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Abstract: This paper presents a new process monitoring framework using multidimensional scaling. The 
traditional method of multivariate process monitoring is generally base on principal component analysis 
(PCA) and is carried out by monitoring the fault detection parameters Hotelling’s T2 and squared 
prediction errors (SPE). Both indexes are derived directly from multivariate scores in the observation 
sample configurations. This conventional system was found inappropriately used especially in 
monitoring highly nonlinear multivariate processes leading to a great number of principal components 
being selected. Alternatively, classical multidimensional scaling (CMDS) is another technique which can 
be used in compressing multivariate data by using dissimilarity measures for process monitoring. The 
proposed process monitoring system is developed based on variable relationships and the dissimilarity 
measures in terms of variable profiles are used in projecting the multivariate scores. A new monitoring 
index, which is the resultant vector length different between the new and the normal variable profiles, is 
introduced. Procrustes analysis (PA) is implemented for on-line process monitoring through a moving-
window mechanism. The proposed monitoring method is demonstrated on a simulated continuous stirred 
tank reactor (CSTR) with recycle system. The results show that the proposed system was efficient as well 
as effective in detecting various abrupt and incipient faults compared to the linear PCA-based scheme.  

Keywords: Multivariate Statistical Process Control, Process Monitoring, Principal Component Analysis, 
Multidimensional Scaling, Classical Scaling. 

 

1. INTRODUCTION 

Multivariate statistical process control (MSPC) or 
multivariate statistical process monitoring (MSPM) has been 
shown to be a very effective process monitoring tool. The 
framework which has been originated from the method of 
statistical process control (SPC) is aimed to maintain 
consistent productivity by way of anticipating early warning 
of possible process malfunctions in the multivariate process 
(Martin et al., 1996). In this respect, fault detection scheme 
via monitoring concurrently the Hotelling’s T2 and squared 
prediction errors (SPE) indexes have been derived directly 
from the multivariate scores (MacGregor and Kourti, 1995). 
Qin (2003) emphasizes that both indexes serve different 
functions, where the first relates to the deviation scales of the 
current measurement from the targeted mean, whereas the 
second denotes the consistency of process variables 
relationships. Bersimis (2007) presented a number of 
multivariate control charts with a comprehensive explanation 
on setting the control limits with regard to both indexes.  

Usually, principal component analysis (PCA) (Jackson, 1991) 
is used to obtain the multivariate scores which are linear 
combinations of the monitored process variables. However, 
the linear PCA method is not really suitable for reducing the 
nonlinear multivariate data dimensions as it always ended 
with a high number of principal components being selected 
(Zhang et al., 1997). Even though extended algorithms of 
PCA for dealing with nonlinear processes have been 

proposed, such as a combination of auto-associative neural 
network and principal curve (Dong and McAvoy, 1996), the 
concept is rather complex and its computation is quite 
demanding.  

In addressing the issue, classical multidimensional scaling 
(CMDS) provides an alternative in compressing multivariate 
data, where the main reference is defined in terms of 
dissimilarity measures. However, this dissimilarity measure 
has to be in the form of variable structure instead of 
observation correlations, because the fundamental of any 
process monitoring system should be developed on the basis 
of variable relationships.  

Cox (2001) introduced CMDS, non-metric MDS and also 
biplots methods as the alternative multivariate techniques for 
process monitoring which all have been analyzed on a 
particular gas transportation data. It has been demonstrated 
that the CMDS algorithms based on the Euclidean 
dissimilarity scale can construct the same multivariate scores 
profiles identical to PCA. Other dissimilarity bases such as 
Mahalanobis and City-block scales were also used where 
varieties of multivariate configurations have been found 
accordingly. The main idea of his fault detection technique is 
by observation on the process samples which are moving 
away from the main normal cluster. Nevertheless, he did not 
propose any monitoring statistics. Matheus et al. (2006) 
developed an on-line CMDS-based process monitoring 
system by using multiple linear regression (MLR). In their 
work, MLR is used in relating the original process data with 
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the CMDS-based multivariate scores of the normal data. 
Although the sample trends were used for monitoring, yet, 
the results were not validated with either T2 or SPE 
performance.  

