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Abstract: The Delaunay tessellation and topological regression is a local simplex method for
multivariate calibration. The method, developed within computational geometry, has potential
for applications in online analytical chemistry and process monitoring. This study proposes a
novel approach to perform prediction and extrapolation using Delaunay calibration method. The
main property of the proposed extension is the continuity of the estimated regression function
also outside the calibration domain. To support the presentation, an application in estimating
the aromatic composition in Light Cycle Oil by Near Infrared spectroscopy is discussed.
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1. INTRODUCTION

Real-time monitoring is an essential component in mod-
ern process industry for optimizing production toward
high-quality products while reducing operating and off-
specification costs. The tools of process analytical chem-
istry like Infrared (IR) and Near Infrared (NIR) spec-
troscopy fulfill the necessary requirements for real-time
analysis of important properties for a broad variety of
materials, because based on inexpensive and continuously
acquired spectral measurements (Workman, 1999).

The principle underlying process monitoring from spectra
is the existence of a relationship between the spectrum of
a given product and the property of interest. The relation-
ship is rarely known a priori but it can be reconstructed
from data by learning specifically tailored multivariate
calibration models. Multivariate calibration methods are
often divided into local and global approaches. The lat-
ter use all known (calibration) observations to learn the
parameters of a single regression model. The former use
only small subsets of the calibration data to build dif-
ferent calibration models located in the neighborhood of
the observation whose properties have to be estimated.
Widely used parametric models like Principal Component
Regression (PCR) and Partial Least Squares Regression
(PLSR) exist in both local and global variants (Gem-
perline, 2006). Among local methods, non-parametric ap-
proaches based on nearest neighbors or topological regres-
sion (Stone, 1977), have gained recent interest, mostly
driven by industrial motivation (see Espinosa et al. (1994);
Jin et al. (2003a,b) and references therein). This is be-
cause such methods are mostly non-parametric, possess
an inherent ability to handle nonlinearities and, what is

more important here, the possibility to minimize models’
maintenance tasks while retaining the prediction accuracy.
In fact, the number of spectroscopic models typically used
in a production plant is rapidly increasing, and this implies
money and time consuming trained personnel for design,
calibration and maintenance of the estimation models.

With the scope to investigate alternative calibration meth-
ods that could reduce the maintenance costs associated to
continuous recalibrations, the authors discussed an appli-
cation of the Delaunay Tessellation and Topological Re-
gression method (DTR) by Jin et al. (2003b) to calibrating
the aromatic composition in Light Cycle Oil (LCO) by
NIR spectroscopy (Corona et al., 2009). The DTR method
was considered for its potentiality to achieve accuracies
comparable with PCR and PLSR models while being much
simpler to develop (a single model can be calibrated for
all the properties to be estimated) and maintain/upgrade
(Jin et al., 2005, 2006). In order to assess the potentiality
of the method, a feasibility study with comparison to
standard calibration methods was successfully performed.
The study also highlighted a main limitation of the DTR
method: a scarce extrapolation ability accompanied by a
lack of stable methods for estimating a continuous regres-
sion function also outside the calibration domain.

This work proposes a consistent extension to the Delaunay
Tessellation and Topological Regression method that per-
mits to estimate a continuous regression function also for
the observations situated outside the calibration domain.
The paper is organized as follows: Section 2 overviews
the DTR method and presents the new approach for the
prediction of borderline objects and Section 3 discusses the
results obtained for the estimation of aromatics in LCO.
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2. THEORY

The Delaunay Tessellation and Topological Regression
(DTR) proposed by Jin et al. (2003b) is a local multi-
variate calibration method developed from arguments in
computational geometry . In its basic form, the DTR
method consists of the following three main steps:

(1) a dimensionality reduction based on a set of known
input observations (e.g., NIR absorbance spectra);

(2) the generation (in the low-dimensional space) of an
unstructured mesh by Delaunay tessellation;

(3) a nearest neighbors (or topological) regression for es-
timating the outputs (e.g., aromatics in hydrocarbon
mixtures) for a set of unknown observations.

