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Abstract: Contribution plots of the monitored statistics, Q and T2, are investigated to locate faulty
variables when the statistics are out of their control limits. It is a popular method for fault isolation;
however, it is well known that the smearing out of contributions leads to misdiagnose the faulty variables.
Alternatively, the reconstruction-based contribution approach is claimed to guarantee correct diagnosis. It
has been examined in this paper that the approach fails to precisely locate faulty variables when
encountering multiple sensor faults. A fault isolation chart on principal component (PC) subspace is
provided to locate faulty variables for a process with multiple operating regions. The results of the
quadruple-tank process simulation show the proposed approach successfully locate faulty variables in a
case of multiple sensor faults, as long as the process behavior can be depicted by the scores on the PC
subspace.



1. INTRODUCTION

Nowadays, most complex processes are equipped with
measurement sensors for process control or indicators.
Massive amounts of process data become accessible in a real-
time manner, whereas, most of them are stored in historical
databases. Therefore, it is more practical to develop methods
of fault detection and isolation (FDI) for process monitoring
based on data-driven approaches comparing to other methods
based on rigorous process models or knowledge-based
approaches. In chemical processes, there are a large number
of measured and controlled variables which are highly
correlated. Principal component analysis (PCA) is a popular
method to decompose the variable space into principal
component (PC) subspace and residual subspace. Two
statistics with their control limits are defined from historical
data for the detection of process abnormalities. The T2

statistic is used to monitor data variations on the PC subspace;
on the other hand, the deviations on the residual subspace can
be captured by using the Q statistic. However, for a
multimode process, the T2 statistic is inadequate to monitor
the systematic parts of PCA, since the data variations will not
follow a Gaussian distribution on the PC subspace. In
contrast, the Q statistic is still available for monitoring the
residual parts of PCA for a process with multiple operating
regions, as long as, the retained PCs are capable of capturing
the common-cause variability of the process, and the residual
subspace only contains measured noise.

Gaussian mixture model (GMM) with Bayes rule is a popular
tool for unsupervised pattern recognition. Based on the
assumption that the data variations follow a Gaussian
distribution within a steady-state operating mode, GMM has
been utilized to extract multiple operating regions from
historical process data. For example, Wang and McGreavy
(1998) applied Bayesian automatic classification (AutoClass)

developed by NASA to cluster data from a FCCU into classes
corresponding to various operating modes. Yu and Qin
(2008) used the Figueiredo-Jain (F-J) algorithm to determine
the cluster parameters of Bayesian classification. In their
approach, a fault detection index was derived based on
Mahalanobis distance and the posterior probability of each
cluster; however, faulty variables were not isolated when the
index exceeded its control limits.

After a fault is detected, the faulty variables need to be
isolated in order to diagnose the root cause. The contribution
plots are the most popular tools to identify which variables
push the statistics out of their control limits. However,
Alcala and Qin (2009) have proven that the contribution plot
approaches will not guarantee to isolate the faulty variables,
precisely. Besides, they proposed a reconstruction-based
contribution (RBC) approach to locate faulty variables
without fault smearing effect. However, the RBC approach
may not guarantee to isolate the correct faulty variables when
encountering an abnormal event with multiple fault directions.
It has been detailed in Appendix.

In this paper, a local T2 statistic with its control limits is
provided to monitor the systematic parts of PCA for each
operating mode. The differences from observations to cluster
center on the PC subspace are measured, when an abnormal
event is detected, for isolating faulty variables. The control
limits of the differences are derived in this paper. When the
PC subspace fails to portray process behavior during
abnormal event, the subspace needs to be adapted by using
recursive PCA (RPCA, Li et al., 2000) with new event data.
After that, the parameters of known event clusters are
transferred onto the updated subspace (Liu, 2008). It is much
easier to interpret the revealed information when the process
behavior can be captured by the PC subspace. The proposed
approach is designed to locate the faulty variables for post
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analysis. It is not necessary to be implemented in a real-time
manner. The root causes of the abnormal events need to be
diagnosed through locating the faulty variables in the first
place to prevent the faults reoccurring. These tasks are
accomplished by post analysis with the process knowledge
involved, i.e., the process engineers have to justify the
revealed information by the proposed approach.

