might have different number of second layer entities (
S ) and connectivity structure (c ).   
 
One can see that the similarity score is directly proportional 
to number of common downstream objects, k . This is an 

expected result as one expects two entities to be similar when 
they have more common downstream effects. Score is also 
inversely proportional to both 1N  and 2N .  This can be 
interpreted as the more connected the species are the more 
likely they have common downstream effect by chance. 
Finally, the score is inversely proportional to in-degree of the 
common objects connected to the pair.  This is the result of 
the fact that the pair will more likely to have common 
downstream entities that have high in-degree by chance. 
Hence, this commonality gives relatively lower significance 
for the similarity.  
 

3. ASSESSING THE PERFORMANCE 

We applied our algorithm on Ariadne database. Ariadne is a 
Systems Biology software that consists of computational 
methods to generate databases from the literature. Ariadne 
database represent different sets of biological relationships 
which have been extracted from the biomedical literature 
(Novichkova et al., 2003). A rank list for each protein among 
9575 proteins was created according to our similarity score in 
expression (26). We decided to evaluate the link prediction 
performance of our method for this set of proteins. Link 
prediction in networks is the problem of inferring missing 
links from an observed network connections. In other words, 
in a number of domains one constructs a network of 
interactions based on observable data and then tries to infer 
additional links that, while not directly visible, are likely to 
exist. Link prediction offers a very natural basis for 
evaluation as it allows one to assess the capability of a 
method to infer meaningful inferences from the observed 
network data (Nowell and Kleinberg, 2004). Here, we 
slightly modified the link prediction problem and measured 
the capability of our method to infer existing links ( rather 
than missing links as they can only be validated through 
biological experiments) using the observed information from 
the database. In our approach we derived a similarity score 
function (eq.(26)) starting from the probabilistic model using 
only the parameters of the network. Therefore, we don’t use 
any information of existence of any particular link in the 
network. Our similarity score functions quantifies the 
similarity between two objects and we assume that higher 
similarity between a pair of objects can imply existence of a 
network link between them as similar objects tend to regulate 
each other or take parts in same processes.   

We compare our method with the Jaccard similarity index 
that has been a commonly used metric in information 
retrieval (Salton and McGill,1983). Jaccard score can be 
described with the following equation;  
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,where & 'A: , & 'B:  are the sets of entities that objects A  

and B are connected respectively and .  is the cardinality of 
the set . For the network example in figure 5, these sets can 
be written as;  
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We listed the proteins that are connected to each protein from 
the database as in figure 6. In this figure,  iP  represents thi
protein and   jiP , is the thj  protein connected to it. iM  is the 
total number of proteins connected. The following expression 
represents the list for each protein.  

& ' " #iMiii PPPL ,1, ,...,$                        (29) 

 
Figure 6. Representation of a protein and the entities that are  
connected to it.  
We applied our method and Jaccard similarity score to each 
protein and first iM proteins are collected from each rank list.  
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In expression (30), & 'i
J PL )(  and & 'iPL(*)  denote the top 

first iM  proteins from the rank list of similarity scores for 
thi protein. Each rank list is created with a descending order 

of similarity scores. These lists were then compared to 
& 'iPL  for each protein and number of elements that are 

matching was counted. )( J
iT  and (*)

iT represent the number 
of matching list elements for Jaccard and our scoring scheme 
respectively. In other words, we are comparing the list of 
proteins connected to a particular protein i ( shows the 
existent links of thi protein and it is denoted by & 'iPL  )  to 

the list of top similar proteins of thi protein according to a 
particular similarity scoring framework. As higher similarity 
between a pair of proteins implies presence of an actual 
network link, we expect the top similar entities of a particular 
entity to be actually linked to the entity. Therefore, higher 
match between actual links and top similar entities shows a 
better prediction performance.   

We defined total number of matching proteins for both 
methods as follows; 
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In this expression R  denotes the total number of proteins       
( 9575$R ). One can also count the total number of 
connections in the networks as; 
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      (32)  

There are 268,706 $M  total connections in this network.  
We calculated total number of matching list elements for all 
proteins as follows; 119,116 (*) $T  , 89,436 )( $JT . This 
shows that our method outperforms the Jaccard method for 
prediction of existing links in the network. Furthermore, we 
defined a relative prediction performance measure and 
plotted it for all proteins. This measure defined as follows; 
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J
ii

M
TT
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$                                             (33) 

 In figure 7, one can see that for most of the proteins ( 5658 
out of 9575 proteins ) our method predicts more existing 
connections than the Jaccard. Only for 314 proteins the 
Jaccard score has better performance.  

 
Figure 7. Relative link prediction performance of our method 
against Jaccard as in expression (33) for 9575 proteins.  
4. CONCLUSIONS 

The contribution of this work can be summarized in two 
ways. First, our method is a novel computational algorithm to 
quantify indirect relationships between the objects of 
biological research of interest by using existing relationships 
from text mining databases to automate the search for novel 
drug targets. This method can also be used for different 
purposes such as; annotating diseases with similar etiology, 
reposition of existing drugs, or discovering adverse events for 
the targets. Secondly, in a case study involving 9575 proteins 
in the Ariadne database, our method outperformed the 
Jaccard method for the prediction of existing links for all 
proteins. This illustrates its prediction capability for 
biological networks. 
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