This section overviews the steps in the DTR method for
a set of observations {xi,yi}Ni=1, where xi ∈ RD and yi ∈
RP are the inputs (on-line spectrum) and output (off-line
analysis) variables for the i−th observation, respectively.

2.1 Dimensionality reduction

Because of the high dimensionality of the input spectra
x (usually hundreds, up to thousands) and the small
number of samples N (usually tens), it is appropriate to
operate in a reduced data space whose dimensionality is
circumscribed by the intrinsic complexity of the observed
system. The dimensionality reduction step thus aims at
projecting the input observations onto a system of lower
coordinates in such a way that certain properties of the
original data points xi are preserved as faithfully as
possible by a new set of data points x′i ∈ RS , with S � D.

The mapping can be either driven only by the inputs (e.g.,
as in PCR) or by both the inputs and outputs (e.g., as in
PLSR). In general, there is a wide range of methods for
performing dimensionality reduction (Lee and Verleysen,
2007) that can be considered in this step. However, this
study is confined to a projection based only on input
data, because this representation can be common to all
the output properties to be estimated; hence, capable
to minimize problems and costs associated to models’
recalibration and maintenance.

For the sake of simplicity, a Principal Component Analysis
(PCA) is used to characterize the experiments; in that
sense, the property of the data points that is preserved by
the mapping is in the set of pair-wise distances between
them (Jolliffe, 2002).

2.2 Delaunay tessellation

Once the input observations are projected onto a low
dimensional system of coordinates (e.g., the principal
components), the known part of this space is partitioned,
by generating a mesh using all the available data points.
The elements of the mesh are simplices delimited by
known observations (i.e., projected input data points with
known values for the output properties, the calibration
set). Within each simplex, locality conditions are assumed
because similar data should be mapped close to each other.

A well-known method for generating a mesh of simplices is
the Delaunay tessellation (Gudmundsson et al., 2002). For

a given set of point observations in two dimensions, the
Delaunay tessellation constructs an unstructured mesh of
triangular simplices (hence, the common name Delaunay
triangularization) by using all the input data points as
vertices; one triangle is a valid simplex if and only if its
circumcircle does not enclose any other point in the set
(the empty circle condition). The mesh is constructed in
order to maximize the minimum angle and thus avoids the
generation of spiky simplices. The Delaunay triangulation
always exists and it is also unique, if no three points are
on the same line and no four points are on the same circle.

In three dimensions the simplices are tetrahedrons and,
for a reduction to S dimensions, the elements of the tes-
sellation are polyhedrons defined by K = S + 1 points. In
the general S-dimensional case, existence and uniqueness
of the tessellation is also guaranteed, if no K+1 points are
on the same hyper-plane and no K + 2 points are on the
same hyper-sphere. Notice that the DTR method requires
a mesh generation performed on as many dimensions as
those obtained in the dimensionality reduction step.

2.3 Topological regression

Once the mesh is built, it is used for estimating the
properties of new observations (i.e., data points for which
only the input values are known). Topological regression is
performed after projecting also the new observations onto
the same low dimensional system obtained in the first step.

Inside objects The standard case for estimation is when a
new observation x′i (in the S-dimensional projection space)
happens to fall within the convex hull that contains all the
know data points. Since the union of all simplices in the
tessellation is the convex hull of the points, the new data
point also falls within one of the simplices.
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Fig. 1. Property estimation for inside points, on the plane.

In two dimensions, the enclosing simplex is a triangle with
vertexes x′1, x′2 and x′3 (three known observations for which
also the values of the properties y1, y2 and y3 have been
measured), and the position of the new observation x′i with
respect to its three neighboring points (i.e., the vertexes) is
expressed as a linear combination or weighted sum of their
input coordinates subjected to the convexity constraints
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(i.e., the weights αi are non-negative and sum up to one).
For each such a new point, only the enclosing triangular
simplex (Figure 1) fulfills the convexity constraints, with
weights that will be also bounded to the unit interval.

