
Adaptive Stepsize Control in Implicit

Runge-Kutta Methods for Reservoir

Simulation ⋆

Carsten Völcker ∗ John Bagterp Jørgensen ∗

Per Grove Thomsen ∗ Erling Halfdan Stenby ∗∗

∗ Department of Informatics and Mathematical Modeling, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail:

{cv,jbj,pgt}@imm.dtu.dk)
∗∗ Department of Chemical and Biochemical Engineering, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail:

ehs@kt.dtu.dk)

Abstract: This paper concerns predictive stepsize control applied to high order methods for
temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented
and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are
described. A predictive stepsize adjustment rule based on error estimates and convergence
control of the integrated iterative solver is presented. We try to improve the predictive stepsize
control by smoothing the stepsize sequence through combining the control of error with the
control of convergence.

Keywords: Reservoir simulation, Runge-Kutta methods, convergence control, stepsize selection.

1. INTRODUCTION

Reservoir simulators are computer programs that solve
the equations for heat and mass flow in porous media.
Numerical integration is one of the basic steps involved in
the simulation process. The number and type of equations
to be solved depend on the geological characteristics of the
reservoir, the characteristics of the oil and the oil recovery
process to be modeled. Choosing the appropriate method
of integration involves deciding on factors such as the
order of the integration scheme, stability properties and
concern on computational efficiency. ESDIRK methods
have been applied successfully for solution of convection-
diffusion-reaction problems, see Kennedy and Carpenter
(2003). This class of methods is computationally efficient,
and both A- and L-stable and stiffly accurate ESDIRK
methods of various order with an embedded method for
error estimation have been derived by Kværnø (2004) and
Jørgensen et al. (2008). In addition, a robust adaptive
stepsize selection is essential to an efficient numerical
integration. An adaptive stepsize selection aims to keep
the error estimate bounded i.e. close to a user-specified
tolerance by adjusting the timestep. Gustafsson (1992)
suggested a strategy for stepsize selection based on the
rigorous error estimates provided by embedded Runge-
Kutta methods.
We have applied the controller by Gustafsson and Söder-
lind (1997) to three different ESDIRK methods used for
solving a two-phase reservoir model. Although the control
strategy has proven efficient we observed that certain steps

⋆ This research project is financially supported by the Danish
Research Council for Technology and Production Sciences. FTP
Grant no. 274-06-0284.

were rejected due to irregularities in the stepsize selection.
We found that a different interaction between the error and
the convergence control in the stepsize selection process
may solve this problem. The idea is to combine the control
of error with control of convergence in the inner iterations
in a simple logic that minimizes the number of rejected
steps and thereby improves the efficiency.

2. DIFFERENTIAL EQUATION MODEL

In this section we briefly outline the two-phase flow prob-
lem and we present the typical formulation of a system of
ordinary differential equations (ODE) based on conserva-
tion laws.

2.1 The two-phase flow problem

We consider immiscible two-phase flow of oil and water in
porous media. Let Po = Po(t, x) be the pressure of oil and
Sw = Sw(t, x) be the saturation of water, as function of
time t ≥ 0 and position x ⊂ R

2, and let Cw = Cw(Po, Sw)
and Co = Co(Po, Sw) be the mass concentrations of water
and oil respectively. Then the mass balances for water and
oil in the reservoir is expressed by the following system of
partial differential equations

∂

∂t
Cw= −∇ · Fw +Qw (1a)

∂

∂t
Co = −∇ · Fo +Qo (1b)

Fw = Fw(Po, Sw) and Fo = Fo(Po, Sw) are the fluxes of
water and oil through the porous media. The source/sink

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

TuAT2.3

Copyright held by the International Federation of Automatic Control 509

x [m]

y
 [

m
]

0 100 200 300 400
0

100

200

300

400

2000

4000

6000

8000

10000

12000

(a) Permeability field.

x [m]

y
 [

m
]

0 100 200 300 400
0

100

200

300

400

0

0.2

0.4

0.6

(b) Field development, 3 weeks.

x [m]

y
 [

m
]

0 100 200 300 400
0

100

200

300

400

0

0.2

0.4

0.6

(c) Field development, 6 weeks.

x [m]

y
 [

m
]

0 100 200 300 400
0

100

200

300

400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Field development, 9 weeks.

