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Abstract: In this paper, a cumulative sum based statistical method is used to detect faults in the 
Tennessee Eastman Process (TEP). The methodology is focused on three particular faults that could not 

be observed with other fault detection methodologies previously reported. Hotelling’s-T2 charting based 

on the cumulative sums of the faults’ relevant variables was successful in detecting these faults, however, 

with significant delay. The speed of detection is further enhanced by retuning the fault’s relevant 

controller at the expense of closed loop performance. 
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1. INTRODUCTION 

 

An important aspect for the safe operation of chemical 

process is the rapid detection and removal of faults.  Different 

methods have been proposed in the literature for fault 

detection and fault diagnosis (Venkatasubramanian et al., 
2003).  These methods can be broadly categorized into three 

main classes: (1) Data driven methods; (2) Analytical 

methods, and (3) Knowledge based methods (Chiang et al., 

2001).  Each of these methods has its own advantages and 

disadvantages depending on the problem.  A number of 

researchers suggest combining these methods to improve 

detection.  For examples, (Chiang and Braatz, 2001; Lee et 

al., 2003) have observed that data driven analysis is enhanced 

if knowledge of the process is used to describe fundamental 

causal relationships among variables.  Analytical methods 

require the use of first-principle models, thus making them 
less attractive for large scale systems.  Therefore, they are not 

considered in the current work.  In the chemical industry, 

large amount of data are measured by a variety of sensors and 

subsequently stored.  These data generally exhibit high 

correlation in time and cross-correlation among variables.  

On the other hand, most of the data driven monitoring 

techniques assumed that data are uncorrelated and normally 

distributed.  Different approaches have been proposed to 

mitigate the violation of these assumptions such as time 

series analysis and projection to latent variables methods (e.g. 

Principal Components Analysis) (MacGregor and Kourti, 

1995).     
Most monitoring data driven techniques are based on the 

statistical hypothesis-testing principle.  Two types of errors 

occur when performing hypothesis testing referred to as type 

I and type II errors.  A type I error occurs when a control 

chart indicates a fault in the absence of it, whereas a type II 

error occurs when a control chart fails to declare the 

existence of a fault, although it has occurred (Montgomery, 

1997).   

This paper proposes the application of Cumulative-Sum 

(CUSUM) based models for the detection of faults in the 

Tennessee Eastman problem (TEP) (Downs and Vogel, 

1993).  More specifically, the paper will investigate the 
application of Location CUSUM (LCS) and Scale CUSUM 

(SCS) based models to detect three particular faults that have 

been found unobservable by other algorithms previously 

applied to the TEP (Ding et al, 2009; Zhang, 2009; Chiang et 

al, 2001; Chiang and Braatz, 2001; Ku et al, 1995).   After 

demonstrating the detection capability of the CUSUM based 

methods for each one of the three faults, a Hotelling’s T
2 

chart based on a cumulative sum of the observations is 

proposed for the individual or simultaneous detection of these 

three faults.  Then, to quantify the fault observability, a 

statistical measure that is related to the speed of detection is 
defined. Finally, since the faults are observed from variables 

that are embedded within control loops, the effect of 

controllers’ tuning parameters on the trade-offs between 

speed of fault detection versus process variability will be 

assessed.  The paper is organised as follows: A description of 

the implemented CUSUM and Hotelling’s T
2 statistics’ and 

the metric used to gauge fault observability are given in 

section 2. Section 3 presents an overview of the faults 

considered in the Tennessee Eastman Process (TEP) and 

illustrates the use of the CUSUM based methods for the 

detection of the three abovementioned faults Then, using the 

statistical measure of observability presented in section 2, the 
tradeoffs between fault observability to process variability are 

investigated. 

 

2. CUSUM, HOTELLING’S T2 and AVERAGE RUN 

LENGTH (ARL) 

 

2.1 The Cumulative sum (CUSUM) based control charts 

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT4.2

Copyright held by the International Federation of Automatic Control 109



 

 

     

 

A key disadvantage of Shewhart like control charts often 

used for detection is that they only use current time-interval 

information while not accounting for the entire time history. 

