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Abstract: In this work the problem of optimal input design (OID) in a receding-horizon
framework for online parameter estimation is solved. The designed optimum input is used for
dynamic experiment and subsequent estimation of parameters. A fuel cell experiment design
and parameter estimation problem is investigated through the proposed approach. Some of
the issues related to the application of the proposed method are examined and guidelines for
selecting appropriate experimental settings are provided.
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1. INTRODUCTION

Optimal input design (OID) is an important part of the
identification literature which seeks to address the issue
of parameter estimation among model developers. The
main focus of this work is to solve the receding horizon
optimal input design method for parameter estimation and
apply the method to solve a fuel cell experiment design
and parameter estimation problem. A typical experiment
design problem often involves minimizing or maximizing
some apriori chosen norm of the Fisher information matrix
(FIM) (Bates and Watts, 1988). The information matrix is
a function of inputs and a carefully designed experiment is
critical for obtaining good parameter estimates. Stigter et
al. (2006) investigated the OID problem in tandem with
a recursive parameter update scheme by minimizing the
minimum eigenvalue of the FIM (E-optimum), which they
called adaptive optimal input design and adaptive receding
horizon optimal control problem for parameter estimation.

In this paper, we develop a receding horizon experiment
design and parameter estimation approach with the follow-
ing features: (1) A state estimation approach for parameter
estimation is used in tandem with the receding-horizon
experiment design, which is a natural extension of model
predictive control (MPC). The state estimation used here
is similar to that used in MPC while the experiment design
is similar to the calculation of MPC control moves. (2)
The D-optimal design which maximizes the determinant
of the FIM is solved in tandem with parameter estimation.
(3) To resolve a heavy computation issue encountered in
the previous work, a prediction horizon is introduced, in
analogy to model predictive control, so that the optimiza-
tion horizon need not extend to the final point of the
experiment. The effect of applying different prediction and
control horizons is analyzed via studying the variance of
obtained estimates. (4) The proposed method is used to
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investigate an outstanding fuel cell parameter estimation
and experiment design problem.

A fuel cell is an energy device that produces electrical
energy from the electrochemical reaction that occurs at its
electrode-electrolyte interface. Fuel cells are a promising
source of electrical energy that can be used to supplement
traditional energy sources in distributed energy systems.
For the development of such systems it is imperative to
understand and predict the behavior of fuel cells under
various operating conditions. A number of mathematical
models have been developed to this end. All of the models
contain some parameters that are either unknown or must
be estimated.

Through a solid oxide fuel cell (SOFC) model, we demon-
strate feasibility of the proposed receding horizon experi-
ment design and parameter estimation approach. We ver-
ify that the critical parameters of the SOFC can be esti-
mated effectively through the proposed approach and this
can be achieved when the true parameters are compared
with the estimated ones. A number of static and dynamic
SOFC models have been proposed in the literature. The
model used in this work is described in (Qi et al., 2005).
This dynamic nonlinear model provides a detailed descrip-
tion of the diffusion process of different species and that of
the inherent impedance in a single cell. The parameters of
interest are the diffusion coefficients of the reacting species
and the impedance elements, namely, charge transfer ca-
pacitance and resistance. While the model is continuous,
the outputs are sampled at discrete instants in time. The
estimation of parameters is carried out using a continuous-
discrete extended Kalman filter.

The remainder of the paper is organized as follows. Section
2 describes the receding horizon experiment design and
parameter estimation approach. Section 3 describes the
fuel cell model used in this work. Section 4 discusses the
simulation results, followed by conclusions in Section 5.

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

TuAT3.1

Copyright held by the International Federation of Automatic Control 527



2. RECEDING HORIZON EXPERIMENT DESIGN

Consider the model of a system having p parameters and
n states.

ẋ(t) = f(x(t), u(t), t, θ) (1)

y(t) = g(x(t), u(t), t, θ) (2)

where x(t) ∈ R
m are the states and θ ∈ R

p are the
parameters. The objective of this work is to estimate the
parameters in the system using a ’designed’ input. The
advantage of using a ‘designed’ input over a ‘naive’ random
binary sequence in parameter estimation is highlighted in
the work by Stigter et al. (2006) . An adaptive ‘designed’
input increases the information content of the parameters
in the output signal and hence increases the ability to
estimate the parameters.