Fig. 1. Field development after 9 weeks of water injection.

terms of water and oil are denoted Qw = Qw(Po, Sw)
and Qo = Qo(Po, Sw). They are used to describe the flow
from injection wells and the flow to production wells. A
more profound description can be found in Chen (2007)
and Völcker et al. (2009). We use a standard 2-D problem
defined by Brouwer and Jansen (2004), depicted in Figure
1.

2.2 An ODE system in general

Many process simulation problems in general are based
on conservation of mass, energy and momentum. It is
desirable to preserve such properties upon numerical in-
tegration in time. As proposed by Völcker et al. (2009) a
general formulation of such an ODE system may be

d

dt
g(x(t)) = f(t, x(t)) x(t0) = x0 (2)

where x(t) denotes the system states, g(x(t)) are the
properties conserved, while the right-hand side function
f(t, x(t)) has the usual interpretation.

3. INTEGRATION METHODS

In this section different classes of Runge-Kutta methods
are outlined. In particular ESDIRK methods are described.

3.1 Runge-Kutta Integration

An s-stage Runge-Kutta method for integration of (2) can
be expressed as

Ti = tn + hnci i ∈ S1 (3a)

g(Xi) = g(xn) + hn

s
∑

j=1

aijf(Tj , Xj) i ∈ S1 (3b)

g(xn+1) = g(xn) + hn

s
∑

j=1

bjf(Tj , Xj) (3c)

0 0 0 0
0

γ

γ

γ

γ

γ

γ

γ

γ

γ

ERK DIRK SDIRK ESDIRK FIRK

Fig. 2. The A-matrix of Runge-Kutta methods.

where Ti and Xi are the internal stage values being numer-
ical approximations to x(Ti). xn+1 is the step computed
at tn+1 = tn + hn. The set Si denotes the internal stages
i, i+ 1, . . . , s.
Different classes of Runge-Kutta methods can be obtained
depending on the structure of the matrix A = [aij]. This is
illustrated in Figure 2. Explicit Runge-Kutta (ERK) meth-
ods have a strictly lower triangular A-matrix which allows
(3b) to be solved explicitly without iterations. Therefore,
ERK methods are computationally fast but cannot be ap-
plied to stiff problems because of poor stability properties.
All implicit methods are characterized by an A-matrix
that is not strictly lower triangular and the state values
Xi are computed iteratively by solution of (3b). Fully
implicit Runge-Kutta (FIRK) methods, identified by a full
A-matrix, have excellent stability properties making them
usefull for solving stiff systems of ODE’s. However, the ex-
cellent stability properties comes with high computational
cost in solving (3b) simultaneously at each iteration step.
To achieve some of the stability properties of the FIRK
methods but at lower computational cost, various methods
in between the ERK and the FIRK methods have been
constructed.

3.2 ESDIRK Methods

ESDIRK methods have a lower triangular A-matrix. By
construction they retain the stability properties of FIRK
methods but at significant lower computational cost. Be-
cause c1 = 0 and a11 = 0 the first stage in ESDIRK
methods is explicit implying that the first state value
equals the last step (T1, X1) = (tn, xn). The subsequent
stages are singly diagonally implicit such that the state
values Xi at Ti = tn + hnci for i ∈ S2 may be solved
sequentially by solution of the residual