Hence, those charts are relatively insensitive to small shifts in 

the process variables especially for small signal to noise ratio. 

These shortcomings motivate the use of other alternatives 

such as the univariate or the multivariate version of the 

CUSUM based charts (MacGregor and Kourti, 1995).  Three 

types of statistical charts are used in this paper.  Specifically, 

location cumulative sum (LCS), scale cumulative sum (SCS) 

and the Hotelling’s T2.  The current study proposes the use of 
a combined version of the three algorithms as described in 

the following section.  The LCS and SCS algorithms are 

examples of univariate statistics while the Hotelling’s T2 is a 

multivariate statistics.  Both the LCS and SCS are performed 

using the following two statistics, corresponding to a two 

sided hypothesis test (Hawkins and Olwell, 1998): 
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; where k , µi.c , Ci

+ and Ci
-
 are the slack variable, the in 

control mean , the upper and the lower CUSUM statistics, 

respectively.  The role of the slack variables is to introduce 

robustness to the calculated statistics.  At every new sample, 

the statistics’ in equations (1) and (2) result in the 

accumulation of small deviations in the mean (LCS) or small 

changes in the variability (SCS).  These accumulations are 

corrected using the slack variable and compared to zero using 

the (max) operation.  When either one of the two statistics in 

equations (1) and (2)  exceed a threshold H, the process is 

considered to be out of control.  Following their respective 

definitions, the LCS is especially effective for detecting 
changes in the average whereas the SCS is suitable for 

detecting changes in variability.  Guidelines for the selection 

of k and H have been reported (Hawkins and Olwell, 1998; 

Montgomery, 1997).  Typically k is selected to be half of the 

expected shift in either µ or σ.  H is determined so that a 

prespecified ARLo.c, to be defined in the following section, is 

achieved. It should be noticed that when using equations (1) 

and (2), the LCS uses the original raw data xi, whereas the 

SCS uses the following standardized quantity: 

                                
349.0

822.0−
=

i
y

i
x                                (3)                         

; where yi denotes the original raw data. A derivation of the 

quantities in equation (3) is given in Appendix A.  Although 

LCS and SCS can be applied to individual measurements, 

there are many situations in which a pooled representative 
statistic for more than one variable is necessary.  This is 

especially important when it is desired to present the 

operators with compact information to simplify the 

monitoring activities for the process.  For that purpose, when 

the monitored variables are normally and statistically 

independent, the Hotelling’s T2 can be used.  The Hotelling’s 

T
2 statistics and the upper and lower control limits are given 

by: 
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; where p is the number of monitored variables and m is the 

total number of samples.  In the current work the cumulative 

sum statistics’ are combined together into one statistic, 

namely, the Hotelling’s T2 as described in a later section. 

 

2.2. The ARLo.c as an observability measure 

 
Observability of a fault is referred to the ability to detect the 

fault from the chosen set of measurements.  In the current 

work, the statistical measure used to gauge observability is 

the out-of-control Average Run Length (ARLo.c).  The 

subscript (o.c) stands for out of control.  The ARLo.c is 

defined as the average number of points that must be sampled 

or plotted before the chart signals and it is a function of the 

probability of type II error (β), that is  

                                                                                                                         

                                  )(. βfcoARL =                                   (6) 

                                   

Due to their integrating nature, cumulative sum based 

techniques require some time before a fault can be detected, 

especially if the changes are very small.  Accordingly, the 

ARLo.c is a suitable metric to quantify this expected delay in 

detection. 

For example, if in response to a certain fault, the calculated 

ARLo.c= 1, the fault would be detected, on the average, after 
the first sample following the onset of the fault.  On the other 

hand, an ARLo.c= infinity or a very large number implies that 

the fault is unobservable or it takes a long time to observe it.  