The equation used for calculating the set of weights αi is(
αi,1
αi,2
αi,3

)
=

x′1,1 x′2,1 x′3,1x′1,2 x
′
2,2 x

′
3,2

1 1 1

−1x′i,1x′i,2
1

 , (1)

where x′k,s denotes the s-th coordinate of the k-th vertex of

the enclosing triangle (here, s ∈ {1, 2} and k ∈ {1, 2, 3}).
The resulting weights αi,1, αi,2 and αi,3 are the barycentric
coordinates of x′i with respect to the vertices x′1, x′2 and x′3
of the triangle, with 0 ≤ αi,1, αi,2, αi,3 ≤ 1 and αi,1+αi,2+
αi,3 = 1 being the enclosing simplex also convex. Thus, the
weights can be understood as the contributions of these
known observations to the new observation. Because of
the local linearity assumption within simplices, any of the
P properties yi,p of the new observation is then estimated
from a linear combination (with convexity constraints) of
the properties of the known observations:

ŷi,p = αi,1y1,p + αi,2y2,p + αi,3y3,p, (2)

where y1,p, y2,p and y3,p are the values of the p-th property
at the vertexes (for any p ∈ {1, 2, . . . , P}). Once the
weights are calculated, estimating any property is thus im-
mediate and a complete and common map of the distribu-
tion of the output properties inside the calibration domain
is easily constructed. Equation 1 and 2 easily generalize to
any S-dimensional tessellation with K-hedrons.

For the general S-dimensional case, the consistency of the
regression inside a simplex is shown in the noise-free case
by taking the first-order Taylor expansion of the input-
output relationship yp = f(x′) about the input point x′i,

f(x′) ≈ f(x′i) + (x′ − x′i)
>∇f(x′i).

Evaluating the truncated expansion at any of the vertexes
x′ = x′k with f(x′) = f(x′k), gives the expression

f(x′k) ≈ f(x′i) + (x′k − x′i)
>∇f(x′i).

Because the general expression for the estimates is ŷi,p =∑K
k=1 αi,kyk,p where yk,p = f(x′k), substituting the expan-

sion into the estimation function and re-arranging yields

K∑
k=1

αi,kyk,p ≈
K∑
k=1

αi,k

(
f(x′i) + (x′k − x′i)

>∇f(x′i)
)

ŷi,p ≈
K∑
k=1

αi,kf(x′i) +

K∑
k=1

αi,k(x′k − x′i)
>∇f(x′i).

Now, because x′i =
∑K
k=1 αi,kx

′
k, with

∑K
k=1 αi,k = 1, then

ŷi,p ≈ f(x′i) + (

K∑
k=1

αi,kx
′
k −

K∑
k=1

αi,kx
′
i)
>∇f(x′i)

= f(x′i) + (x′i − x′i)
>∇f(x′i)

= f(x′i),

which demonstrates how for any point x′i in the convex
set, the estimation function is exact up to the second order
(i.e., for the linear case assumed inside the simplices).

The underlying relationship is thus estimated by a piece-
wise linear regression function, which is continuous and
continuosly differentiable inside the simplices (i.e., local
C1 continuity) and continuous but not continuously differ-
entiable at their junction (i.e., local C0 continuity).

Outside objects The special case is for the estimation
of a new observation that does not fall inside the convex
hull defined by the known data points; hence, not even
inside any of the constructed simplices. In this situation,
Equation 1 still holds but only the affine constraints are
satisfied (i.e., the weights αi are still summing up to one
but they are not bounded to the unit interval anymore).
Some of these observations are outliers (in a strict sense)
but they can also be borderline objects located in region
of the input space that was unknown when the initial
calibration set was defined. It is worthwhile noticing that
the main limitation of the DTR method is, in this sense, its
near-absolute lack of extrapolation ability. However, this
limitation is not as dramatic as it may appear, because of
the simplicity to update both projection and tessellation
to account for outlying points (Jin et al., 2005, 2006).