The goal of this section is to develop a method for selecting
an input trajectory that will maximize the ability to
estimate the parameters. The sensitivity matrix based on
derivative of dynamic response trajectory with respect
to parameters has been given in Yao et al. (2003) .
With the previous estimate of parameter and state values,
the values of the entries in the sensitivity matrix, called
the sensitivity coefficients, will be predicted analytically
n sampling steps ahead in time. An optimum input is
selected which is the solution to

argmaxu det(ZT Z) (3)

subject to

uL < u < uU (4)

where uL and uU are the lower and upper bounds on the
input. Z, the sensitivity matrix and for n steps ahead pre-
diction it will include n rows corresponding to prediction
of sensitivity function over n steps, and p columns corre-
sponding to p parameters. The sensitivity coefficients,(∂y

∂θ
),

can be derived from the model equations in a straightfor-
ward way. Predicting the values n step ahead in time will
constitute the prediction horizon.

The optimal input trajectory can constitute any number
of moves less than or equal to n. A control move is defined
as changing the input from one level to another for the
dynamic experiment. Let the number of control moves
be denoted by c, with c ≤ n. Control moves are made
at the same discrete instants in time as the sensitivities
are predicted, i.e., t1, t2, · · · , tn. For c < n, the control
moves are designed from the current instant until the time
instant tc; from the time instant tc to tn, there are no more
control moves, i.e., the input is held at the same level as
that at the time instant tc. The control move between
two consecutive time instants can be parameterized as
a piecewise constant, a sine wave or any other suitable
function. The approach is similar to a receding horizon
approach for control design as shown in Figure 1. The
sensitivity value denoted by s(t) in Figure 1 is predicted
n steps ahead and an optimum input trajectory is chosen.
The input trajectory is applied till the end of a window of
n steps, when new estimates become available. The new
input trajectory is then calculated and the sequence is
repeated.

t t + n

s(t)

u(t)

t + c

t)|nu(t +

t)|n(t
^
s +

Fig. 1. Illustration of the Proposed Approach

To summarize, an optimum input trajectory consisting of
c moves is selected which maximizes the objective function
for the immediate n steps ahead in future.

For online estimation of parameters, the optimal input
trajectory chosen is used in conjunction with extended
Kalman filter. It is assumed that output measurements are
available at the same instants as before, i.e., t1, t2, · · · , tn.
Once the first point of the optimal input trajectory has
been applied, the parameter estimation algorithm will be
used to update the estimates of parameters based on
output measurements. The update continues for every
sampling instant within the window of n prediction steps.
Based on the most updated parameters at the end of
n steps, the optimization is repeated for the subsequent
window.

The EKF algorithm is a widely used method for estimating
states and parameters from a nonlinear system. In this
work, it is assumed that measurements from the system
are available at discrete instants in time. Therefore a
continuous-discrete formulation of the EKF is used for esti-
mation. The detailed algorithm can be found in (Crassidis
and Junkins, 2004).

With such a setup, it is important to realize how the
choices of n and c would affect the experiment design. The
value of n affects how frequent the optimization is carried
out during the course of the entire experiment. Having
too small a value of n increases the frequency to carry out
the optimization of input design and hence increases the
computational load. Recalling that the control moves for
the next n steps within the prediction horizon is based
on the parameter estimates available at the first point of
the current prediction horizon, having a too large n might
result in poor control moves due to possibly poor available
values of the parameters at the beginning of the current
horizon. The choice of c determines how many moves can
be made within the entire prediction horizon. If c is too
small then convergence of the estimates to true values
might take longer time than having a larger value of c due
to possibly poorer excitation of the signal. If a plant oper-
ator has to apply the control moves manually or physical
constraints allow only certain number of moves possible
within the period of time the prediction window operates,
then having a smaller c may be necessary. A larger value
of c increases the complexity of the optimization problem
and hence increases the computational load.
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To test the receding horizon approach, Monte-Carlo simu-
lations were conducted to investigate the variance property
of the parameter estimation using the proposed method.

To illustrate the algorithm, the proposed approach is first
applied to a simple circuit system whose dynamics is given
by

ẋ(t) =
−x(t)

θ1 × θ2

+
u(t)

θ2

(5)

y(t) = x(t) (6)

where the input term u in the model is the current
i. The two parameters of interest are θ1 and θ2. The
estimates of the parameters are obtained from different
experimental designs and compared below. The true values
of parameters θ1 and θ2 are 1.2 and 1.5×10−3 respectively.