The value of the ARLo.c depends on the type of chart that is 

used for monitoring. Several analytical expressions are 

available for specific statistical charts (Montgomery, 1997). 

The above discussion showed the feasibility of using the 

ARLo.c as a fault observability index.  Different approaches to 

estimate the ARLo.c based on the Markov chain approach 

appeared in the literature, (e.g. Brook and Evans, 1972) but in 

practice, the ARLo.c is usually estimated from simulations 

conducted with random realizations of the disturbances 
(Woodall and Ncube, 1985).  The latter approach is adopted 

in the current study. 

 
3. TENNESSE EASTMAN PROCESS (TEP) AND THE    

“UNOBSERVABLE” FAULTS 

 
The Tennessee Eastman process has been widely used as a 

benchmark problem to compare various monitoring solutions 

(Chiang et al., 2001; Ku et al., 1995; Lee et al., 2004; Ding et 

al., 2009).  The process is open loop unstable and consists of 

five major unit operations, as shown in (Fig. 1): reactor, 

condenser, compressor, separator and stripper.  The process 

produces two liquid products (G and H) and one by-product 

(F) from four gaseous reactants (A, C, D, E) and an inert (B).  

Based on the required product mix and production rate, the 

plant can be operated according to six different modes of 

operation.  The original open loop FORTRAN code was 
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provided by Downs and Vogel, 1993. The simulations of the 

plant were done with the second decentralized control 

structure proposed in (Lyman and Georgakis, 1995).  

Different monitoring techniques have been tested and 

reported for the TEP.  These techniques have shown different 

capabilities in detecting the majority of the 20 faults 

generally assumed for the process. 
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Fig. 1. Tennessee Eastman process with the second control 

scheme described in (Lyman and Georgakis, 1995); the 

circles indicate the location of the faults described in Table 1 

 
However, all of these previously reported techniques have 

consistently failed in detecting the three particular faults 

described in Table 1. 

 

Table.1 The “unobservable” faults of the TEP  

Faults Description      Nature 

IDV(3) D feed temp. Step change                      

IDV(9) D feed temp. Random variation 

IDV(15) 
Condenser cooling 

water valve 
Valve stiction              

 

The resulted lack of observability when using specific 

techniques is attributed to the statistically insignificant 

changes, (i.e. changes in the process mean and/or variance), 

exhibited by the system when these faults occur.  For 

fairness, it should be stressed that in most of the reported 

work, the detection was based on current time measurements 
thus the entire time histories of the measurements were not 

considered for detection as done in the CUSUM calculations 

proposed in the current study.  However, the fact remains that 

these faults have not been detected in previous studies while 

they may have an important economic or operational impact. 

Thus it is still very relevant to attempt to detect them.  Later 

in the paper it will be shown that CUSUM based statistics are 

successful in observing these three faults after a certain 

period of time following the occurrence of the fault.  .  

 

3.1 Previous attempts to tackle the TEP faults  

 

Almost, all of the methods previously applied to the TEP 

were of multivariate nature. Among these techniques, for 

example, is the dynamic principal component analysis 

(DPCA) proposed by (Ku el al; 1995).  Fig. 2 shows the 

results of the application of DPCA for the TEP using the T2. 

The statistic T2 in Fig .2 is based on the sum of squares of the 

scores resulting from DPCA model. The DPCA has the 

advantage of taking into account information along several 

time intervals in contrast to the conventional static PCA 

which is based solely on data collected at the current time. 

Accordingly, DPCA is more suitable for dynamical systems. 

The bounds of normal operation corresponding to a 95% and 

a 99% confidence levels i.e. no fault has occurred, are shown 

as dotted lines in Fig.2 and are calculated by equation (5). 

The meaning of these bounds is that if the T2 is above these 

bounds after the occurrence of the fault, then the fault is 

signalled.  For the plots in Fig. 2 the corresponding faults 
were introduced at time=160 samples. However, as shown in 

Fig. 2, the T2 statistics fails to surpass the thresholds after the 

onset of the 3 faults, i.e. IDV(3), IDV(9) and IDV(15). 

