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Abstract: In this paper, an optimal redundant instrumentation sensor network design methodology is 
presented for complex chemical process plants using a combinatorial particle swarm optimization search 
(CPSO) engine. The approach, which is more flexible and general in comparison with previous works, 
aims to minimize cost as a main design factor, similar to the usual trend in the literature. Besides, it caters 
for fault-tolerance issue as a crucially important feature in the design procedure which has not been 
addressed sufficiently in the reported research works. For this purpose, weak redundancy degree (WRD) 
and sensor network reliability (R) are incorporated in the proposed design scheme as three evaluating 
measures. This enables the designer to maintain a desired fault-tolerant redundancy in the proposed sensor 
network to cope with a possible set of sensor failures. Thus, the developed CPSO engine searches in a 
diverse variety of sensor networks to adopt the most fitted one based on the imposed fault-tolerant design 
constraints. This facilitates the network realization of the fault-tolerance as the most attractive feature 
which is practically very demanding. Implementation of the proposed design methodology is illustrated in 
a simulated continuous stirred tank reactor (CSTR) as a benchmark process plant used in a large-scale 
design to show its effective capabilities.  

1. INTRODUCTION 

Measurements of all process variables are not practically 
cost-effective and yet operationally feasible in complex 
industrial plants. Accordingly, only a limited number of 
process variables are decided to be measured directly and 
hence reconciliation techniques could be beneficial for 
estimating the non-measured variables using the process 
model dynamics. Generally, a sensor network design 
methodology mainly deal with location or/and precision of 
sensors in large-scale plants so that some desired criteria, viz: 
observability (Vaclaveck and Loucka, 1976), precision 
(Musiln et al., 2005) and (Bagajewicz and Cabrera, 2002), 
reliability of estimation of variables (Ali and Narasimhan, 
1993), (Ali and Narasimhan, 1995) and gross and error 
detectability (Bhushan and Rengaswamy, 2000a), (Raghuraj 
et al., 1999) are satisfied.  

Bagajewicz (1997) used a tree type enumeration procedure to 
design a minimal cost network subject to constraints on 
precision, availability, resilience and error detectability. He 
proposed a design strategy that incorporates these criteria 
simultaneously for linear systems and suggested a MINLP to 
solve the problem. Further, Bagajewicz and Sanchez (1999) 
showed that problem of minimizing the variance subject to 
cost constraint can be converted to the problem of 
minimizing the cost subject to the variance constraints via 
determining measurement locations in linear networks. 
Bagajewicz and Cabrera (2002) presented a new MILP 
formulation, replacing the previous tree search solution 

procedures for minimizing cost subject to explicit constraints 
of precision, error detectability, resilience and availability. 
Although their method works well for small and medium 
problems, for large size problems the challenge exists. Sen et 
al. (1998) integrated graph theory and genetic algorithm 
concepts to develop a generalized sensor network design 
algorithm for non-redundant linear mass flow processes.  In 
comparison with graph-theoretic algorithms (Ali and 
Narasimhan, 1993), GA-based method (Sen et al.,1998) 
provides more near optimal solutions (Sen et al.,1998). 
Bagajewicz et al. (2004) developed an instrumentation 
network design scheme that could reflect the potential benefit 
of adding sensors in networks and used value and cost 
concepts separately and applied them both in the integrated 
design, enabling to satisfy fault detection, material 
accounting and control criteria simultaneously. Kotecha et al. 
(2008) proposed a duality between the precision and 
reliability problems for non-redundant sensor network design 
in linear processes. This method enables one to convert any 
reliability design measure to precision framework and use 
explicit optimization algorithm, which was already developed 
for precise design (Bagajewicz and Cabrera, 2002), to design 
sensor network in the precision domain, satisfying reliability 
constraints specified in the design. 