In the simulation, we assume there are both state and
measurement noises. With a chosen value of n and c, the
estimation is carried out sixty times with different noise
seed in each run. These same noise elements are stored
and used with other experiments having a different value
of n and c. This allows comparison of two different tuning
parameters n and c with the same noises. The initial
guesses of the two parameters to be used in each of the
sixty runs is drawn from a normal distribution with a
suitable standard deviation. To compare the performance
of two experiments having different values of n and c,
the standard deviation of the sixty runs carried out for
each setting of n and c are calculated. Since the objective
function is to maximise the determinant of the FIM, the
experiment that gives a better optimal solution will give a
parameter estimate with less variance.

effect of c With a value of n = 4, different possible values
of c are selected for estimation. For a given prediction
horizon, an experiment with a higher value of c should be
able to find a better optimum solution and thus should
result in a better optimum input trajectory. Figure 2
shows the standard deviation of the sixty runs from each
experiment. The initial standard deviation at sample point
0 should be equal to the standard deviation of the normal
distribution from which the initial guesses were drawn. As
the sample points increase, the estimates start to converge
to the true value and each of the sixty runs form a tighter
bundle. Hence the standard deviation lines shown in the
Figure 2 gradually decrease. As expected, the experiment
with c = 4 gives the lowest standard deviation (illustrated
in θ2 estimate). Figure 3 shows the value of the optimal
objective function at each window. This confirms that the
experiment with c = 4 gives a better optimal solution, i.e.,
higher determinant value of the FIM.

effect of n In this set of experiments, the value of n is
varied and the effect of changing the window size on the
estimation is analysed. Figure 4 compares the standard
deviation lines obtained from experiments with n = 2, 3
and 4 similar to the previous case. In each case the value
of c is maintained equal to the value of n. Under this
condition having a larger window, n, helps in reducing
the effect of noise on the estimation and a better estimate
with less variance is obtained.

To summarize, the following points may be considered for
selecting an appropriate experiment
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Fig. 2. Standard deviation for n = 4
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Fig. 3. Optimal objective function for n = 4
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Fig. 4. Standard deviation for c = n

(1) The upper bound of n is limited by the computational
power and the complexity of a particular problem.

(2) Having chosen n, the appropriate choice of c can be
made from the following considerations. For example,
if the duration of experiment is a fixed quantity,
then it can be considered if increasing c improves
the estimate in terms of rate of convergence, bias
and standard deviation. It has been observed that the
ratio c/n has an effect on variance of the estimates.
A higher ratio helps reducing the variance of the esti-
mates. A lower ratio helps in reducing the complexity
of the optimisation problem.

(3) Finally, the relative importance of different parame-
ters in a system can be considered and an experiment
suitable for estimating them can be chosen by suit-
ably weighting the objective function ZT Z.
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Comparison of the EKF filter with prediction error ap-
proach One of the important components of the reced-
ing horizon estimation method is that a filter has to be
employed as a predictor. So far EKF has been used as
the filter in this work. Another approach to parameter
estimation is the class of recursive parameter estimation
algorithms called as the recursive prediction error method.
This method of parameter estimation is based on adjusting
the parameter estimates which minimise a cost functional
of the prediction errors. To perform the minimisation,
the gradient of the cost functional and consequently the
gradient of the prediction errors are required. In this work,
the gradients of the required quantities are obtained from
a sensitivity model of the EKF equations based on the
approach of (Bohn and Unbehauen, 2001). The features
of using a sensitivity model of the EKF as a predic-
tor/estimator are

(1) It involves inherently the propogation of the model
sensitivity equations which are used in the OID step
in the proposed approach.

(2) Since the optimal input for the next horizon is based
on current estimates, once the parameter estimates
are updated, it is logical to expect the predicted
sensitivities to also be updated. The sensitivity model
of the EKF derived in (Bohn and Unbehauen, 2001)
accounts for this as well.

