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Abstract:
This paper extends existing methods that jointly estimate the process and friction model
parameters, so that a nonlinear process model structure is considered. In addition, nonlinear
optimization is applied to estimate the friction model parameters. The developed estimation
algorithm is tested with data generated by a hybrid setup (composed of a real valve and a
simulated pH neutralization process), in which the influences of the excitation signal magnitude
and of the controller tuning on estimated models are investigated. The results demonstrate that
the friction is accurately quantified, as well as “good” process models are estimated in several
situations. In addition, the proposed extension presents the advantage of providing reasonable
estimates of the nonlinear steady-state characteristics.
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1. INTRODUCTION

Friction in control valves and inadequate controller tun-
ing are two of the major sources of control loop perfor-
mance degradation (Jelali, 2006). While process models
play an essential role in controller design, friction models
are needed to diagnose abnormal valve operation or to
compensate such undesirable effects. Hence, methods for
valve friction quantification and process models identifi-
cation arise as important tools to treat loop performance
problems.

For practical reasons, it is desirable that such methods
should be based only on controller output (op) and process
output (pv) measurements from closed-loop experiments.
Choudhury et al. (2004) dealt with friction quantification
by fitting an ellipse to pv -op data, but the results pro-
duced by this technique depend on the controller tuning.
Hägglund (2007) approximated the nonlinear valve behav-
ior with a backlash structure, which is estimated using the
process static gain and the controller tuning parameters.

In a method proposed by Srinivasan et al. (2005), an opti-
mization approach is used to jointly estimate the process
dynamics and the friction model parameters. This method
can be seen as a Hammerstein model identification, since
the valve friction is treated as a nonlinear block followed
by a linear dynamic block that represents the process. As
the process dynamics is also estimated, the joint procedure
previously mentioned can be used for controller retuning.
However, in that work, an inappropriate friction model
structure that is unable to reproduce important sticky
valve characteristics is employed. Choudhury et al. (2008)
eliminated this drawback adopting a two-parameter fric-
tion model structure.

Another extension to the method originally conceived by
Srinivasan et al. (2005) was recently proposed (Romano
and Garcia, 2009) so that a Wiener model (built up with
a linear dynamic block L connected to a nonlinear static
function N2) was considered to represent the process. In
this approach the Hammerstein structure is extended to a
Hammerstein-Wiener one (Figure 1), i.e., the valve friction
is associated with the first nonlinear block (N1), while the
remainder blocks represent the process.
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Fig. 1. Hammerstein-Wiener model structure with nonlin-
ear disturbance.

Despite providing some features (e.g., to avoid that process
nonlinearities be erroneously incorporated in the friction
model and to turn the estimation method suitable to
wider operating ranges), the previous proposal demands
considerably computation effort, since the friction model
parameters are estimated through direct search. In this
work, the method proposed by Romano and Garcia (2009)
is improved, so that optimization is applied in the friction
quantification. In addition, the new extension is tested in a
HIL (hardware-in-the-loop) setup, in which the influences
of the signal-noise ratio, as well as of the controller tuning
are investigated in a more realistic framework.

The paper is organized as follows: the friction model is
described in Section 2. The parameterization of the process
model, as well as an estimation algorithm are presented in
Section 3. The friction and process model joint estimation
procedure based on optimization is treated in Section 4.
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The HIL platform results are discussed in Section 5. At
last, the conclusions are drawn.

2. VALVE FRICTION MODEL

Several friction models were evaluated using ISA stan-
dard tests in Garcia (2008). The best trade-off between
accuracy and simplicity was achieved by the data-driven
two-parameter model proposed by Kano et al. (2004). The
parameter S represents the cumulative input signal z(k)
amplitude change necessary to revert the valve movement
direction, while J is the size of the stem slip observed when
the valve starts to move, also referred as slip-jump.