Hence, these faults cannot be detected by DPCA.   It should 

be noticed that when a PCA/DPCA are used, p is replaced 

with a in equation (5), where a is the number of principal 

components retained in the PCA/DPCA model.  
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Fig. 2.   T2 based on DPCA for the three unobservable faults 

of TEP, i.e. IDV (3), IDV (9) and IDV (15). The horizontal 
dotted lines represent the 95% and 99% confidence limits. 

 

Chang et al, 2001 have performed a comparative study of 

multivariate techniques for detection of the faults in the TEP. 

They compared the PCA, DPCA and the subspace Canonical 

Variate Analysis (CVA) algorithms.  Their performance 

index was the misclassification rate, i.e. the number of times 

the fault is not detected although the fault has occurred.  

Their conclusion was that the CVA results in the lowest 

misclassification rate in particular when monitoring the 

residual space with respect to an identified state space model. 
However, the three faults in Table 1 were excluded from the 

overall comparison, simply, because they can not be observed 

and high misclassification rates were associated with them. 

Other methods that were applied to the TEP problem are the 

Dynamic Independent Component Analysis (DICA) (Lee et 

al, 2003) and recently, a new subspace identification based 

method proposed by (Ding et al., 2009).  All these methods 

excluded from their overall analysis the three faults given in 

Table 1.  

 

3.2 The CUSUM charting approach for the TEP 

unobservable faults  
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The inability of previous techniques to detect the 3 faults 

given in Table 1 motivates the use of cumulative sum 

measures. Although Multivariate Cumulative Sum 

(MCUSUM) of all of the available TEP measurements could 

be used to detect the TEP faults (MacGregor and Kourti, 

1995; Woodall and Ncube, 1985), this technique was still 

unable to detect these three faults.  The latter has been tested 

by the authors; however, the results are not shown for 

brevity. Accordingly, it was decided to use a univariate 

Cusum on relevant variables as follows.  Since the Cusum 

based statistics’ are especially suitable to detect small 
changes in the process mean or small changes in process 

variability, it is important to identify the specific variables 

that exhibit these types of changes and apply the cusum 

operation on these variables.  To find the variables for which 

the CUSUM operation should be applied, knowledge about 

the process was used. For example, it was observed that IDV 

(3) (Table 1; small constant change in feed concentration) 

affects the steady state in the reactor. Since the reaction is 

highly exothermic and to keep the level of conversion at a 

desired level, manipulated variable XMV [10] must change to 

eliminate any changes in the mean of the steady-state reactor 
temperature.  Then, the local cumulative sum of the 

manipulated variable XMV[10] is expected to provide 

detection of the corresponding fault after sufficient errors 

between the new steady state mean and the old steady state 

mean are integrated by the CUSUM operation. Based on 

similar arguments it is possible to find the individual relevant 

variables that are most sensitive to each fault and for which 

the Cusum operation should be applied to detect that 

particular fault.  The faults and the corresponding variables 

used for detection are given in Table 2. 

 

Table.2 The unobservable faults/process variables pairing 
 

Faults Measurement* Description 

IDV(3) XMV[10] Reactor cooling water flow 

IDV(9) XMEAS[21] Reactor cooling outlet temp. 

IDV(15) XMV[11] Condenser cooling water flow 
*The variable measurements as appeared in (Down and 

Vogel, 1993) 

 

Also,  since IDV(9) is a random disturbance around a  mean 

and since IDV(15) results in cycling of the condenser cooling 

water flow due to valve stiction, the overall effect of these 

two faults is to increase the variance in their relevant 

variables as shown in Table 2.  Accordingly, the location 

CUSUM (LCS) is applied to monitor the effect of IDV(3) 

since it involves a shift in mean whereas the scale CUSUM 

(SCS) was used to monitor the effects of both, IDV (9) and 
IDV(15) , since they result in  changes in variance.  The 

sampling frequency for the CUSUM charts was (1/180) Hz (3 

min. time intervals). In all the following simulations, the 

faults are introduced after 160 samples, that is, after 8 hours 

of a normal operation.  Fig.3 shows the application of the 

LCS on XMV[10] when IDV (3) occurs.  In this Figure the 

fault was introduced at time=8 hours and was removed at 

time=700 hours to show whether the CUSUM statistics is 

able to predict both the occurrence and  removal of the fault.  