This paper presents a new fault detection framework through 
applying CMDS as the main multivariate data dimensional 
reduction technique.  A new fault detection index (FDI) is 
proposed accordingly. Procrustes analysis (PA) is used in 
obtaining the multivariate scores for on-line monitoring. The 
essential use of PA is to identify the transformation factors 
which include rotation matrix, compressing or straining scale 
and translation vector (Borg and Groenen, 1997) between the 
original normal operating condition (NOC) data and its 
multivariate scores of variables, in projecting the multivariate 
profiles for the new measurements.  

The paper is organised as follows. Section 2 briefly presents 
the concept of MDS and the generic outlines of the MDS-
based process monitoring procedures. Section 3 discusses on 
the results demonstrated through application to a simulated 
continuous stirred tank reactor (CSTR) with recycle system. 
Section 4 concludes the paper.  

2. METHODOLOGIES 

2.1  Background of CMDS  

Takane (2003) stated that the multivariate points in CMDS 
are normally arranged in such a way that their distances 
corresponds to the correlations between the stimuli under 
study (variables or observations), that is two points are 
located closely together if their similarity is high, otherwise 
the distance will be great. Therefore, the main purpose of any 
MDS algorithms is to measure how well the projected 
multivariate scores matched as precisely as possible 
according to the pre-defined dissimilarity scales (Kruskal and 
Wish, 1978). In this work, the dissimilarity measure have 
been particularly constructed based on two different scales, 
Euclidean and city block distances, which are shown 
respectively by Eq(1) and Eq(2).  
 
Euclidean Distance: 
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Regarding the proper selection of the reduced number of 
dimensions, p, Cox and Cox (1994) proposed to use ratio 
scales on the eigenvalues of the squared dissimilarity matrix 
(scalar product) in representing the true proportion measure 
of the corresponded multivariate scores variation in the lower 
dimensional space as shown in Eq (3). 
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Besides, Young and Householder (1938) mentioned that the 
reduced dimensionality of the multivariate data can be 
depended either on the rank of X or the rank of scalar product 
of X. 

2.2 CMDS-based MSPM 

In the proposed MSPM framework, the procedures contain 
two separate phases as shown in Fig. 1.  

 

The first phase concerns with the off-line NOC model 
building, whereas the second facilitates for on-line process 
monitoring. A set of NOC data, mn×X (n: number of samples 
and m: number of variables), was determined off-line based 
on the historical data archive and also scaled to zero mean 
and unit variance (Steps 1 and 2). In Step 3, CMDS is then 
applied in order to obtain the variable profiles of NOC 
following the procedures suggested by Borg and Groenen 
(1997). Firstly, a squared dissimilarity matrix, ∆2, with the 
size of m by m, is determined either by applying Eq(1) or 
Eq(2) for the Euclidean or city block scale respectively. 
Then, the double-centering equation is implemented on ∆2 to 
obtain B∆ as shown in Eq (4). 

B∆= 2
1

− Jm∆2 Jm   (4) 

where  ( )mmmmm /11IJ −= , mI  is an identity matrix, 
and m1  is a vector with element of 1 and size m.     

1. Collection of historical 
normal process data (NOC)

2. Determination of 
standardized NOC data 

3. Development of NOC 
model via CMDS and 

identification of 
transformation function 

using PA

5. Identification of 
monitoring limits based on 

MWOS-NOC data 

4. Calculation of FDI for 
MWOS-NOC data 

PHASE I (Off-line) 

6. Collection of new process 
data (normal or abnormal)

8. Development of 
multivariate scores for 

MWOS-new data using PA 
transformation function 

7. Scaling of MWOS-new 
data 

9. Calculation of FDI for 
MWOS-new data 

10. Fault detection 
mechanism and analysis 

PHASE II (On-line) 

Fig. 1: CMDS-PA-based MSPM frameworks 
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This double-centering operation transforms the dissimilarity 
matrix into a ratio-scaled matrix, where the origin is relocated 
onto the centre of the data, thus, a unique configuration of 
multivariate scores will be obtained accordingly (Torgerson, 
1967). Later, B∆ is decomposed into UDUT where U is an 
orthonormal eigenvectors of the double-centred dissimilarity 
matrix and D is a diagonal eigenvalues of double-centred 
dissimilarity matrix such that d1≥d2≥…≥dm. Finally, the 
multivariate coordinates of NOC is constructed by using Eq 
(5).  
 