To compare the performance of the EKF filter against
prediction error method (the sensitivity based filter), sim-
ulations were conducted with the prediction error method.
Figure 5 compares the standard deviation curves obtained
from simulations with n = 4. The curves are close to
each other except for the case with c = 1. Note that
the prediction error based method involve much more
complicated procedure to derive the nonlinear predictor
as demonstrated in (Bohn and Unbehauen, 2001).
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Fig. 5. Standard deviation comparison for n = 4 with
c = 1, 2, 3, 4

3. A FUEL CELL EXPERIMENT DESIGN AND
PARAMETER ESTIMATION PROBLEM

3.1 Solid Oxide Fuel Cell (SOFC) Model

A continuous time ODE model of the fuel cell (Qi et
al., 2005) is used to demonstrate the proposed receding
horizon experiment design approach. The model equations
are derived based on electrical energy and mass balances of
the various reacting gases inside the cell. The definition of
states, inputs, outputs and parameters are shown in Tables
1, 2, 3 and 4 respectively, where tpb refers to triple phase
boundary in fuel cells.

Table 1. Inputs

Inputs Description

u1 External load
u2 Bulk pressure of hydrogen
u3 Bulk pressure of oxygen
u4 Bulk pressure of water

Table 2. Outputs

Outputs Description

y1 External Voltage Vout

y2 Current
y3 Consumption rate of hydrogen
y4 Consumption rate of oxygen
y5 Production rate of water

Table 3. States

State Description

x1 Voltage Vct

x2 Consumption rate of hydrogen
x3 Derivative of consumption rate of hydrogen
x4 Intermediate variable
x5 Consumption rate of oxygen
x6 Derivative of consumption rate of oxygen
x7 Intermediate variable
x8 Production rate of water
x9 Derivative of production rate of water
x10 Intermediate variable
x11 Concentration of hydrogen at tpb
x12 Derivative of concentration of hydrogen at tpb
x13 Concentration of oxygen at tpb
x14 Derivative of concentration of oxygen at tpb
x15 Concentration of water at tpb
x16 Derivative of concentration of water at tpb
x17 Intermediate variable

The overall model can be partitioned into subsystems
describing the diffusion of hydrogen, oxygen and water
species as shown below.

Hydrogen Diffusion The equations describing hydrogen
diffusion are
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Table 4. Parameters

Parameter Description Numerical value used in simulations

Rct Charge transfer resistance 0.9
Cct Charge transfer capacitance 300 × 10−6

h1, h2, h3, h4 Functions only of diffusion coefficient of hydrogen Dh2
1.041× 10−4

o1, o2, o3, o4 Functions only of diffusion coefficient of oxygen Do2
2.451× 10−5

w1, w2, w3, w4 Functions only of diffusion coefficient of water Dh2o 1.041× 10−4

ẋ2 = x3 (7)

ẋ3 =−h1x2 − h2x3 + h1

i

2F
+ (8)

h3

A

RT
(Ku2 − x4)

ẋ4 = K2u2 − Kx4 (9)

y3 = x2 (10)

where the substitution i = x1

u1+Ro

has been made and the
current i is treated as an input.

Oxygen Diffusion The above procedure adopted for
oxygen diffusion gives the following equations.

ẋ5 = x6 (11)

ẋ6 =−o1x5 − o2x6 + o1

i

4F
+ (12)

o3

A

RT
(Ku3 − x7)

ẋ7 = K2u3 − Kx7 (13)

y4 = x5 (14)

Water Diffusion Similarly for the diffusion of water
species we have,

ẋ8 = x9 (15)

ẋ9 =−w1x8 − w2x9 + w1

−i

2F
+ (16)

w3

A

RT
(Ku4 − x10)

ẋ10 = K2u4 − Kx10 (17)

y5 = x8 (18)

The fourth subsystem describes the voltage dynamics and
is given by the remaining equations,

ẋ1 =
E

RctCct

−
x1

RctCct

−
x1

Cct(u1 + Ro)
(19)

ẋ11 = x12 (20)

ẋ12 = −h1x11 − h2x12 − h4

RT

A

x1

2F (u1 + Ro)
(21)

−
RT

A

4

la

1

2F
(

ẋ1

u1 + Ro

−
x1

(u1 + Ro)2
(Ku1 − x17)) + h1u2

ẋ13 = x14 (22)

ẋ14 =−o1x13 − o2x14 − o4

RT

A

x1

4F (u1 + Ro)
(23)

−
RT

A

4

lc

1

4F
(

ẋ1

u1 + Ro

−
x1

(u1 + Ro)2
(Ku1 − x17)) + o1u3

ẋ15 = x16 (24)

ẋ16 =−w1x15 − w2x16 − w4

RT

A

−x1

2F (u1 + Ro)
(25)

+
RT

A

4

la

1

2F
(

ẋ1

u1 + Ro

−
x1

(u1 + Ro)2
(Ku1 − x17)) + w1u4

ẋ17 = K2u1 − Kx17 (26)

The objective of this work is to design optimal inputs
to estimate the parameters associated with each of the
subsystems, taking one subsystem at a time. Table 5
lists the parameters and outputs involved in each of the
subsystems. Note that the model assumes the diffusion
coefficient of hydrogen to be equal in magnitude to the
diffusion coefficient of water. Therefore the water diffusion
subsystem has not been listed. It has been shown that all
parameters are estimable by manipulating external load
input u1 (Jayasankar et al., 2008). The input u1 is the
external load on the fuel cell.