Only a few works have addressed the sensor network design 
by determining both type and location of sensor 
simultaneously; Muslin et al. (2005) discussed both location 
and type of sensors in precise linear sensor network designs. 
If type of sensors is not a consideration in design procedure, 
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number of possible networks that can be constructed via 
given set of sensors decreases drastically. Observing this 
point, i.e. neglecting the variety of sensors in the design 
procedure can lead to a substantial saving of design time. 
Subsequently, designer can take advantage of the saved time 
to study on designs developed by enumeration methods. 
Enumeration methods try to examine all possible candidates 
based on a logical algorithm, and suggest the most optimal 
solution whose optimality is guaranteed because of their 
inherit analytical behavior. This may be the main reason 
behind previous works that have ignored sensor variety in 
their presented design. 

Staroswieck et al (2004) addressed the problem of fault 
tolerant estimation and the design of fault tolerant sensor 
networks. They defined fault tolerance with respect to a 
principle that a given functional of the system state should 
remain observable when sensor failures occur. All sensor sets 
were shown in an automaton which contains all the subsets of 
sensors such that the estimation objective can be achieved. 
They introduced three criteria evaluating the system fault 
tolerance with respect to sensor failures when a 
reconfiguration strategy is used: weak redundancy degree 
(RD), sensor network reliability (R), and mean time to non-
observability (MTTNO). Sensor networks are designed by 
finding redundant sensor sets whose RD and/or R and/or 
MTTNO are larger than some specified values. Their 
regressive method works well on small designs in which 
design algorithm only cares about the existence of a sensor 
on the variable. However, when it comes to designing of 
networks with multiple sensors available to measure a 
variable, due to the drastic increase of number of possible 
solutions, the calculation effort highly increases and it fails to 
work. In addition, a main criterion in instrumentation design 
procedure, i.e. cost of instrumentation, has been neglected in 
this approach. 

In order to address the mentioned issues altogether, we have 
presented a new instrumentation design methodology for 
cost-optimal and fault-tolerant sensor networks which is 
more comprehensive, flexible and practical than other 
designs given in the literature. In the proposed method, 
instead of following the regressive method which uses a 
regular and determined approach to check all the possible 
nodes that fulfill the constraints, a search engine is used. In 
this method, search engine does not examine all solutions to 
find the most optimal one, so time consumption decreases 
considerably. This is a benefit that allows designer to involve 
more variety of sensors in design in addition to facilitating 
the design to be applied in large-scale designs for the sake of 
saved time caused by using the CPSO. Moreover, cost-
related considerations as well as the fault tolerance criteria 
have been involved in the design procedure. 

In this paper, first the necessary terms, e.g. redundancy 
degree and reliability of networks, are briefly introduced 
(Staroswieck et al, 2004). The proposed fault tolerant 
estimation design algorithm is presented in the next section. 
Finally, the presented algorithm is implemented in a CSTR 
case study including a set of 15 process variables to illustrate 
its specified capabilities.   

2. FAULT TOLERANCE ASSESSMENT 

2.1  Minamility and Redundancy 

Consider the continuous time deterministic system: 

( ( ), ( ))x f x t u t=&  (1) 
( ) ( ( ))y t g x t=  (2) 
( ) ( ( ))z t h x t=  (3) 

where nx R∈  is the state vector, mu R∈ is the control 

input, py R∈ is the measurement vector, and 
qz R∈ is the 

functional of the state which is to be estimated. The inputs 
u(t) are assumed to be sufficiently differentiable and f, g, h 
are sufficiently smooth vector fields. Let J R⊆ be a subset of 
the system sensors, and introduce the notation obsv(z/J) 
where (for a given definition of observability): 

1
( / )

0
if z isobservable with J

obsv z J
otherwise

⎧
=⎨

⎩
 (4) 

Let 2R be the set of all subsets of R; then (4) induces a two-
class partition: 

2 { ; ( / ) 1}

2 { ; ( / ) 0}

R

R

J R obsv z J

J R obsv z J

+

−

= ⊆ =

= ⊆ =
 (5) 

The class 2R+ contains all the subsets of sensors by which z is 
observable, and it is assumed that 2RR +∈ ; i.e. the system is 
observable by the whole set of sensors. Accordingly, minimal 
sensor set and redundant sensor sets are defined a following: 
A subset of sensors 2RJ +∈ is minimal (MSS), if 

2Rk J k +
∀ ⊂ ∉  (6) 

and a subset of sensors 2RJ +∈  is redundant (RSS), iff it is not 
minimal. 