Y=U+D+

0.5  (5) 
 
where all elements of D+

0.5 and U+ are corresponding to those 
selected dimensions.  
 
In order to standardize the procedures of projecting the on-
line multivariate scores, PA technique is applied which is 
described as follows (Borg and Groenen, 1997):     
 

i. Computation of the minor product moment between 
the reconstructed NOC matrix and the modified NOC 
matrix: CPA=YTJmXmod where Jm is from Eq(4) and 
Xmod is a modified NOC data with size m by p.     

ii. Application of the eigen decomposition on CPA by 
way of CPA=PPAVPAPPA

T where PPA is a matrix of 
eigenvectors and  VPA is a matrix of eigenvalues. 

iii. Calculation of the optimal rotation matrix, R =   PPA 
PPA

T.   
iv. Calculation of the optimal dilation scale, s=(trYTJX 

R)(trXTJX).  
v. Calculation of the optimal translation vector, t=(Y-

sXR)T1/m. 
vi. The final transformed model of NOC is given by 

YPA=sXmodR+1tT      
 
Transformation factors, R, s and t, emulates the concept of 
loading factors as in PCA.  
 
In Step 4, the moving windows concept (Kano et al., 2001) is 
implemented on the NOC data by using the term MWOS 
(Moving-Window-Observation-Samples)-NOC, XMWOS-NOC. 
In particular, this mechanism is operated such that the newly 
measured sample is added to the data frame by taking the 
oldest sample out from the data window. In this way, the size 
of the XMWOS-NOC matrix will be maintained at m by p over 
the time, especially when a new sample becomes available. 
This MWOS sample is then applied in Eq (6) to establish the 
new set of multivariate scores for the NOC data.  
 
YPA(MWOS no. k)=sX(MWOS no. k)R+1tT (6) 

An FDI measuring the change in relationship, Cr, is then 
defined and it signifies the change in relationships of those 
monitored variables, as shown in Eq (7).     
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where, newv and NOCv indicate the resultant vector length of 
the variable scores corresponding to the MWOS-NOC and 
original NOC data respectively by using Eq(8).  
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where jy is the reconstructed CMDS or PA scores with 
j=1,2,…,m. The background of Cr is illustrated as in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 shows that both resultant vector lengths of variable 4 
between the original normal sample (solid line) and the new 
normal sample (dotted line) from the origin (‘+’ point) is 
equivalent to each other (top figure). However, this vector 
length is substantially increased (dotted line) as a faulty 
variable occurred in the process as shown in the second plot 
of Fig. 2. In other words, those faulty variables will move 
away from the normal cluster whenever a fault condition 
takes place. Therefore, Cr is actually providing the 
information of variables correlation consistency in terms of 
vector length difference between the faulty sample and the 
original normal model (similar to the SPE concept). Later, the 
warning (95%) and the control (99%) limits of the 
monitoring statistics are obtained by assuming that the scores 
are normally distributed (Step 5).   
 
In on-line monitoring, process data are collected and the 
newly measured sample is scaled using the means and 
standard deviations of the NOC data and is then added to the 
moving window, XMWOS-new, (Steps 6 and 7). Then, Eq(6) is 

Fig. 2: Dimension plots of CMDS scores of normal vs 
normal samples (top); dimension plots of CMDS 
scores of normal vs faulty samples (bottom) 
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used to obtain the variables profiles in the reduced 
dimensional space (Step 8), where Cr monitoring statistic is 
subsequently computed through Eq(7) and Eq(8) (Step 9). 
Finally, real time monitoring system is carried out by 
observing the progression of Cr on the monitoring charts and 
a fault is detected when the index exceeds the 99% 
monitoring limit for a consecutive number of samples.    
 