4. SIMULATION OF RECEDING HORIZON
EXPERIMENT DESIGN AND PARAMETER

ESTIMATION FOR THE FUEL CELL MODEL

4.1 Subsystem 1

Parameter estimation of fuel cells particularly SOFC has
been considered as a difficult task, and almost all ex-
isting methods are based on electrochemical impedance
spectroscopy (EIS) method (Barbucci et al., 2002). In
this section, we will demonstrate that it is possible to
effectively estimate critical parameters of SOFC through
direct time-domain experiment and estimation methods.
The input function used, the parameters to be estimated
and the output observed for estimation of this subsys-
tem are given in Table 5 in the row corresponding to
impedance dynamics. Using the method developed above,
the parameter estimates are determined in the presence of
both observation and state noises. The following section
presents the results obtained for an experiment design with
n = 2.

Experiment design with n = 2 The choice of n = 2 was
made for this simulation.
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Table 5. Subsystems

Subsystem Parameter(s) Output Input Bounds

Impedance Cct and Rct y1 u1 = a 1 < a < 4
H2 diffusion Dh2

y3 u1 = a 1 < a < 4
O2 diffusion Do2

y4 u1 = a 1 < a < 4
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Fig. 6. Resistance and Capacitance estimates

Two different setups are possible in this case, i.e. with
c = 1 and 2. However a value of c = 2 was chosen as it has
been shown that a higher value of c for a given n gives a
better estimate with less variance. With observation noise,
the estimates for parameters Rct and Cct are shown in
Figure 6. The curves represent the mean of fifty runs and
the standard deviation for the estimate of Rct converges
to 6.8 × 10−4 and for the estimate of Cct converges to
3.7 × 10−6. The true values of the parameters used in the
simulation are Rct = 0.9 and Cct = 300 × 10−6. It can be
seen that parameter convergence is arrived within about
10 seconds.

4.2 Subsystem 2 and Subsystem 3
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Fig. 7. Hydrogen diffusion coefficient and Oxygen diffusion
coefficient estimates

The input function used, the parameters to be estimated
and the output observed for estimation for these sub-
systems are given in Table 5 in the rows corresponding
to Hydrogen diffusion and Oxygen diffusion. Since the
subsystem consists of one output and one parameter, the
sensitivity matrix Z reduces to a scalar value for n = 1 and
the optimum input is the one which maximizes the scalar
sensitivity value. For n > 1, Z is a column vector and the

optimum input is based on the objective function defined
in Equation 27. The mean estimates for the Hydrogen and
Oxygen diffusion coefficients obtained with n = 2, c = 2
based on Monte-carlo simulations are shown in figure 7 and
the standard deviation for the estimate of Dh2

converges
to 0.02 × 10−4 and for the estimate of Do2

converges
to 1.03 × 10−8. The true values of the parameters used
in the simulation are Dh2

= 1.041 × 10−4 m2s−1 and
Do2

= 2.451 × 10−5 m2s−1. Parameter convergence is
arrived within about 30 seconds.

arg maxu

n∑

j=1

(Z(j)2) (27)

5. CONCLUSIONS

A method for on-line receding-horizon experiment design
and estimation of parameters for dynamic systems was
developed. It was based on designing experiments by
choosing a specific input trajectory which maximised the
sensitivity of the parameters. More specifically the design
of experiments was based on maximising the determinant
of ZT Z, where the matrix Z is the sensitivity matrix of
the outputs with respect to parameters. Such a design
allows for the effect of parameters on outputs to be
more pronounced which in turn helps in estimating the
parameters. Several practical issues regarding the choice
of experimental settings were raised and a guideline was
provided to help choosing them. The proposed method is
demonstrated through a simulation on SOFC experiment
design and parameter estimation.
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