The remainder of this paper is organized as follows. Section
2 gives a preliminary of PCA and GMM with Bayes rule.
The proposed approach of monitoring local operating region
and creating fault isolation charts is detailed in section 3. In
section 4, the utility of the proposed monitoring approach is
demonstrated with a simulated quadruple-tank process
example. Finally, conclusions are given.

2. BASIC THEORY

2.1 Principal Component Analysis

Consider the data matrix ×m nRX with m rows of
observations and n columns of variables. Each column is
normalized to zero mean and unit variance. The covariance
of the reference data can be estimated as:

 
T T T1

1m
  


S X X PΛP PΛP  (1)

where Λ is a diagonal matrix with the first K terms of the
significant eigenvalues, and P contains the respective
eigenvectors. The Λand Pare the residual eigenvalues and
eigenvectors respectively. The data matrix X can be
decomposed as:

T T ˆ   X XPP XPP X E (2)

with X̂ being the projection of the data matrix X onto the
subspace formed by the first K eigenvectors, named principal
component (PC) subspace, and E being the remainder of X
that is orthogonal to the subspace.

Statistic Q is defined as a measure of the variations of
residual parts of data.

   T
T TQ    x x x x xPP x (3)

In addition, another measure for the variations of systematic
parts on the PC subspace is the statistic T2.

2 1 T T 1 TT   xPΛ Px tΛ t (4)
where t are the first K term scores. It is Mahalanobis distance
from the origin of the subspace to the projection of the
observations. The confidence limits of Q and T2 can be
found in Jackson (1991).

2.2 Gaussian Mixture Model with Bayes rule

For a process with c operating regions, it can be assumed that
the data spread follows a Gaussian distribution within a
steady-state region. The probability density function (pdf) of

the training data on the PC subspace can be estimated by
using Gaussian mixture model:

  
1

c

k k
k

p p P


t t θ (5)

where Pk and  kp t θ are the priori probability and the

conditional pdf, which is a Gaussian distribution with
parameters kθ, of the kth operating region. If Pk and  kp t θ

for all classes are known, the posteriori probability of the jth

event can be found from Bayes rule.
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Those cluster parameters, including priori probabilities
 1 2 c, ,...P P PP = , cluster centers  1 c,...,μ μ μ , and

covariances  1 c,...,Σ Σ Σ , can be iterated from the
Expectation-Maximization (EM) algorithm as follows:

E-Step:

Calculate the posteriori probabilities at the tth iteration:
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M-Step:

Compute the next estimated parameters by:
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in which m is the number of observations. The solution of
maximum log-likelihood function is found by repeating E
and M steps until every parameter has converged to within a
tolerance criterion .

3. PROPOSED APPROACH

3.1 Local Statistic T2 and Fault Isolation Charts

The control limits of traditional statistic T2 are derived based
on the assumption that the normal operational data spread
following a Gaussian distribution; therefore, it is inadequate
to monitor systematic variations of a process with multiple
operating modes by using conventional T2 statistic. In this
paper, a local statistic T2 is utilized to detect the variations of
systematic parts of PCA. After converging the EM steps,
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perform singular value decomposition (SVD) on each cluster
covariance.

T 1i i i i , i ...c Σ UΛU (11)

where iΛ is a diagonal matrix with eigenvalues of the ith

cluster covariance, and Ui is a full matrix with corresponding
eigenvectors. The local T2 statistic for the ith cluster can be
obtained from the Mahalanobis distance to the cluster center:

       T T2 1 1 T
i i i i i i i i iT       t μ Σ tμ tμ UΛ U tμ (12)

where t is a score vector on the PC subspace, and i is the ith

cluster center. Since the conditional pdf is a Gaussian
distribution, the confidence limits of the ith cluster can be
defined as:

 2 1
i

i
i , K ,m -K ,

i

K m -
T F

m - K
  (13)

where mi is the number of observations belonging to the ith

cluster, K is the dimension of the subspace, and
iK ,m -K ,F  is

an F distribution with degrees of freedom K and mi-K within
(1-) confidence limits.