2.2 Interpretation of fault tolerance 

Assume that one or several sensor failures occur at time tf so 
that the set of sensors J can be decomposed into the normal 
and the faulty ones: n fJ J J= ∪ . Therefore, the 
measurement equations can be written  

( ) ( ( ))n ny t g x t=  (7) 

( ) ( ( ))f fy t g x t=  (8) 

where yn (resp. yf ) represent the normal (resp. the faulty) 
outputs of the sensor network J and gn (resp. gf ) are the 
normal (resp. the faulty) measurement equations. The fault 
tolerance problem used in this paper can be interpreted as 
follows: the faulty sensors Jf are switched off, and the 
problem is to assess the possibility of still estimating the 
functional z by using the remaining set of sensors Jn which is 
indeed true, provided system is still observable. This method 
that is named reconfiguration strategy only needs fault 
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detection and isolation (fault estimation is not necessary), and 
that the fault tolerance property is a structural one, since it is 
associated with triple (1), (7) and (8), it does not depend on 
the type of fault which affects the sensors Jf, In this paper, we 
consider only the reconfiguration strategy. Now that the 
interpretation of fault tolerance was presented, the 
redundancy degree and reliability are defined in the next 
sections. 

2.3  Weak Redundancy Degree 

Let J I⊆ be any subset of the sensors, i.e. some state of the 
system instrumentation. Let K MSS(J)∈ , then the quantity 
|J\K| represents the maximal number of sensors which can be 
lost while z can still be estimated by K. In the ‘best’ 
situation, as many sensor losses as 

( )
| | min | |

K MSS J
J K

∈
−  (9) 

can be accepted. The weak redundancy degree evaluates the 
size of this ‘best’ situation. 

The weak redundancy degree associated with the pair (z, J) is 

( )
( , ) | | min | |

K MSS J
WRD z J J K

∈
= −  (10) 

From the interpretation of WRD(z,J) it follows that the 
following statement is true: 

| \ ' | ( , )

' ( )

J J such that J J WRD z J

and J MSS J

′∃ ⊂ =

∈
 (11) 

Of course, in many cases, z will no longer be observable after 
less than WRZ(z,J) sensors are lost.  

2.4  Availability of the Estimation Service 

Let t0=0 be the time at which the system operation was 
started, and let J(t) be the subset of the non-faulty (available) 
sensors at time t. Let J0 =J(0), assuming such data to be 
available, the fault tolerance of the z-estimation process can 
be evaluated by the probability for the estimation of z to be 
possible during the given time interval [0,t] assuming that it 
was possible using the set J0 at time 0, R(z/J0). Let 0K J⊆  
be any subset of sensors. The probability for the estimation of 
z to be possible during the time interval [0, t] using K is 
given by (12): 

( / , ) ( / ). ( , )R z K t P z K R K t=  (12) 

where P(z/K) = 1 if K is a MSS or a RSS and P(z/K) = 0 
otherwise, and R(K,t) is the reliability of the set of sensors K; 
which is defined as the probability that no sensor of K fails 
during the interval [0,t]. If sensor failures are independent, 
i.e. there is no common mode failure, one has 

( , ) ( ) (1 ( ))k k
k K k K

R K t R t R t
∈ ∉

= −∏ ∏  (13) 

where Rk(t) is sensor k reliability. The reliability of such 
individual components is often modeled using the Poisson 
distribution: 

( ) k t

k
R t e λ−=  (14) 

where λk is sensor k failure rate, which is supposed to be 
constant. 

Now, considering the whole set J0; it follows from the fact 
that all its subsets K are exclusive, that the probability for the 
estimation of z to be possible during the time interval [0,t] is 
given by 

0

0( / ) ( / ) ( , ),
K J

R z J t P z K R K t
⊆

= ∑  (15) 

In (15), P(z/K) is 1 if subset K is observable and 0 if not. 

3. DESIGN PROCEDURE 

Cost, precision and reliability are fundamental characteristics 
of an instrumentation network. Accordingly, different models 
can be constructed by employing any combination of these 
networks. One common model which has been used 
commonly in the literature minimizes cost of constructing 
satisfying network reliability and fault tolerance constraints. 
This model is called minimum cost model and can be shown 
by: 

{0,1} . .