The figure shows that the average time required for detection 

(ARLo.c) is approximately 127.05 hrs.  This time is calculated 

from the onset of the fault until the breaching of the 

threshold.  An accurate ARLo.c requires averaging over a 

large number of noise realizations (Woodall and Ncube, 

1985).   
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Fig. 3. The LCS for IDV (3); horizontal line represent the 

statistical limit. The vertical lines represent the onset (after 8 

hours) and the end of the fault (after 700 hours).  

 
It is also clear from Fig. 3 that a very long time is required for 

detection due to the extremely small signal to noise ratio. 

This explains the inability of other previously used 

techniques to detect this fault. Also, the algorithm is able to 

detect the removal of the fault after some time.  It is also 

clear from Fig.3 that the rate of change of the LCS statistic is 

higher when the fault is removed than when the fault is 

introduced.  This is expected because of the nature of the 

cusum algorithms given by equation (1) and (2) whereby 

when the rate of change of the (LSC) statistic is negative, the 

accumulator is reset to zero.  This, in turn, accelerates the 
return to the statistical in control state.  Different noise 

realizations were tested and used to calculate the average run 

lengths (ARLo.c).   

Fig.4 shows the detection of IDV(15) corresponding to valve 

stiction when using the SCS.  The SCS for fault IDV(9) is not 

shown due to space limitation.  In Fig. 4 the fault has not 

been removed. The figures show that the SCS and LSC were 

successful in observing these two faults with ARLo.c values 

given in Table 3.  Thus, the CUSUM algorithms provide 

detection, but relatively long periods of time are required to 

detect the occurrence of the fault.  The immediate implication 

is that only faults that are of longer durations than the 
corresponding ARLo.c values can be detected using the 

Cusum based statistics’.  Although three separate control 

charts could be used to monitor the 3 faults (Montgomery, 

1997), it is often convenient for practical purposes to monitor 

the process with fewer.  In the current study, it is proposed to 

use the Hotelling-T2 statistics to monitor the three faults with 

one single chart.   For that purpose, the LCS algorithm is 

applied to XMV[10] whereas the SCS algorithm is applied , 

to XMEAS[21] and XMV[11], and then the corresponding 

cumulative sums are used to drive the Hotelling T2 statistics 

defined in equation (4) ; where x is a vector sample 
composed of the 3 cumulative sums. To test for collinearity, 

the PCs of the covariance matrix were evaluated using a 

Scree plot (Chiang et al., 2001). Three PCs were found for all 
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case studies. Fig. 5, describes the Hotelling-T2 results when 

only IDV(3) occurs while Fig. 6 depicts the detection of 

IDV(9).  In addition, Fig. 7 illustrates the T
2 when both 

IDV(3) and IDV(15) occur simultaneously.  In all cases T
2 

based on the cusum statistics’ were able to successfully detect 

the fault(s).  Table.3 summarizes the relevant ARLo.c when 

the Hotelling’s-T2
 charting based on the individual CUSUM 

statistics’ was used.                                    
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Fig. 4. The SCS for IDV (15); horizontal and vertical lines 

represent the statistical limit and the fault onset, respectively. 