Besides the parameters S and J , the friction model uses
three auxiliar variables: stp that indicates if the valve is
moving (stp = 0) or if it is stuck (stp = 1), zs that is
updated with z(k) every time the valve sticks and d = ±1
that denotes the direction of the friction force.
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Fig. 2. Flowchart of the data-driven model parameterized
by S and J (Kano et al., 2004).

The relationship between the command signal z(k) and
the valve stem position u(k) is described in the flowchart
shown in Figure 2. After testing whether the valve stopped,
so that zs and stp are eventually updated, a new value is
assigned to u(k) if: (i) the valve is moving (stp = 0), (ii)
the valve changes its direction and overcomes S or (iii)
the valve moves in the same direction and overcomes J .
On the contrary, the position remains the same.

3. WIENER MODEL IDENTIFICATION

3.1 Process model parameterization

As argued earlier the association L → N2 depicted in
Figure 1 is a Wiener model that represents the process

dynamics. Thus, v(k),u(k) and y(k) denote the process
disturbances, input and output signals, respectively.

The linear block L is represented by an ARMAX model:

w(k) = G(q)u(k) +H(q)e(k) (1)

where q is the shift operator: q−iy(k) = y(k − i), e(k)
is white noise with zero mean and variance σ2

e , G(q) and
H(q) are rational transfer functions parameterized by l
and nc:

G(q) =
B(q)

A(q)
=

b1q
−1 + . . .+ blq

−l

1 + a1q−1 + . . .+ alq−l
(2)

H(q) =
C(q)

A(q)
=

1 + c1q
−1 + . . .+ cnc

q−nc

1 + a1q−1 + . . .+ alq−l
(3)

Cubic splines provide advantages in respect of polynomials
and piecewise linear functions to approximate arbitrary
nonlinear functions (Lancaster and Šalkauskas, 1986). For
a set of m different knots:

wmin = w1 < w2 < . . . < wm−1 < wm = wmax (4)

A cubic spline can be expressed by:

y(k) = f (w(k))

=

m−1∑

i=2

fi |w(k)− wi|
3 + fm + fm+1w(k) (5)

where η , (f2, . . . , fm+1)
T

is the cubic spline parameter
vector and w(k) is the signal between L and N2.

3.2 Wiener model parameter estimation

In this work, two assumptions are made in order to
estimate the Wiener model parameters in (1) and (5): (i)
the function f(·) which describes the process nonlinearity
is monotonic and invertible and (ii) the process is open-
loop stable. It should be stressed that both assumptions
are commonly found in many practical situations, e.g.,
CSTRs and distillation columns.

Due to the first assumption, analogously to (5), the inverse
of the process nonlinearity f−1(·) is denoted by:

w(k) =

m−1∑

i=2

gi |y(k)− yi|
3
+ gm + gm+1y(k) (6)

Thus, the Wiener model parameters are obtained from the
minimization of the following criterion (Zhu, 2001):

V =
∑

k

(
H−1(q)

(
f−1 (y(k))−G(q)u(k)

))2
(7)

Since (7) is highly nonlinear, instead of minimizing V
directly, an overparameterized model is estimated. Af-
terwards, a model reduction is performed to achieve the
ARMAX model described in (1).

Under the assumption that the process is open-loop stable,
it is possible to approximate the dynamic block L by a
finite impulse response (FIR) model, so that the interme-
diate signal is expressed by:

w(k) = β1u(k − 1) + . . .+ βnu(k − n) + v(k) (8)
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For a more compact notation, consider the regression ψ(k)
and the parameter θ vectors:

ψ(k),
(

− |y(k)− y2|
3
, . . . ,− |y(k)− ym−1|

3
,−1,

u(k − 1), . . . , u(k − n)
)T

(9)

θ, (g2, . . . , gm−1, gm, β1, . . . , βn)
T (10)

Considering (7)-(10), θ can be estimated minimizing the
disturbance term v(k):

θ̂ = arg
θ

min
∑

k

(
ψT (k) · θ

)2
(11)

However, as the intermediate signal w(k) is unmeasurable,
the gain of the Wiener model can be arbitrarily distributed
between the dynamic and the static block. To avoid the
trivial solution θ = 0, the following constraint is imposed
on (11):

n∑

i=1

βi = 1 ⇒
(
0 . . . 0
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

)
· θ = R · θ = 1 (12)

Since this constraint is linear, the solution of (11) subject
to R · θ = 1 is given by (Pearson and Pottmann, 2000):

θ̂ =
(
ΨTΨ

)−1
RT

(

R
(
ΨTΨ

)−1
RT
)−1

(13)

where Ψ , (ψ(n+ 1) . . . ψ(N))
T
and N is the length of

the estimation dataset.