( )
*( etwork)

*ji

j ji
j

S S t

Min C S
R n R

WRD WRD
∈

∑
⎧ ≥⎪
⎨
⎪ ≥⎩

 (16) 

where Sji represents the integer number showing the 
placement of the variable of sensor type j at network location 
i.The reliability of the network should be evaluated according 
to the specified variables which should be observed. These 
variables can be either whole or part of the network states. If 
the case study is not large, the best solution to these types of 
optimization problems is using the bottom to top algorithm 
introduced in (Staroswiecki et al., 2004). In large-scaled or 
medium-scaled plants, where there are a lot of topologies to 
study, implementing such algorithms takes a lot of time and 
fails to be successful. In order to solve this problem, a search 
engine is used to investigate possible solutions and determine 
which network is the most optimized solution to the model 
(16). Note that although the algorithm suggested in 
(Staroswiecki et al., 2004) for fault tolerant instrumentation 
is not directly stated as the optimization problem, it can be 
considered a special case of model (16). Consider that the 
price of all sensors is equal.  

1, 2, ...,jC C for j n= =  (17) 

In this case, overall cost of a network which has n variables 
to be measured is: 

( ) .j ji
j

Total Cost C S n C= =∑  (18) 

Therefore, minimizing the number of sensors (n) used in 
(Staroswiecki et al., 2004) is equivalent to minimizing the 
cost of sensors, i.e. the model used in (Staroswiecki et al., 
2004) can be considered as a special case of model (16).  
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To solve the presented model in (16), a combinatorial search 
engine, CPSO (Jaboui et al., 2004), is proposed to search for 
the best solution satisfying the optimization problem. The 
block diagram of such an algorithm has been depicted in Fig. 
1. CPSO will check observability, redundancy degree and 
reliability of the network for every particle in each iteration. 
If these values fulfill the problem requirements, CPSO allows 
the particle to survive in the engine; otherwise, it will put 
away the particle and choose another one as a substitute. This 
scenario goes on until the best solution is suggested by 
CPSO. 

  

Fig. 1. Block Diagram of the design algorithm aims to search 
a network satisfying (16) 

4. IMPLEMNTATION ON THE CASE STUDY AND 
RESULTS 

The case study used in this paper is the CSTR that Bhushan 
and Rengaswamy (2000b) introduced in their article (Fig. 1). 
This process involves an exothermic liquid-phase reaction. 
The model parameters along with their nominal operating 
values are presented in (Bhushan and Rengaswamy, 2000b). 
In this case study, the measurable variables are V, CA, T, TC, 
P, F4, F, Fvg, Fc, Fi, Ti, CAi, Tci, F2, and F3. Thus, in order to 
monitor all variables, five types of sensor are required. To 
incorporate variety in design, three different sets of sensors 
are considered for each sensor type. The failure rates along 
with corresponding costs of these sensors have been 
tabulated at Table 1. In the final step, an efficient modified 
CPSO algorithm is used (Jaboui et al., 2004). Parameters of 
search engine are set as follows: ω=1.1, c1=0.6, c2=0.5, υmax = 
2, υmin = -2 and α=1.2. Moreover, 20 particles and 100 
iterations have been considered to run the CPSO. Now, the 
proposed design procedure is conducted to solve the problem 
in model (16) with five different constraints. In all test runs, 
the WRD constraint is set four. The reliability constraints 
vary from 0.7 to 0.85, but the first case does not include any 
reliability constraint. The search is undertaken ten times so 
that search engine does not fall into local optimization points. 
The best network among the ten obtained solutions is chosen 
as the main solution for that design problem. The solution did 
not necessarily improve with each additional run; among ten 
obtained solution the most optimized one is chosen as the 
best candidate. This policy increases the accuracy of the 

algorithm. The best and worst solutions obtained in each case 
are tabulated in Table 2. The advantage of using multiple 
scans instead of one scan can be clearly observed by 
comparing the two solutions that they are considerably 
different from each other. 