R(Ti, Xi) = g(Xi)− hnγf(Ti, Xi)− ψi = 0 i ∈ S2 (4)

with the term

ψi = g(xn) + hn

i−1
∑

j=1

aijf(Tj , Xj) i ∈ S2 (5)

using Newton-Raphson’s iterative method. The Jacobian
JR(Ti, Xi) = ∂

∂Xi
R(Ti, Xi) of the residual is

JR(Ti, Xi) = Jg(Xi)− hnγJf (Ti, Xi) i ∈ S2 (6)

where Jg(Xi) = d
dXi

g(Xi) and Jf (Ti, Xi) = ∂
∂Xi

f(Ti, Xi)

are the Jacobiants of the right- and left-hand sides of (2)
respectively. We only consider methods assumed to be
stiffly accurate by construction i.e. cs = 1 and asj = bj
for j ∈ S1. This implies that the quadrature function (3c)
corresponds to the last internal stage in (3b). Consequently

Copyright held by the International Federation of Automatic Control 510

the next step equals the last state value (tn+1, xn+1) =
(Ts, Xs). The Butcher tableau for stiffly accurate ESDIRK
methods is represented in (7).

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
. . .

1 b1 b2 b3 · · · γ
xn+1 b1 b2 b3 · · · γ
x̂n+1 b̂1 b̂2 b̂3 · · · b̂s
en+1 d1 d2 d3 · · · ds

(7)

4. ERROR AND CONVERGENCE CONTROL

In this section we describe how to estimate the integration
error, how the error is related to the user specified toler-
ances and how to control the convergence of the iterative
solver.

4.1 Integration error

The ESDIRK method stated in (7) is equipped with an
embedded Runge-Kutta method

g(x̂n+1) = g(xn) + hn

s
∑

j=1

b̂jf(Tj , Xj) (8)

computing the embedded solution x̂n+1. The embedded
method is of different order, which then provides an
estimate of the local truncation error

en+1 = g(xn+1)− g(x̂n+1) = hn

s
∑

j=1

djf(Tj , Xj) (9)

corresponding to the numerical solution xn+1. The inte-
gration error (9) is controlled adjusting the timestep by
monitoring the root mean square of the error-tolerance
relation

rn+1 =
1√
m

∣

∣

∣

∣

∣

∣

∣

∣

en+1

atol + |g(xn+1)|rtol

∣

∣

∣

∣

∣

∣

∣

∣

2

(10)

where atol and rtol are componentwise user specified ab-
solute and relative error tolerances and m is the dimension
of the solution vector. Only stepsizes for which rn+1 ≤ 1
are accepted.

4.2 Convergence control

The solution of (4) is done iteratively by a modified
Newton-Raphson’s method i.e. the Jacobian of the resid-
ual is not evaluated/factorized at each timestep. There
is always a trade-off between the rate of convergence of
the equation solver and the frequency of Jacobian up-
dates/factorizations. For reasons of robustness the con-
vergence rate is measured by the residuals Houbak et al.
(1985)

αi =
(rR)k−1

i

(rR)k
i

i ∈ S2 (11)

where the iteration error of the kth iteration is computed
as the root mean square of the residual-tolerance relation

(rR)k
i =

1√
m

∣

∣

∣

∣

∣

∣

∣

∣

(R(Ti, Xi))
k

atol + |(g(Xi))k|rtol

∣

∣

∣

∣

∣

∣

∣

∣

2

i ∈ S2 (12)

using the same componentwise absolute and relative error
tolerances as in (10). If for some k during the iterations
α ≥ 1 the iteration sequence is terminated and the stepsize
is restricted. In case of convergence the iterations are
successfully stopped when (rR)k

i ≤ τ . As noticed in Hairer
and Wanner (1996) the choice of τ affects the efficiency of
the algorithm. A large value of τ may lead to one or more
large components in the integration error (10) with too
many rejected steps as a result. We have chosen τ = 0.1
as a compromise between robustness and computational
speed.

5. STEPSIZE SELECTION

This section is divided into a brief description of the
stepsize selection rule adopted, a description of the modi-
fications that we suggest in order to simplify and stabilize
the control algorithm and finally an outline of the complete
controller is presented.