  3. APPLICATION TO A CSTR WITH RECYCLE 

3.1 Case Study 

A simulated continuous stirred tank reactor (CSTR) with 
recycle shown in Fig. 3 was used as the case study. This 
system operates an irreversible heterogeneous catalytic 
exothermic reaction in transforming a particular reactant A to 
product B.  Three main control systems have been installed 
including temperature, level and mixing condition of the 
vessel in order to sustain the product concentration at a 
desired setting. In particular, the temperature of the reactor is 
controlled by manipulating the flow rate of the cold water fed 
into the heat exchanger through a cascade control system. 
The flow rate of the product stream is used to control the tank 
level and the mixing condition is maintained by adjusting the 
recycle flow rate.  
    
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3: CSTR System 
 
There are ten on-line measured process variables and three 
controller outputs have been identified for monitoring as 
shown in Table 1 (Zhang, 2006). 

Table 1. Variables of CSTR system for monitoring 
Variables  Variable Names 

V1 Tank temperature 
V2 Tank level 
V3 Flow rate feed 
V4 Flow rate inlet 
V5 Flow rate cooling   
V6 Flow rate outlet 
V7 Flow rate recycle 
V8 Product concentration 
V9 Feed concentration 
V10 Tank pressure 
V11 Controller 1 
V12 Controller 2 
V13 Controller 3 

3.2 Results 

A set of NOC data containing 50 samples was obtained from 
simulation. The data were standardized to zero mean and unit 
variance. In the CMDS-PA model, six dimensions were 
selected to maintain at least 90% of the eigenvalues ratio 
scale for both Euclidean and city block scale.  

A number of faults related to the CSTR system consisting of 
abrupt fault (magnitude of the faults increased suddenly and 
maintained over time) and incipient fault (magnitude of the 
faults increased gradually over time) were then identified as 
listed in Table 2.  In simulating each of those faults, the 
faulty condition was introduced at sample 2, where the 
sampling time interval fixed at 4 seconds.  
 

Table 2. Fault list 
Fault No. Descriptions 

1 Pipe 1 blockage 
2 External feed-reactant flow rate too high 
3 Pipe 2 or 3 is blocked or pump fails 
4 Pipe 10 or 11 is blocked or control valve 1 

fails low 
5 External feed-reactant temperature abnormal 
6 Control valve 2 fails high 
7 Pipe 7, 8, or 9 is blocked or control valve 2 

fails low 
8 Control valve 1 fails high 
9 Pipe 4, 5, or 6 is blocked or control valve 3 

fails low 
 10 Control valve 3 fails high 
11 External feed-reactant concentration too low 

For the purpose of comparison, a PCA model was also 
developed for process monitoring based on 6 principal 
components giving 90% explained data variation. Besides, a 
CMDS model without PA was also constructed for 
evaluation. The overall results of Euclidean-scaled CMDS-
PA and other models for abrupt fault cases are presented in 
Table 3, whereas Table 4 summarizes the fault detection 
performance of city block-scaled CMDS-PA and other 
models based on incipient fault category.  

Table 3. Fault detection time (samples) of CMDS-PA 
(Euclidean and city block), CMDS and PCA-based 

MSPM for abrupt and incipient faults based on 99% limit 
Abrupt 

Fault No. 
CMDS-PA 

(Euc and Cit) CMDS PCA 

1 1 1 1 
2 1 1 1 
3 1 1 1 
4 1 3 1 
5 1 1 1 
6 1 1 1 
7 1 3 1 
8 1 1 1 
9 1 1 1 

10 1 1 1 
11 1 1 1 
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Table 4. Fault detection time (samples) of CMDS-PA 
(Euclidean and city block), CMDS and PCA-based 

MSPM for abrupt and incipient faults based on 99% limit 
Incipient 
Fault No. 