In order to have a visual measure to compare the cost of all 
the solutions obtained by CPSO with each reliability 
constraint, a diagram showing the mutual relationship 
between network costs and their corresponding reliabilities 
has been provided in Fig. 3. The upper and lower lines that 
are shown in bold represent the worst and best solutions 
obtained by CPSO and the other lines shown in green, 
represent the other 9 solutions. As seen, there is almost a 
linear relationship between cost and reliability constraint. 
The diagram maintains its linearity until reliability reaches 
0.85. For higher constraint vales, there is a sharp jump. In 
other words, in order to have an increase of %2 in the 
reliability of the network at the end point of the diagram, 
there is an extra cost of $25000!   

The proposed CPSO algorithm was utilized to offer the best 
possible networks enforced to fulfill the requirements of the 
design problem, but there is no guarantee for the optimality 
of the obtained solutions and there is no available tool that 
can assure us the obtained solutions are the optimal network 
among all the other practical networks that can be built by the 
given sets of sensors. On the other hand, it should be checked 
that whether the suggested solution satisfies all the design 
requirements or not. On the other hand, in these designs, 15 
variables should be monitored; so many feasible networks 
can be constructed by combination of measured variables. 
Accordingly, performing an exhaustive search to verify the 
results is not practical. If we consider different possible types 
of sensors given in Table 1 to measure each variable, there 
will be 384,422,112 observable networks. The mentioned 
issues necessitate applying appropriate verification tests on 
the obtained results. In order to cope with mentioned issue, 
three tests are conducted to verify whether the obtained 
solutions satisfy our design requirements or not.  

The overall time for conducting such an experiment was 3 h 
and 27 min. If we assume conducting experiment for one 
single network through MATLAB software and a machine 
with 2.5 GHz of CPU and 2 GB of RAM takes 0.1036 sec on 
average, performing an exhaustive search for such a plant 
will take more than 460 days! 

  

Fig. 2. The schematic diagram of CSTR Process 
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Table 1. Available sensors for instrumentation design: Volume; C: Concentration; T: 
Temperature; P: Pressure; F: Flow 

 V1 V2 V3 C1 C2 C3 T1 T2 T3 P1 P2 P3 F1 F2 F3 
Failure Rate (×10-2) 1/81 1/50 1/28 1/80 1/50 1/28 1/88 1/49 1/23 1/90 1/48 1/22 1/82 1/44 1/2 
Cost ($) 3000 2200 1600 2500 1800 800 1500 1000 400 1400 1000 800 4500 3000 2200 
                

Table 2. The best and worst solutions obtained for different reliability constraints 
 V CA T Tc P F4 F Fvg FC Fi Ti CAi Tci F2 F3 WRD* R* WRD R Cost($) 

Best × 3 3 3 3 3 × 3 × × 3 3 3 3 3 4 – 4 0.4776 12800 
Worst 3 3 × 3 3 3 × 3 3 × 3 × 3 3 2 4 – 4 0.5091 16200 
Best × 3 3 3 3 2 × 3 × × 2 2 1 2 2 4 0.70 4 0.7098 18100 

Worst × 3 × 3 3 2 1 3 3 × 3 × 3 1 3 4 0.70 4 0.7003 21400 
Best × 3 × 3 1 2 × 3 3 × 2 3 2 2 2 4 0.75 4 0.7529 18600 

Worst × × 3 3 3 2 × 1 3 3 1 × 2 2 2 4 0.75 4 0.7514 22500 
Best × 3 × 3 1 2 × 3 3 × 2 3 3 1 1 4 0.80 4 0.8024 21100 

Worst × × 3 3 1 1 × 3 3 × 1 1 3 2 1 4 0.80 4 0.8008 23300 
Best × 3 × 3 1 1 × 3 2 × 2 3 2 1 1 4 0.85 4 0.8510 23900 

Worst × 3 × 2 2 1 × 2 2 2 3 × 2 1 1 4 0.85 4 0.85141 26500 

 

Table 3. Weak redundancy degree verification for five design sets 
R.Limit  V CA T Tc P F4 F Fvg FC Fi Ti CAi Tci F2 F3 