For the estimation of the properties of such observations,
several approaches are reported in the literature. All the
approaches rely on Equation 1 and 2 for the calculation of
the weights and property estimation, but they differ in the
way they select the simplex over which they are resolved.

Jin et al. (2003b) proposed three different approaches:

(1) find the simplex whose centroid is the closest to the
outside point and then allow for negative weights
without any further constraint (Jin 1);

(2) find a simplex whose weights can be negative but
limited within some interval (e.g., [−1, 2], [−2, 3],
[−3, 4] and so on). If more that one simplex is found,
the final estimate is found by averaging over all the
simplices (Jin 2);

(3) find the simplex such that max (|αi,k|) is minimized
and then allow for negative weights without any
further constraint (Jin 3).

However, none of the approaches is necessarily capable
of estimating a continuous regression function. Moreover,
the first approach could be unstable as the weights may
explode and the second and third solution rely on arbitrary
intervals and criteria for searching the closest simplex.

Corona et al. (2009) contributed the centroid method
(cent.), where an estimate for a new external observation
is obtained by projecting it onto the closest simplex, as
identified by its centroidal point (similar to Jin 1). In that
sense, an artificial data point with a set of identical positive
weights in the unit interval that also sum up to one is
constructed and the property is then estimated as equal
to what would be calculated for the centroid of such a
simplex, again using Equation 2. Although the approach
is stable, a noncontinuous regression function is estimated.

This paper proposes a consistent regression function also
for the external data points by looking for their closest
projection onto the convex hull (proj.). Since the projected
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points are in the convex set used for calibration, their
weights and any of their properties can be calculated and
estimated with expressions similar to Equation 1 and 2.

Concretely, for an outside point x′i, its projection on the
hull is computed by finding the closest point by going
through all the facets (segments, on the plane) that bound
the tessellation. For each facet determined by K − 1 end-
points x′1, . . . ,x

′
K−1, its closest point to x′i is obtained from

min
αi,1,...,αi,K−1

∥∥∥K−1∑
k=1

αi,kx
′
k − x′i

∥∥∥2 s.t.


K−1∑
k=1

αi,k = 1

0 ≤ αi,k ≤ 1

;

that is, from the optimal and unique set of convex weights
αi,1, . . . , αi,K−1 that characterize its position on the facet
while minimizing its distance to x′i. The projected point
x̃′i that is closest to x′i is then found through all the facets.

With a projected point x̃′i and a set of optimal convex
weights α̃i,1, . . . , α̃i,K−1 on a facet determined by known
end-points x̃′1, . . . , x̃

′
K−1, the estimate of any property p of

x′i is again immediate and consistent because obtained as
a linear combination of properties of known observations:

ŷi,p =

K−1∑
k=1

α̃i,kyk,p, with p ∈ {1, . . . , P}. (3)

If for simplicity we consider the planar case (Figure 2), we
observe that the projected point x̃′i can be located either
1) on a segment of the convex hull or 2) be one of its
vertexes. Case 1 is characterized by two nonzero weights
out of three, whereas for case 2 only one weight is nonzero
and it also equals one. Case 2 occurs when point x′i is in
the portion of the space bounded by the external normals
to two contiguous segments (i.e., sharing the same vertex).

x′
i

x̃′
i

x̃′
2

x̃′
1

α̃i,1

α̃i,2

x′
i

Fig. 2. Property estimation for outside points, on the
plane. The red line denotes the bounding convex hull.

The two cases lead to two distinct modes of continuous
variation of the estimates outside the calibration domain:

1) the solution remains constant when moving along the
normal to the closest facet and varies linearly when
moving orthogonally to the normal to the closest face;

2) the solution remains constant throughout the corre-
sponding portion of the input space.

At the intersection between the two cases, the regression
function is continuous but cannot be continuously differen-
tiated because the estimates vary between piecewise linear
and constant. In general, the solution is stable and does
not rely on arbitrary criteria when compared to Jin et al.
(2003b) and, it addresses the discontinuity issue associated
with Corona et al. (2009) because it provides a continuous
transition also at the boundary of the enclosing hull.