To obtain G(q) and H(q) defined in (1), a model reduction
is accomplished by minimizing the criterion Vred:

Vred =
∑

k

(

H−1(q)

(
n∑

i=1

β̂iu(k − i)−G(q)u(k)

))2

(14)

which can be seen as the ARMAX model estimate using
the prediction error method (Zhu, 2001), considering the
intermediate signal calculated with the FIR model (8).

Finally, the nonlinear block parameter vector η estimate
is given by:

η̂ = arg
η

min
∑

k

(
y(k)− φT (k) · η

)2
(15)

where:

φ(k),
(

|ŵ(k)− w2|
3
, . . . , |ŵ(k)− wm−1|

3
, 1, ŵ(k)

)T

ŵ(k), f̂−1 (y(k))

Due to the approximation of the linear dynamic block by a
FIR structure, an initial estimate is computed analytically
from (13), at the expense of increasing the amount of pa-
rameters, and consequently, the variance of the estimate.
After that, the FIR model is reduced to diminish the
variance of the estimate and to achieve a model structure
suitable for control applications.

The model orders l, nc and m can be selected by trial and
error or based on the simulation error (Zhu, 2001).

4. FRICTION AND PROCESS MODEL JOINT
IDENTIFICATION ALGORITHM

Figure 3 denotes a control loop in the presence of valve
friction. The problem to be treated is to quantify the fric-
tion and estimate a nonlinear process model by means of
controller output z(k) and process output y(k). Moreover,
a test signal d(k) can be introduced into the set-point r(k)
to improve the data signal-noise ratio (SNR).
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Controller Friction Process

Disturbances

•

y(k)
//
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−
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//
u(k) ��

//

Fig. 3. Process control loop subject to valve friction.

The valve friction model parameterized by the pair (S, J)
connected to a Wiener model denoting the process is
shown in Figure 4.
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Fig. 4. Control loop where the valve friction and the pro-
cess are modeled by a Hammerstein-Wiener structure.

For fixed values of the pair (S, J) it is possible to calculate
the input u(k) using the nonlinear transformation F (·)
which is described in the flowchart of Figure 2, i.e.:

û(k, S, J) = F (z(k), z(k − 1), û(k − 1), S, J) (16)

Hence, the Wiener model parameters can be estimated,
with (16) and the measured output y(k). However, the
pair (S, J) is unknown. In this work, instead of testing all
combinations in a set of candidate values, the Nelder-Mead
Simplex algorithm (Lagarias et al., 1998) is considered for
searching the optimal pair. This gradient-free optimization
method is suitable to minimizing discontinuous functions
such as the friction nonlinearity.

The Simplex algorithm initialization is a key issue in the
parameter estimation procedure, because a “good” initial
guess not only increases the probability of finding the
global optimum but also speeds up the convergence. The
initial guess (S0, J0) is calculated disconsidering J and
performing a grid search over S with step size ∆S. The
procedure for estimating the friction and the nonlinear
process model parameters is summarized as follows:

Algorithm 1. Friction and nonlinear process model iden-
tification using optimization for searching S and J .

i. Generate a set DS of candidate values for S:

DS =
(

0,∆S, 2∆S, . . . , Smax

)

(17)

ii. Supposing J = 0, for each value Si ∈ DS , calculate
û(k, Si) from (16). Then, estimate the process model

parameters Ĝ(q) and f̂(·);
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iii. Compute the simulation error Ci:

Ci =
∑

k

(

y(k)− f̂
(

Ĝ(q)û (k, Si)
))2

(18)

iv. Select S◦ among the candidate values Si that mini-
mize Ci and compute the initial condition:

(S0, J0) = (S◦ + γ∆S, γ∆S) (19)

v. From the initial guess (S0, J0), solve the optimization
problem with the Simplex algorithm:

(S∗, J∗) = arg
(S,J)

min
∑

k

(y(k)− ŷ(k))
2

(20)

where: ŷ(k) = f̂
(

Ĝ(q)û (k, S, J)
)

;

vi. Estimate the Wiener model parameters with y(k) and
û(k, S∗, J∗).

Remark: The initial condition (19) is motivated by the
stem position update equation (Figure 2):

u(k) = z(k)−
d

2
(S − J) (21)

Assuming J = 0 implies S◦ ±∆S ≈ S − J . Hence, initial-
izing J as a multiple of ∆S results in (19). Furthermore,
as bench tests have suggested that the backlash in control
valves is greater than the slip-jump (Romano and Garcia,
2008), it is convenient to evaluate the fit between y and ŷ
with increasing values of γ. The parameters that provide
the best fit are chosen.

5. EXPERIMENTS AND RESULTS

The friction and process model parameters estimation al-
gorithm is tested in a HIL setup, where a real valve (model
ET, Fisher Inc.) is integrated with a pH neutralization
process simulated in real-time. A simplified diagram of
the system is depicted in Figure 5. The process consists
of three input flows: acid q1, buffer q2 and base q3 that
are mixed in tank T1. The controlled variable is the pH
in T1. The manipulated variable is the base flow, which
is controlled by the real valve (AV) stem position that
is measured with a LVDT sensor. The alkaline solution
is stored in a pressurized tank T2. In addition, a level
loop maintains the T1 level manipulating the outflow q4 by
means of the valve LV, that is simulated without friction.
The neutralization process model equations, as well as the
nominal operating conditions are presented in appendix A.

During the experiment, the acid and the base concentra-
tions, as well as the acid flow are disturbed by independent
white noise realizations filtered by discrete transfer func-
tions with pole: 0.9, 0.85 and 0.8, respectively. To give an
idea of the disturbance magnitude, the acid and the base
concentrations oscillated up to 2.15% and 10.65% around
the nominal value, while q1 varied up to 3.75%.

The pH loop PI controller (AIC) is tuned with the Direct
Synthesis method (Bequette, 2003). Firstly, the AIC pa-
rameters are computed so that the closed-loop dominant
time constant τcl is 80% of the open-loop one τol, which
was previously estimated using step tests around the nom-
inal operating conditions (τol = 42s). The test signal d(k)
is a binary random noise with average switching time of
20 samples (80s). To analyze the test signal magnitude

Fig. 5. The pH neutralization process diagram.

influence, four experiments are performed using increasing
magnitudes, while r(k) is maintained constant in 7.

The model fit to experimental data is quantified by F2:

F2[%] =



1−

∥
∥
∥Ŷ − Y

∥
∥
∥
2∥

∥Y − Ȳ
∥
∥
2



× 100 (22)

where Y , Ȳ and Ŷ are the experimental output vector,
the output mean and the estimated output, respectively.
In this work, the output vector is composed of data from a
distinct experiment without disturbances. The static curve
fit is quantified using a linear correlation coefficient:

rN [%] =
cov(Y 0, Ŷ )

std(Y 0) · std(Ŷ )
× 100 (23)

Once the titration curve is known, it is employed to cal-
culate the true steady-state Y 0 with a set of intermediate
variable w(k) values. The symbol std(·) indicates standard
deviation and cov(·, ·) denotes covariance.

A 1000 samples dataset is used for estimation purposes.
Moreover, the algorithm parameterizations are:

∆S = 0.02, n = 45, lmax = 4, mmax = 9 and nc = 2.