5.1 Predictive control

The integration error is controlled using a predictive con-
troller for stepsize selection as presented by Gustafsson
(1992). The controller must keep the estimate (9) of the
local truncation error bounded and minimize the compu-
tational work in the solution process by trying to keep
rn+1 = 1 by maximizing the stepsize. Based on empiri-
cal evidence Gustafsson (1992) suggested a proportional
integral (PI) stepsize adjustment rule on the form

hr =
hn

hn−1

(

rn−1

rn

)k1/k̂ (

ǫ

rn

)k2/k̂

hn (13)

where k1 and k2 are the gain parameters of the propor-

tional and the integral parts respectively and k̂ is the
order of the embedded Runge-Kutta method, while ǫ is the
desired tolerance (including a safety factor). Gustafsson
(1992) suggests k1 = k2 = 1 corresponding to deadbeat
control and a safety factor of 0.8.

5.2 Modified controller

The core stepsize adjustment rule (13) must be imple-
mented along with a number of extensions and various
safety nets and the original framework from which we
propose our modifications can be found in Gustafsson
(1992). Additionally a modification suggested by Gustafs-
son and Söderlind (1997) is described and implemented.
The modified PI controller that we suggest is presented in
Algorithm 5.1.

Copyright held by the International Federation of Automatic Control 511

Since we are only considering stiffly accurate methods
the order reduction for stiff systems can be avoided, see
Prothero and Robinson (1974). Consequently the strategy

described by Gustafsson (1992) for estimating k̂ after
successive rejects can be omitted. This does not make
any noticeable change in the controller performance but
simplifies the algorithm a great deal.
Besides the frequency of Jacobian updates/factorizations
the stepsize is the only available control variable affecting
the convergence rate of the equation solver. In order to
assure convergence in the equation solver the stepsize has
to be restrained in some situations. If convergence is too
slow i.e. if α > αref Gustafsson (1992) suggest the stepsize
to be chosen as

hα =
αref

α
hn (14)

to obtain α = αref in the next step. The stepsize suggested
by (14) must be coordinated with the requirements from
the error control. If α > αref the stepsize in Gustafsson
(1992) is implemented as

hn+1 = min(hr, hα) (15)

restraining the stepsize if hα < hr. The strategy adopted
by (14) and (15) may be too aggressive in the sense that
the corresponding error estimate (10) becomes very low
compared to ǫ. Hence the subsequent stepsize estimated
by the asymptotic controller

hr =
(ǫ

r

)1/k̂

hn (16)

will be too large making the error estimate and thereby the
stepsize fluctuate wildly. We try to avoid this by modifying
(14) to

hα =
(αref

α

)1/k̂

hn (17)

which means that the deviation of the convergence rate
from αref is not necessarily corrected in one step. If a step
has been rejected and restricted by slow convergence, then
in combination (16) is filtered by the relation between the
previous accepted step and the current accepted step

hr =
hn

hn−1

(

ǫ

rn

)1/k̂

hn (18)

which further reduces the stepsize following a convergence
restricted step. If the current step is accepted we neglect
the condition α > αref on (15). In addition (13) is al-
ways used estimating the next stepsize, whenever a step
is accepted. Consequently we allow the convergence of the
equation solver to gain more influence on the stepsize se-
lection. While Gustafsson (1992) suggests 0.2 . αref . 0.5
as set-points for the convergence rate we chose αref = 0.6.
This value favours robustness and a minimum amount of
work needed to complete the integration fairly equal.
Slow convergence in the equation solver and in particular
rejected steps because of convergence failure is very costly.