Again, a generalization of the proposed approach to any
S-dimensional with K-hedrons is straightforward.

3. EXPERIMENTAL

The presented application is framed within the intense re-
search activity that has characterized the recent trends in
refining industry aimed at optimizing the use of low-value
products. Light Cycle Oil (LCO) is a low-value stream
in the diesel boiling range produced in Fluid Catalytic
Cracking units. Due to its poor characteristics (e.g., a high
total aromatics content, considerable percentages of com-
pact structure poly-aromatics and a high sulfur content),
LCO cannot be blended directly in the finished diesel fuel
pool but it is preliminary upgraded to an higher value
diesel in hydro-treatment units (where the poly-aromatics
are hydrogenated). In order to satisfy the required process
and environmental standards of hydro-treated products,
rapid and cost effective (and possibly on-line) evaluation
of the aromatic content is thus mandatory.

3.1 Materials

A total of 91 LCO and Hydro-treated LCO (HDT LCO)
samples were acquired and used for the present study. The
HDT LCO samples were obtained by Sartec S.p.A. in a
bench-scale pilot unit (Vinci Technologies) operating at
various temperatures and pressures, by processing from
different LCO feeds provided by the Saras Refinery (Italy).
The pilot unit mimics most typical industrial operations
and ensures the range of variation in the total aromatic
content and in the distribution the mono-, di- and tri-
aromatics (AH) classes expected in the full-scale case.
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(a) Learning data
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(b) Testing data

Fig. 3. The spectral measurements.

The NIR spectra of the samples (Figure 3) were recorded
using a Varian Cary 500 Scan double-beam spectrometer
in the wavelength range 1600−800nm with 1nm resolution
(xi ∈ RD, withD = 800). The aromatic content (w%), was
determined with the HPLC method EN − 12916 using an
Agilent 1100 Series system with refraction index detection.
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For the development of the multivariate models, the avail-
able data have been divided in calibration and testing
sets (Nc = 58 and Nt = 33 observations). The two sets
have been defined by Sartec S.p.A. in order to contain
each some examples of all products’ qualities and span the
entire range of variation in the aromatics’ concentration.
As for the preprocessing of the spectral observations, the
first derivative is used in the experiments.

3.2 Calibration

Based on the 58 samples in the calibration set, a dimen-
sionality reduction with Principal Component Analysis
has been performed, as a first step. As discussed in Section
2, the technique of choice uses only the input observations
(the NIR spectra). After mean-centering the inputs, PCA
is performed and the calibration (differentiated) spectra
projected, Figure 4(a). The number of retained principal
components is two (x′i ∈ RS , with S = 2). The selection is
based on the inspection of the eigenvalues of the covariance
matrix of the data; the two retained directions account for
over 90% of the total variance observed in the input space.

Upon projecting the input observations in the calibration
set onto the first two principal directions, a Delaunay
tessellation has been performed. Each element of the mesh
is a triangular simplex and the set of simplices is enclosed
in a bi-dimensional convex hull, Figure 4(b). Subsequently,
also the 33 testing (differentiated) spectra have been mean-
centered (by removing the mean of the calibration set)
and projected onto the same principal components space,
Figure 4(c), where topological regression is performed.
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Fig. 4. A graphical representation of the Delaunay method.

The regression model is found by resolving for the barycen-
tric coordinates (Equation 1) of all the testing observations
belonging to the convex set and, then, calculating the
corresponding properties (Equation 2) from the known
measurements. Again, it is worthwhile noticing that being
the DTR model the same for all the properties to be
estimated (the weights are calculated only once), only a
single regression model is needed; thus, minimizing the
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Fig. 5. Estimation results for the testing observations, in-
cluding repeatability bands. Inside points are plotted
as dots (·) and outside points as asterisks (∗).

calibration and maintenance tasks. Moreover, a common
map (i.e., the estimated regression function) of the prop-
erty distribution inside the calibration domain can be
constructed, as depicted in Figure 4(d) where high values
of the properties are dyed in red and low values in blue.
As for the testing observations that do not fall inside the
convex hull determined by the calibration points (only 5,
and all rather close to the boundaries of the convex hull,
Figure 4(c) and 4(d)), the projection method presented
in Section 2 is used and a comparison with the other
approaches available in the literature has been performed.