All the combinations of (l,m) from (1, 3) to (lmax,mmax)
were tested, but only the model order that provided the
best F2 was selected. The results for increasing magnitude
test signals are summarized in Table 1, which reveals that
the estimate of the pair (S, J) in each situation is similar.

Table 1. Synthesis of the results achieved for
increasing d(k) magnitudes.

Magnitude of d(k) S [%] J [%] F2 [%] rN [%]

0% pHnom 25.35 2.17 40.85 97.5791
±2.5% pHnom 24.38 2.21 59.33 99.2826
±5% pHnom 25.05 2.03 82.22 99.9852
±10% pHnom 25.35 2.18 85.62 99.1942

On the other hand, F2 indicates that the process model
quality degrades for a test signal switching between ±2.5%
pHnom or when d(k) = 0 (natural excitation). There are
two reasons for such fact: (i) the data SNR is proportional
to the magnitude of d(k) and (ii) due to the friction,
smaller variations in z(k) can be insufficient to change
the manipulated variable u(k) that implies less informative
experiments.
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Another aspect relative to Table 1 is that the higher
magnitude (±10% pHnom) excitation yields a rN that is
not the closest to 1. It occurs because the computation of
rN considers only the range where the process is tested.
Hence, experiments restricted to a narrower range can,
eventually, report a better linear correlation coefficient,
despite of not reproducing the steady-state behavior so
accurately in a wider range. This is confirmed in Figure
6. In fact, higher data SNR implies more steady-state
estimation accuracy in wider ranges.
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Fig. 6. Titration and estimated steady-state curves.

Some friction quantification techniques (Choudhury et al.,
2004; Hägglund, 2007) are influenced by the loop controller
gain. In order to investigate this issue, the AIC controller
is retuned using other three specifications: one more con-
servative and two more aggressive than τcl = 0.8τol. The
experiments are performed with a d(k) magnitude of ±5%
pHnom.

The results presented in Table 2 indicate that the fric-
tion and the process model parameters estimate are not
significantly affected by different controller tunning. Nev-
ertheless, the more aggressive tuning yielded the worst F2,
that quantifies the overall fit. The estimate of the steady-
state curve is also the worst in this situation as can be
seen in Figure 7. This is justified by the process oscillatory
behavior caused by the high controller gain which leads to
a dataset with few static characteristic information.

Furthermore, it should be highlighted that the misfit of the
steady-state curve for pH > 8 exhibited in all situations
is due to the substantial variation of the static behavior
associated with the reduced amount of samples in this
operating range.

With the purpose of validating the friction model parame-
ters, the measured stem position from an open-loop exper-

Table 2. Results with different controller gains.

Specification S [%] J [%] F2 [%] rN [%]

τcl = τol 25.48 2.20 81.17 99.9108
τcl = 0.8τol 25.05 2.03 82.22 99.9852
τcl = 0.5τol 26.19 2.12 87.90 99.6816
τcl = 0.2τol 23.59 1.83 72.23 99.8725
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Fig. 7. Steady-state behavior of models estimated with
different controller.

iment excited with a multilevel signal is compared to the
simulated one. Since the (S, J) values reported in Tables
1 and 2 are similar, only the stem position calculated
using the friction model parameter estimate averages is
compared to the actual one (LVDT measurement). Note
from Figure 8 that the friction model output accurately
tracks the actual stem position. It demonstrates that the
two-parameter model with the estimated pair (S, J) is able
to reproduce the real valve friction behavior.
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Fig. 8. Simulated and actual valve stem position.

6. CONCLUSIONS

The results provided by the HIL setup indicates that,
despite of the controller tuning, the proposed estimation
algorithm is not only able to quantify the friction but also
can identify a nonlinear process model since a test signal is
employed to guarantee the loop excitation. Nevertheless,
even without an external excitation signal, it is possible to
find reliable values for S and J .