This can to some extend be controlled by the stepsize but
also by the frequency of Jacobian updates/factorizations.
Considering (6) we see that stepsize changes invokes a
refactorization of the Jacobian but not necessarily a Ja-
cobian reevaluation - if on the other hand the Jacobian is
updated a factorization is always called for. Good conver-
gence can be obtained by both updating and factorizing
the Jacobian at every stepsize change. For large systems
though this may be the dominating part of the computa-
tions and large savings can be made by utilizing a strat-
egy for reusing the same Jacobian for several timesteps.
Gustafsson (1992) monitors the relative stepsize change
since the last factorization was done and suggests

|hn+1 − hLU |/hLU > αLU (19)

as a refactorization strategy. The strategy is preventive in
the sense that it tries to avoid convergence failures by fac-
torizing whenever planning to do a stepsize change that is
likely to jeopardize convergence. Should poor convergence
be experienced despite a factorization based on current
data, say α > αJac, then a reevaluation of the Jacobian
is called for. Gustafsson and Söderlind (1997) suggests the
combination

α− |hn+1 − hLU |/hLU > αJac (20)

as decision for when to compute a new Jacobian. Besides
monitoring the convergence rate of the equation solver this
strategy also trades Jacobian updates with factorizations
and function evaluations. The value of αref sets an upper
limit on αJac and αLU , see Gustafsson (1992). In the two-
phase flow problem the administration of the Jacobian
is expensive compared to one iteration. This argues for
large values of αJac and αLU . To be more specific it is
more costly to update the Jacobian than factorizing it,
consequently we have chosen αJac = 0.5 and αLU = 0.3.
Because of the large value of αJac we allow a fairly large
maximum number of iterations in the equation solver,
setting kmax = 20.

5.3 The complete controller

The complete modified PI controller for an implicit Runge-
Kutta method is outlined in Algorithm 5.1. The controller
includes three main parts:

• A stepsize selection rule based on both the error-
tolerance relation and the convergence of the equation
solver.
• An update/factorization strategy for the Jacobian

that supervises the convergence and the iteration
error of the equation solver.

• A strategy for handling convergence failures.

6. CHOICE OF METHODS

In this section the two-phase flow problem is used as a
benchmark. We compare and discuss the performance of
the controller by Gustafsson and Söderlind (1997) and
the controller suggested in Algorithm 5.1 when applied to
three different ESDIRK methods.
In this section ESDIRKkk̂ refers to an ESDIRK method of

Copyright held by the International Federation of Automatic Control 512

Algorithm 5.1: The complete modified PI controller for
an implicit Runge-Kutta method.

if iterations converged then

hr ←
(

ǫ
r

)1/k̂
h

if step accepted then
if step restricted then

hr ← h
hacc

hr

else

hr ← h
hacc

(

racc

r

)1/k̂
hr

racc ← r
hacc ← h

h← min

(

hr,
(αref

α

)1/k̂
h

)

if α− |h− hLU |/hLU > αJac then
Form new Jacobian and factorize iteration matrix.
hLU ← h

else if |h− hLU |/hLU > αLU then
Factorize iteration matrix.
hLU ← h

else
if new Jacobian then

if α > αref then

h←
(αref

α

)1/k̂
h

else
h← h/2

Step restricted.
else

Form new Jacobian.
Factorize iteration matrix.
hLU ← h

order k with an embedded method for error estimation of
order k̂. PI97 denotes the controller by Gustafsson and
Söderlind (1997) and PI09 refers to the controller pre-
sented in Algorithm 5.1. For the work-precision diagrams
we used a fixed absolute tolerance of 10−8 and the relative
tolerances from 10−2 to 10−8, denoted as significant digits
(SD).

6.1 Choice of ESDIRK method

As can be seen from the work-precision diagram in Fig-
ure 3(a), the computational cost of ESDIRK12 increases
dramatically with the requirement in SD’s. This is due
to the small stepsizes, which yields an increased workload
of the equation solver trying to retain (rR)k

i ≤ τ (12).
This is seen in Figure 4(a), where the number of function
evaluations reflects the number of iterations. ESDIRK23
and ESDIRK34 are better at maintaining an appropriate
distribution of the workload as the requirements of the
number in SD’s increases. The distribution of workload
of the two methods are almost identical and only the
distribution of ESDIRK23 is depicted in Figure 3(b).
Except for SD = 2 we observe from the work-precision
diagram of the three methods, that ESDIRK23 is the most
computationally efficient method for temporal discretiza-
tion of problems like the two-phase flow.