Alcala and Qin (2009) have proven that the contribution plot
approaches will not guarantee to isolate the correct faulty
variables. It can be expected that the contribution plots of
local T2 suffer the same difficulty. A new fault isolation
chart is provided in this subsection. Assuming that the
process operates in the ith operating mode, it can be detected
from local T2 with its control limits when a sample leaving
the steady-state region. The faulty variables are isolated by
comparing the differences between measurements and cluster
centers, i.e. T

ix μP , with their confidence limits. The
confidence limits of the differences for each variable need to
be derived for locating faulty variables, it is because that the
data variations on each variable direction may not be
identical within a steady-state region.

In the case of the process behavior that can be captured by
the scores on the PC subspace during abnormalities, which is
the statistic Q still under its control limits, the differences can
be rewritten as  T

it μ P . Based on the assumption that the
data variations follow a Gaussian distribution within an
operating mode, the (1-) confidence limits for the
differences within the ith operating region can be written as
(Conlin et al., 2000):

    T T
2 2/ i i / i iz z   x μP tμ P   (14)

in which 2/z is the corresponding standard normal deviate,
and i is the standard deviation for each variable difference
calculated from the data belonging to the ith cluster. The
standard deviation can be calculated from the covariance of
the ith cluster.

    0 5T T .

i i idiag t μ P PΣP (15)

The faulty variables can be isolated by plotting the variable
differences with their control limits. It should be noted that
the necessary condition of the proposed method is that the PC

subspace is capable of describing the process abnormal
behavior, i.e., the Q statistics under its control limits. When
the statistic Q is out of its control limits, the PC subspace
needs to be adapted by using new event data for describing
the process’s new behavior.

3.2 Recursive PCA and Adapted Clusters

Assuming the data of new events with m' rows of
observations, the data matrix is denoted as ×m' n' RW . The
mean vector ( 'W ) and the diagonal matrix of standard
deviations ( 'S ) of the new event data have to be prepared to

normalize the data matrix   1
m'' ' ' ' X W 1W S with zero

means and unit variances, where 1 is a column vector in
which all elements are one. The covariance matrix of the
new dataset can be obtained from the normalized data matrix:

 'T 1' '
m' m' m' m' Σ X X .

The mean vector and the standard deviations of combining
the reference and the new datasets can be derived as follows:

* m m'
'

m* m*
 W W W (16)

   2 2 2 2 21 1
1

*
i i i i i*

i

m m w m' ' m' w' m* w
m*

      



(17)

1 2
* * * *

ndiag     S 

in which W and i respectively are the mean vector and the
ith standard deviation in the old dataset, and the m* is the
total number of observations in the combined dataset, i.e.
m* m m'  . Based on the updated means and standard
deviations, the covariance matrix of the combined dataset is
written as:

     1 1 1 1* * *
m* m m'm m* m' m*     Σ Σ Σ (18)

where *
mΣ and *

m'Σ respectively are the covariances of old
and new event datasets based on means and standard
deviations of combining dataset. The eigenvectors ( *P ) can
be obtained to span the new PC subspace.

T* * * *
m* Σ P ΛP (19)

where *Λ is the diagonal matrix of the eigenvalues.

After updating the PC subspace, the known event clusters
need to be transferred onto the new subspace. The center of
the ith cluster can be obtained from the previous subspace
through coordinate rotating (Ck,k*) and shifting ( 1* *1 WS P ).

1* * *
i i

 μ μC 1WS P, T 1* *C P SS P (20)

The corresponding covariance is written by:
T T*

i i i Σ CΣC CΣC  (21)

in which  T 1i i i im Σ TT  is the covariance of the (k+1)th

to nth term score vectors for the ith cluster, and its coordinate
rotating term is T 1* *C P SS P  .
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4. ILLUSTRATIVE EXAMPLE

The quadruple-tank process was developed by Johansson
(2000) as a multivariable laboratory process with an
adjustable zero. The process consists of four interconnected
water tanks, two pumps, and associated valves. The
schematic diagram is shown in Fig. 1. A nonlinear model is
derived based on mass balances and Bernoulli’s law as
follows:

1 1 3 1
1 3 1 1 1 1

1 1 1

2 2 ,
dh a a f

gh gh f k v
dt A A A

    (22a)

2 2 4 2
2 4 2 2 2 2

2 2 2

2 2 ,
dh a a f

gh gh f k v
dt A A A

    (22b)

 3 3 3
3 3 2 2 2

3 3

2 , 1
dh a f

gh f k v
dt A A

    (22c)