Differently from other methods (Srinivasan et al., 2005;
Choudhury et al., 2008; Jelali, 2008) solely based on nor-
mal operating data, in this work, the friction quantification
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and the process model identification are equally important.
However, even if the aim is restricted to quantifying the
valve friction, obtaining a suitable process model is vital
to validate the friction model through simulations. The re-
sults reported that signals with higher amplitude provided
better models, while the natural excitation experiment
yielded inaccurate ones. Therefore, the adoption of a test
signal should be considered whenever possible, in order to
improve the process model estimate.

Another contribuion of this work is the friction model
parameters search using the Simplex algorithm from an
initial guess calculated disregarding J . As a consequence
the computational effort is drastically reduced compared
to exhaustive search. Alternatively, pattern search could
also be used to estimate S and J as in Jelali (2008).
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Hägglund, T. (2007). Automatic on-line estimation of
backlash in control loops. Journal of Process Control,
17, 489–499.

Henson, M.A. and Seborg, D.E. (1997). Adaptive input-
output linearization of a pH neutralization process.
International Journal of Adaptive Control and Signal
Processing, 11, 171–200.

Jelali, M. (2006). An overview of control performance
assessment technology and industrial applications. Con-
trol Engineering Practice, 14, 441–466.

Jelali, M. (2008). Estimation of valve stiction in control
loops using separable least-squares and global search
algorithms. Journal of Process Control, 18, 632–642.

Kano, M., Hiroshi, M., Kugemoto, H., and Shimizu, K.
(2004). Practical model and detection algorithm for
valve stiction. In Proceedings of the 7th IFAC Sympo-
sium on dynamics and control of process systems (DY-
COPS). Cambridge, MA, USA.

Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright,
P.E. (1998). Convergence properties of the Nelder-Mead
Simplex method in low dimensions. SIAM Journal on
Optimization, 9(1), 112–147.
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Appendix A. NEUTRALIZATION PROCESS MODEL

The pH neutralization process is simulated by the follow-
ing equations:

ḣT2(t) =−
1

AT2
q3(t) (A.1)

q3(t) =Kq3 ·XAV(t)
√

PT2 + ρ · g · hT2(t) (A.2)

ḣT1(t) =
1

AT1
(q1(t) + q2(t) + q3(t)− q4(t)) (A.3)

q4(t) =Kq4 ·XLV(t)
√

ρ · g · hT1(t) (A.4)

XLV(t) =Kc(LIC)



ehT1 +
1

Ti(LIC)

t∫

t0

ehT1dτ



 (A.5)

ehT1 = hT1(t)− hT1nom (A.6)

Ẇa4(t) =
1

AT1hT1(t)

3∑

i=1

qi(t) (Wai
−Wa4(t)) (A.7)

Ẇb4(t) =
1

AT1hT1(t)

3∑

i=1

qi(t) (Wbi −Wb4(t)) (A.8)

The model is based on the reaction invariant theory from
which the pH is given by a nonlinear function of Wa4 and
Wb4 . For more details refer to (Henson and Seborg, 1997).
The nominal operating conditions are shown in Table A.1.

Table A.1. Nominal operating conditions.

Description Symbol Value

Tank T1 area AT1 0, 1 m2

Initial condition of (A.3) hT1nom 0, 1 m
Tank T2 area AT2 0, 5498 m2

Initial condition of (A.1) hT2max 1 m

T2 nominal pressure PT2 1, 2× 106 N
m2

Solution specific mass ρ 1000
kg
m3

Gravitational acceleration g 9, 80665ms2

Hydraulic constant of AV Kq3 1, 5189 × 10−7 m4

s
√
N

Hydraulic constant of LV Kq4 1, 5226 × 10−5 m4

s
√
N

AV nominal stem position XAVnom
0, 6584 p.u.

LV nominal stem position XLVnom
0, 5 p.u.

Nominal acid flow q1nom 1, 22 × 10−4 m3

s
Nominal buffer flow q2nom 6, 4× 10−6 m3

s
Nominal base flow q3nom 1, 1× 10−4 m3

s
pH nominal value pHnom 7
LIC controller gain Kc(LIC) 0, 1777

LIC integral time Ti(LIC) 26, 5 s/rep
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