CMDS-PA 
(Euc and Cit) CMDS PCA 

1 2 3 2 
2 4 6 4 
3 1 1 1 
4 17 23 20 
5 8 16 12 
6 16 21 20 
7 17 19 19 
8 15 20 15 
9 15 19 17 

10 15 19 17 
11 4 6 3 

The fault detection is defined as the sampling time between a 
fault being introduced and a monitoring index exceeding its 
99% control limit. For instance, if the fault identified at 
sample 3, then the fault detection time is 1 (3-2). From Table 
3, all the process monitoring models including the proposed 
MDS techniques can detect the abrupt fault cases within 3 
sampling time (mostly after 1 sampling time). In the case of 
incipient fault however (Table 4), all systems took quite 
longer time in signaling the faults (ranging from 1 to 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results in Tables 3 and 4 also indicate that both CMDS-
PA-Euclidean and CMDS-PA-City block share the same 
performance in detecting those specified faults. This is 
because the FDI in both techniques uniquely having their 
own control limits respectively as depicted in Fig. 4. Fig. 4 
shows the FDI performance of incipient fault number 5, 
where both CMDS-PA have identified the specified fault at 
sample 10 (sampling time: 8) but with different 99% 
monitoring limit values. In compare to the results of standard 
CMDS, both extended MDS techniques performed 
significantly better, where they managed to identify the faults 
much earlier in all of the incipient fault cases and two cases 
from abrupt fault (fault 4 and 7) . This is due to CMDS-PA 
used a similar transformation functions (through PA) in 
projecting the new samples’ variable scores as opposed to the 
CMDS-based system, where different eigenvectors and 
eigenvalues are used every time for on-line projection. In 
fact, both of the CMDS-PA systems have shown improved 
performance with respect to incipient fault number 4, 5, 6, 7, 
8, 9 and 10. Other cases of incipient fault showed either both 
CMDS-PA and PCA have the same performance (fault 1, 
2,and 3) or PCA leads by only 1 sampling time detection 
(fault 11). Nevertheless, these performance variations can be 
regarded as relatively equivalent as the sampling time 
interval used is small (4 seconds).  Fig. 5 shows the 
contribution plots of the incipient fault number 5 (abnormal 
temperature of the reactant from feed stream) based on the 
CMDS-PA systems.            
 
    
 
 
                         
                         
 
 
                        
                        
  

 

 

 

 

 

 

 

 

 

 

Normal: Sample 1 

Fault: Sample 10  

Normal: Sample 1 

Fault: Sample 10  

Fig. 4: FDI (Cr) monitoring chart of CMDS-PA for 
incipient fault number 5 based on Euclidean scale (top) 
and city block scale (below) 
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Fig. 5: Contribution plots of CMDS-PA for incipient fault 
number 5 based on Euclidean scale (top) and city block 
scale (below)  
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In analyzing this particular fault, it was found that the source 
of the fault is coming from variable number 3. Surprisingly, 
this phenomenon can be verified by the CMDS-PA, where 
there was a drastic increased in the variable 3 magnitude on 
the contribution plots of sample 10 as opposed to the variable 
3 value from the normal sample as shown in Fig. 5. 

In addition, Fig. 6 illustrates the variable configurations of 
both CMDS-PA Euclidean and city block scales for incipient 
fault number 5 based on dimension 1 and 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 6, it is obviously shown that the magnitude of the 
resultant vector length of variable 3 of sample 10 (dotted 
line) was increased substantially from the origin in compared 
to the variable vector length of variable 3 of sample 1 (solid 
line) in both of the CMDS-PA plots. The plots also are able 
to denote other variables such as variable 1, 7 and 13 of 
faulty sample seemed to be diverted in great magnitude 
compared to the normal coordinates. Those were identified as 
variables which have been affected by the faulty condition of 
variable 3. Thus, all of these support the fact that CMDS is 
not only can be utilized alternatively for process monitoring 
but it also can potentially provide the insight of which 
variables contribute to the specified fault.  

 

 

4. CONCLUSIONS 

A MSPM framework based on CMDS and PA techniques is 
proposed. In particular, a new FDI has been introduced, 
which is derived from the multivariate scores in terms of 
variable structure. The overall performance of these newly 
MSPM systems was found to be relatively similar compared 
to the linear PCA-based MSPM method, which has been 
demonstrated by a case study on a CSTR system. This proves 
that the proposed methods can potentially be used as an 
alternative for process monitoring. Further works is on-going 
in compressing the multivariate data much lower by using 
Non-metric MDS technique.  
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Fig. 6: Configuration plots of CMDS-PA for incipient 
fault number 5 between sample 1 and sample 12 based on 
Euclidean scale (top) and city block scale (below)  
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