 4 4 4
4 4 1 1 1

4 4

2 , 1
dh a f

gh f k v
dt A A

    (22d)

where Ai is the cross section of the Tank i, ai is the cross
section of the outlet and hi is the water level. The voltage
applied to Pump i is vi and the corresponding flow is kivi.
The parameters  1 2, 0,1 are determined from the valves

set before the experiment. The flow to Tank 1 is 1 1 1k v and

the flow to Tank 4 is  1 1 11 k v and similarly for Tank 2
and Tank 3. The acceleration of gravity is denoted as g. The
quadruple-tank process has been studied at two operating
modes. The parameter values and the initial water levels are
listed in Table 1. The normal operational data with two
modes were generated by using (22a) - (22d) with respective
parameters listed in Table 1, where the pump voltages and
the tank levels were corrupted by Gaussian white noise with
zero mean and standard deviation of 0.05. Tank levels h1 - h4

and flow rates f1 - f4 were observed every 10 seconds.

Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Tank 1 Tank 2Tank 2

Tank 3 Tank 4Tank 3Tank 3 Tank 4Tank 4

Pump 1 Pump 2

Fig. 1. Schematic diagram of the quadruple-tank process.

For each mode, 100 observations were collected. PCA was
applied to the normal operational data and 2PCs were
retained by using cross-validation. The PCA model captured
about 93% of the total variance. The two scores have been
plotted in Fig. 2, in which the dash line is 99% confidence
limit of conventional T2. The data were clustered into two
groups, labeled with C1 and C2, representing two operating
modes, Mode 1 and 2 respectively. The solid lines are 99%
confidence limits of local T2 for each mode. It is obvious that
the local T2 statistic is more suitable to monitor systematic
variations of PCA than the conventional T2 for a multimode
process.

Table 1. Simulation parameters for the quadruple-tank
process with two operating modes.

Parameter Unit Mode 1 Mode 2
A1, A3 cm2 28
A2, A4 cm2 32
a1, a3 cm2 0.071
a2, a4 cm2 0.057

g cm/s2 981
h1, h2 cm 12.4, 12.7 12.6, 13.0
h3, h4 cm 1.8, 1.4 4.8, 4.9
v1, v2 V 3.00, 3.00 3.15, 3.15
k1, k2 cm3/Vs 3.33, 3.35 3.14, 3.29

1 2, 0.7, 0.6 0.43, 0.34

-6 -3 0 3 6
-4

-2

0

2

4

C1

t 2

t
1

C2

Fig. 2. The two scores of the normal operational data with
99% confidence limits of conventional T2, dash line, and
local T2, solid lines.

An abnormal situation with multiple sensor faults was studied
in this work. Before inducing the abnormal event, 100
normal operational data were generated by using (22a) - (22d)
with parameters of Mode 1. Then, 100 abnormal event data
were generated by modifying the case study from He et al.
(2005). They assumed that there was a small hole at the
bottom of Tank 1. The mass balance equation for Tank 1
was rewritten as:

1 1 3 1
1 3 1

1 1 1 1

2 2 2leakdh a a f a
gh gh gh

dt A A A A
    (23)

in which the cross section aleak = 0.005 cm2. In this case, a
small hole at the bottom of Tank 2 was assumed at the same
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time for generating multiple sensor faults. The mass balance
equation for Tank 2 was rewritten as:

2 2 4 2
2 4 2

2 2 2 2

2 2 2leakdh a a f a
gh gh gh

dt A A A A
    (24)

The other mass balance equations were same as the normal
operating condition. In Fig. 3, it indicates both statistics Q
and local T2 are out of their control limits after the 100th

observation. The normalized RBC of Q has been plotted in
Fig. 4, in which each contribution has been normalized with
corresponding 99% confidence limit. It is obvious that the
multiple sensor faults smeared out over all variables. Results
show the RBC approach fails to guarantee to isolate faulty
variables precisely in a case of multiple faulty variables.
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Fig. 3. Process monitoring with statistic Q and local T2.
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Fig. 4. Fault isolation with normalized RBC of Q.