 

Table.3 The estimated ARLo.c for the LSC, SCS and T
2 
 

 

Fault Statistics *ARLo.c (hr) 

          IDV(3) LCS 127.05 

          IDV(9) SCS 8.20 

          IDV(15) SCS 41.00 

          IDV(3) T
2 102.40 

          IDV(9) T
2 276.05 

          IDV(15) T
2 89.65 

IDV(3) & IDV(15) T
2 41.30 

  *All ARLo.c
 are calculated from after onset of the faults (i.e.    

after 8 hours) 

 

4. CONTROL DETECTION INTERACTION 

 

Since the CUSUM operations presented in the previous 

section are applied to variables that are used either for 

manipulation or as feedback within closed loop control 

schemes, there is a possibility to speed up the detection of the 

faults by re-tuning the fault’s relevant controllers.  The 

potential tradeoffs between control design and fault detection 
do not receive much attention except for a few attempts          

(e.g. Tyler and Morari, 1994).  These tradeoffs generally arise 

from the fact that faster detection requires higher variability 

in the variables used for detection whereas higher variability 

generally translates into lower product uniformity or higher 

wear of actuators.  As noted from Table 3, although the 

CUSUM based statistics’ were successful in detecting the 3 

faults under consideration, the resulting ARLo.c values were 

relative large.  To shorten the time for detection given by the 

ARLo.c it is proposed to re-tune the controllers and to check 

the impact of this tuning operation on the ARLo.c and on the 

variability.  By way of illustration, IDV(15), and its 

corresponding controller are considered, that is, the 

condenser cooling water valve.  Since a cascade control 

scheme is implemented for this loop, the master PI controller 

was re-tuned.     
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Fig. 5. The Hotelling’T2 for IDV (3); horizontal and vertical 

lines represent the statistical limit and the fault onset, 

respectively. 
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Fig. 6. The Hotelling’T2 for IDV (9); horizontal and vertical 

lines represent the statistical limit and the fault onset, 

respectively. 

 

The ARLo.c of IDV (15) and the variability results as a 

function of the controller proportional gain (K) are shown in 
Fig.8.  As can be seen from Fig .8, there is a significant 

interaction between the control and the detection scheme.  

The re-tuning of the controller significantly reduces the 

ARLo.c that would be required to observe IDV (15), but at the 

expense of significant degradation in performance as shown 

by the increased variability in the manipulated variable value.  

This variability may translate into significant wear of the 

corresponding valve.  Thus, there is a motivation to seek for a 

trade-off between detection speed and closed loop 

performance provided that the related costs are available.  

The formulation of such optimization problem using the 

CUSUM based detection techniques is currently under 
investigation. 

                                         

                                      CONCLUSION 
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A CUSUM based statistic combined with the Hotelling’s T2 

charting is proposed.  This method was successful in 

detecting three faults in the Tennessee Eastman problem that 

were impossible to observe with other previously applied 

methods.  The 3 univariate CUSUMs were combined into one 

control chart by using Hotelling’T2 statistics.  Potential 

enhancements to the speed in detecting these faults, gauged 

by the ARLo.c, can be achieved by formulating an 

optimization problem that explicitly considers the tradeoffs 

between detection and control performance.   
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Fig. 7. The Hotelling’T2 for the simultaneous occurrence of 

IDV(3) and IDV(15); horizontal and vertical lines represent 

the statistical limit and the fault onset, respectively. 
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Fig. 8. The change in variability and the T

2-ARLo.c as a 

function of the master controller’s gain (XMV[11] is 

considered in the case). 
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Appendix A. SCALE CUSUM PARAMETERS 

 

The parameters of the Scale CUSUM have been derived as 

follows. Let, xi~N(0,σ2), i=1,2,…,n  and yi=|xi/σ|
λ. The 

characteristic of the distribution of yi are easily worked out 

from those of standard normal distribution. That is                                                                          

      1)
/1

(2]Pr[ −Φ=<
λ

cciy                     (A1) 

 where Ф () denote the standard normal function. 

Furthermore, the kth moment of yi is as follows:  

                   πλ
λ

µ /)]1.(5.0[.
..5.0

2][ +Γ== k
kk

iyE             (A2) 

; where Γ() is the gamma function. With λ=0.5, the 

transformed variate yi has a distribution which is very close to 

normal. In particular, using (A2), the first and second 

moments are given as followings: 
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