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

SD

tE
S

D
IR

K
 [

s
]

ESDIRK12

ESDIRK23

ESDIRK34

(a) Computational cost of the
three ESDIRK methods.

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

SD

D
is

tr
ib

u
ti
o

n
 o

f
c
o

m
p

.
ti
m

e
 [

%
]

Function evaluations

Jacobian updates

LU factorizations

Backward substitutions

Other comptations

(b) Distribution of computa-
tional cost in ESDIRK23.

Fig. 3. Total computational cost of the three ESDIRK
methods applied with the PI09 controller and the
distribution of the computational cost in ESDIRK23.

2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

SD

tF
u

n
 [

s
]

ESDIRK12

ESDIRK23

ESDIRK34

(a) Computational cost of func-
tion evaluations.

2 3 4 5 6 7 8
10

0

10
1

10
2

SD

tJ
a

c
 [

s
]

ESDIRK12

ESDIRK23

ESDIRK34

(b) Computational cost of Ja-
cobian updates.

2 3 4 5 6 7 8
10

0

10
1

10
2

SD

tL
U

 [
s
]

ESDIRK12

ESDIRK23

ESDIRK34

(c) Computational cost of LU
factorizations.

2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

SD
tB

a
c
k
 [

s
]

ESDIRK12

ESDIRK23

ESDIRK34

(d) Computational cost of back
substitutions.

Fig. 4. Performance comparison of the three ESDIRK
methods applied with the PI09 controller.

6.2 Choice of controller

The stepsize sequences for the PI97 and the PI09 con-
trollers are depicted in Figure 5 and 6 respectively. As
expected, we observe a reduction in rejected steps (nFail
and nSlow) and fewer iterations done by the equation
solver (nFun). In the PI97 controller, convergence is only
allowed to restrict the stepsize, if α > αref . The PI09
controller allows convergence to restrict the stepsize by
combining (15) and (17), hence the relation between α
and αref is taken into account in each stepsize selection.
Due to this improved interaction between the error and
the convergence control in the stepsize selection process,
large fluctuations of the stepsize, when advancing in time,
is avoided. Consequently a smoother stepsize sequence
is obtained and the need for heuristics to restrain large
stepsize changes no longer applies.
As seen in Figure 7, it is difficult to make a general con-
clusion of the difference in computational cost for the two
controllers. Typically we require 3 to 4 SD’s in reservoir
simulation, as a consequence we suggest applying the PI09
controller, when solving problems like the two-phase flow.

Copyright held by the International Federation of Automatic Control 513

0 5 10 15 20
10

−2

10
−1

10
0

10
1

Time

S
te

p
s
iz

e

0 5 10 15 20

10
−2

10
0

10
2

Time

E
rr

/T
o

l

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time
A

lp
h

a

Method : ESDIRK23
absTol : 1e−08
relTol : 0.0001

nStep : 88
nFail : 21
nDiv : 0
nSlow : 3

nFun : 1179
nJac : 22
nLU : 38
nBack : 2356

Fig. 5. Performance of ESDIRK23 applied with the PI97
controller computing the solution in Figure 1(b).

0 5 10 15 20
10

−2

10
−1

10
0

10
1

Time

S
te

p
s
iz

e

0 5 10 15 20

10
−2

10
0

10
2

Time

E
rr

/T
o

l

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time

A
lp

h
a

Method : ESDIRK23
absTol : 1e−08
relTol : 0.0001

nStep : 83
nFail : 11
nDiv : 0
nSlow : 0

nFun : 924
nJac : 20
nLU : 38
nBack : 1846

Fig. 6. Performance of ESDIRK23 applied with the PI09
controller computing the solution in Figure 1(b).