The PC subspace was adapted by using RPCA with new
event data. After adapting the PC subspace, the statistic Q of
new event data were under the control limits, as Fig. 5 shows.
It should be noted that the local T2 were still out of the
control limits after the 100th sample. It demonstrates that the
drawback of RPCA, which the monitoring model would be
misled by blindly updating, can be eliminated by introducing
local T2 statistic. After transferring the cluster parameters
onto the updated PC subspace, the proposed fault isolation
charts have been plotted in Fig. 6, in which each difference
from the cluster center has been normalized by using the
corresponding 99% confidence limit. It shows that the levels

of Tank 1 and 2, h1 and h2, were under their lower control
limits after the 100th sample, whereas the other variables were
within their control limits. Results show the proposed
method is capable of isolating the faulty variables precisely,
as long as the process behavior can be captured by the scores
on the PC subspace, i.e., the statistic Q staying within its
control limits.
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Fig. 5. Statistic Q and local T2 on the adapted PC subspace.
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Fig. 6. Fault isolation charts on the adapted PC subspace.

5. CONCLUSIONS

In chemical processes, multiple normal operations are
common. The conventional T2 statistic is inadequate to
monitor the systematic parts of PCA because of that the
distribution of normal operational data is not a Gaussian
distribution. The multiple operating regions are extracted
from historical data by using Gaussian mixture model with
Bayes rule in this paper. A local T2 statistic with its control
limits is provided to monitor data variations on the PC
subspace for each operating region. It is much sounder than
conventional T2 from the perspective of statistical process
monitoring (SPM). Fault isolation charts with their control
limits are also provided to locate faulty variables in this paper.
Since traditional contribution plots and RBC approach suffer
fault smearing effect when encountering multiple sensor
faults, they fail to guarantee correct diagnosis results. The
results of quadruple-tank process simulation show the faulty
variables are located precisely in a case of multiple sensor
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faults, as long as the PC subspace is capable of capturing
process behavior during abnormalities. Besides, it has been
demonstrated that the drawback of RPCA, which the
monitoring model would be misled by blindly updating, is
eliminated by introducing local T2 statistic.
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APPENDIX. ILLUSTRATE THE RBC APPROACH
ENCOUNTERING MULTIPLE SENSOR FAULTS

In this appendix, the RBC of Q is examined and the other
types of RBC suffer the similar situations. According to the
work of Alcala and Qin (2009), the RBC of Q for the ith

variable is defined as:

 2T

T

iQ
i

i i

RBC



 

Cx

C


 (A.1)

where i is a column vector in which the ith element is one

and the others are zero, and TC PP . The measurements x
contain two sensor faults by following the assumption of
Alcala and Qin (2009):

1 2j kf f x (A.2)

in which j and k are the directions of faulty variables and
f1 and f2 are the respective fault magnitudes. The RBC of Q
for the ith and jth variables can be obtained by substituting the
fault in (A.2) into (A.1).

2 2
2 2

1 2 1 22ij ij ikQ ik
i

ii ii ii

c c cc
RBC f f f f

c c c
  
 
   (A.3)

2 2
2 2

1 2 1 22jj jk jj jkQ
j

jj jj jj

c c c c
RBC f f f f

c c c
  
  
   (A.4)

where T
ij i jc  C . Correct diagnosis is guaranteed only

when the RBC value of the non-faulty variable is less than or
equal to the RBC value of the faulty one, i.e.,

0Q Q
j iRBC RBC  in this case. Rearrange (A.3) and (A.4):

2 2 2 2
2 2

1 2

1 22

jj ij jkQ Q ik
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jj jk ij ik

jj ii

c c c c
RBC RBC f f

c c c c

c c c c
f f

c c

   
          

   
 

   
 

   
   

 
 

(A.5)

Since the fault magnitudes of f1 and f2 are arbitrary values,
above equation is larger than or equal to zero only when the
coefficients of the right-hand terms are larger than or equal to
zero. The coefficient of the first term is sustained by the
work of Alcala and Qin (2009), but the other ones may not
hold. For example, the coefficient of the second term
represents the smearing effect of the kth faulty variable over
the ith and the jth variables. There is no particular reason that
the smearing effect of the jth variable is larger than or equal to
the ith variable from the kth faulty variable. It leads that the
RBC approach does not guarantee to isolate the correct faulty
variables when encountering multiple sensor faults.
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