Initial Net × 3 3 3 3 3 × 3 × × 3 3 3 3 3 – Last Net × F F 3 F 3 × 3 × × 3 F 3 3 3 
Initial Net × 3 3 3 3 2 × 3 × × 2 2 1 2 2 0.7 Last Net × F F 3 F 2 × 3 × × 2 F 1 2 2 
Initial Net × 3 × 3 1 2 × 3 3 × 2 3 2 2 2 0.75 Last Net × F × 3 F 2 × 3 3 × 2 F F 2 2 
Initial Net × 3 × 3 1 2 × 3 3 × 2 3 3 1 1 0.80 Last Net × F × 3 F 2 × 3 3 × 2 F F 1 1 
Initial Net × 3 × 3 1 2 × 3 3 × 2 3 2 1 1 

0.85 Last Net × F × 3 F 2 × 3 3 × 2 F F 1 1 
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Fig. 3. Cost of the networks versus reliability constraints, the 
two lines shown in bold are the worst and best solutions 

Obviously, it is not possible to perform a comprehensive 
verification for our design results. However, in order to 
assess the presented approach performance, 500 randomly 
chosen networks are shown with their corresponding costs 
and reliability values in Fig. 4. In this figure the circles 
represent the solutions suggested by the CPSO that all are 
below or as high as the dots. Although this type of 
verification can not completely approve the results, it can 
lend additional support to the performance of the presented 
method. Likewise, for reliability validation, we took a 
number of networks and let their sensors fail according to 
their reliability values to see whether the new obtained 
network is observable or not. 
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Fig. 4. The validation tests consisting of 500 random 
networks, the CPSO solutions are recognized by circles 

In reliability validation, the ratio of the observable network to 
the total number of networks determines the statistical 
reliability. The diagram of statistic reliability versus number 
of experiments for all searches is depicted in Fig. 5. It can be 
observed that as the number of experiments increases, 
reliability curve approaches the corresponding reliability 
constraints. Note that because number of repetitions is not 
large enough, the statistic reliability obtained with ten test 
trials cannot be valid for reliability validation, but as more 
experiments are performed the reliability approaches the 
expected value. 

Reliability and cost validations have been investigated. Table 
3 shows the verification results for weak redundancy degree. 
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For each design, two networks have been shown. The first is 
the initial one, indicating the main solution suggested by the 
CPSO algorithm, while the second one represents the 
network that has been obtained after four sensor failures in 
the initial network. Examining Table 3 infers that the 
networks have been remained observable after specified 
failures appear in the sensor sets. Of course, the networks 
with fewer failures that are located between these two 
networks are observable too. For instance, consider the 
solution suggested by the CPSO in Table 3 for the first 
design with no reliability constraint in which a sequence of 
four failures: S12, S5, S3 and S2 can occur in the initial 
network. In each sensor failure, a new observable network is 
obtained. This procedure goes on until it reaches a node that 
has the minimal number of sensors and hence no extra sensor 
failure can occur, indicating that sequence of failures ends at 
this node. The number of failures in this sequence determines 
the weak redundancy degree of initial network which is four 
in all the designs. 
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Statistical Validation for Reiliability Constraint=0.85

 
Fig. 5. Statistic Reliability calculated to validate the results, 
as seen all diagrams approaches the constraints used in the 
designs as the number of experiments increases 

5. COCLUSIONS 

A new design methodology has been proposed in this paper 
based on the CPSO algorithm. This facilitates the 
employment of a sensor network design perspective to 
complex large-scale plants in which cost considerations are 
included as the main design objective while incorporating 
fault-tolerant properties, leading to a new optimal redundant 
instrumentation sensor network design. This enables to 
maintain a desired fault-tolerant redundancy characteristic in 
a specific industrial environment to cope with a possible set 
of sensor failures. Different test scenarios carried out in a 
CSTR benchmark problem illustrated the inherent 
capabilities of the proposed sensor network design 
methodology. However, this instrumentation design can be 
applied in other models with more variable to measure. 
Instrumentation design for fault tolerant and precise sensor 
networks is in our line of work at the moment. 
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