7. CONCLUSION

In this paper we combined the control of error with the
convergence control of the equation solver in a simple
logic that decreases the number of rejected steps and
produces a smoother stepsize sequence. In some cases,
better convergence of the equation solver is obtained i.e.
fewer iterations is needed in order to meet the required
tolerance. For large scale systems, which is typical in
reservoir simulation, it may be necessary to solve the
linearized equations iteratively. If this is the situation, the
cost per iteration, both for the equation solver and the
iterative solver of the linearized system, can be significant.
Consequently, it is crucial for the solution of large scale
systems to minimize the number of iterations per timestep,
when performing implicit numerical integration.
In addition, the integration of the convergence control
has the effect that extreme variations in stepsize are
eliminated making the logics in the control algorithm free
of heuristics.

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

SD

tE
S

D
IR

K
1

2
 [

s
]

PI97

PI09

(a) Computational cost of ES-
DIRK12.

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

SD

tE
S

D
IR

K
2

3
 [

s
]

PI97

PI09

(b) Computational cost of ES-
DIRK23.

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

SD

tE
S

D
IR

K
3

4
 [

s
]

PI97

PI09

(c) Computational cost of ES-
DIRK34.

2 3 4 5 6 7 8
−20

−10

0

10

20

30

40

50

SD

D
if
fe

re
n

c
e

 i
n

 c
o

m
p

.
ti
m

e
 [

%
]

ESDIRK12

ESDIRK23

ESDIRK34

(d) Difference in computa-
tional cost.

Fig. 7. Comparison of the PI97 and the PI09 controller
applied to the three ESDIRK methods.

REFERENCES

Brouwer, D.R. and Jansen, J.D. (2004). Dynamic opti-
mization of waterflooding with smart wells using opti-
mal control theory spe-78278-pa. The 2002 SPE Euro-
pean Petroleum Conference.

Chen, Z. (2007). Reservoir Simulation : Mathematical
Techniques in Oil Recovery. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia.

Gustafsson, K. (1992). Control of Error and Convergence
in ODE Solvers. Ph.D. thesis, Department of Automatic
Control, Lund University, Sweden.

Gustafsson, K. and Söderlind, G. (1997). Control strate-
gies for the iterative solution of nonlinear equations in
ode solvers. SIAM J. Sci. Comput., 18(1), 23–40.

Hairer, E. and Wanner, G. (1996). Solving Ordinary Dif-
ferential Equations II: Stiff and Differential-Algebraic
Problems. Springer, 2nd edition.

Houbak, N., Nörsett, S., and Thomsen, P. (1985). Dis-
placement or residual test in the application of implicit
methods for stiff problems. IMA Journal of Numerical
Analysis, 5(3), 297–305.

Jørgensen, J.B., Kristensen, M.R., and Thomsen, P.G.
(2008). A family of esdirk integration methods. SIAM
Journal on Scientific Computing.

Kennedy, C.A. and Carpenter, M.H. (2003). Additive
runge-kutta schemes for convection-diffusion-reaction
equations. Applied Numerical Mathematics, 44(1-2), 139
– 181.

Kværnø, A. (2004). Singly diagonally implicit runge-kutta
methods with an explicit first stage. BIT Numerical
Mathematics, 44, 489 – 502.

Prothero, A. and Robinson, A. (1974). On the stability
and accuracy of one-step methods for solving stiff sys-
tems of ordinary differential equations. Mathematics of
Computation, 28(125), 145–162.

Völcker, C., Jørgensen, J.B., Thomsen, P.G., and Stenby,
E.H. (2009). Simulation of subsurface two-phase flow in
an oil reservoir. The European Control Conference 2009.

Copyright held by the International Federation of Automatic Control 514