3.3 Results

The results for the independent set of 33 testing obser-
vations are depicted in Figure 5 and reported in Table 1
for the mono-, di- and tri-aromatics content. In addition,
we are also reporting the results obtained when estimating
the density of the samples: Density (gcm−3) was measured
according to the analytical method ASTM − 4052. It
is worthwhile noticing that estimating such a property
(as well as others not reported here) was straightforward
because of the already calculated weights.

The accuracy of the estimation is reported in terms of Root
Mean Squared Error for Prediction (RMSEP):

RMSEPp =

√∑Nt

i=1(ŷi,p − yi,p)2
Nt

with p ∈ {1, . . . , P},

such a metric is preferred for it retains the original units
of the measurements and thus also allows for a direct com-
parison with the repeatability of the analytical methods.

For all the properties, the accuracy of the estimates
obtained with the DTR calibration and the projection
method is found to be within the repeatability range of the
analytical measurements. On this problem, the projection
method has been always capable to outperform all the
approaches proposed by Jin et al. (2003b). On the other
hand, the centroid method proposed by Corona et al.
(2009) remains a fairly accurate and simple alternative.
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Since all the approaches perform equally on the data points
that fall inside the convex hull bounding the calibration
domain, all the differences in the estimates are only due
to outside points. In that sense, the projection approach
is not only theoretically more rigorous, but it has also
demonstrated able to perform better on this practical case.

Table 1. Estimation results for the testing ob-
servations, as RMSEP. For the PLSR models,
the cross-validated number of latent variables

is also indicated.

Mono AH Di AH Tri AH Density
[w%] [w%] [w%] [gcm−3]

DTR (proj.) 2.74 1.08 0.45 0.0022
DTR (cent.) 2.90 1.11 0.46 0.0023
DTR (Jin 1) 3.25 1.12 0.46 0.0022
DTR (Jin 2) 9.24 7.22 0.77 0.0145
DTR (Jin 3) 2.90 1.45 0.55 0.0021

PLSR 1.26(8) 0.67(7) 0.60(8) 0.0021(8)

For completeness, Table 1 also presents the results ob-
tained with a set of PLSR models independently cross-
validated by Leave One Out (Hastie et al., 2009) for the
number of latent variables. Such models are presented
because often more accurate but also over-parameterized
(the number of latent variables is much higher than the two
used by DTR) and thus clearly less robust and manage-
able, too. These limitations of the PLSR model are p-fold,
when all the properties are considered.

4. CONCLUSION

Delaunay Tessellation and Topological Regression is a
valid and accurate alternative for multivariate calibration
in industrial process monitoring from spectral measure-
ments. In the presence of model maintenance issues, the
DTR method is capable to define a single regression model
that can be used to estimate any set of properties. The
model is easy to construct because non-parametric and it is
also inherently able to handle nonlinearities, thus making
the estimation accurate and computationally very efficient.

The major limitation of the Delaunay calibration method
is, however, its near-absolute lack of extrapolation ability
on samples that fall outside the calibration domain. Such
samples are expected to occur rather often, depending
on the number of available observations and the dimen-
sionality of the problem. Therefore, this work devotes
special attention to this problem and proposes a rigorous
approach to estimate a continuous regression function also
for the outside objects. The discussed approach projects
borderline samples onto the calibration domain and uses
known observations for defining the estimates.

When applied to the calibration of the aromatic content
in Light Cycle Oils, the proposed DTR method with
projection demonstrated capable to always outperform
other DTR-based approaches available in the literature
and often comparable in accuracy with standard PLSR
models. When compared to PLSR, the main advantages
of the DTR method are in the simplicity of the calibration
and ease to upgrade but, also the fewer components, thus
leading to more robust and manageable models.

REFERENCES
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