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Abstract: Computationally-aided metabolic engineering is an important, complementary
strategy to combinatorial strain design for enhanced biochemical production by microbes. Bilevel
optimization problems have been formulated for optimal strain design via reaction removal,
activation, and inhibition. Deterministic global optimization of the resulting mixed integer linear
programs (MILPs) requires extensive computational effort, especially for genome-scale models of
metabolism. Improving the computational efficiency of such algorithms is an ongoing challenge.
Here, we present Enhancing Metabolism with Iterative Linear Optimization (EMILiO)–a novel
bilevel optimization-based algorithm that includes all possible flux modifications and is solved
with remarkable computational efficiency via iterative linear programming. The resulting
solution is recursively pruned to generate alternate, parsimonious strain designs with maximal
biochemical production rates. We demonstrate our algorithm for succinate production using the
iAF1260 genome-scale model of Escherichia coli metabolism. Our algorithm identifies aerobic
succinate-producing strains with increased glyoxylate shunt activity, which is consistent with
experiments in the literature. We also identified novel strain design strategies that may have
implications for the control of industrial bioreactors to maximize succinate production.

Keywords: mathematical programming, biotechnology, integer programming, iterative linear
programming, metabolic engineering, complementarity constraints, successive linear
programming, flux balance analysis, succinate production

1. INTRODUCTION

Microbial cell factories are becoming increasingly impor-
tant for the sustainable production of chemicals and fu-
els. Improving the efficiency of production from microbes
relies, in large part, on systematically engineering their
metabolism through genetic modifications. With flux bal-
ance analysis (FBA) (Edwards et al., 2002), the reaction
fluxes of metabolic networks are simulated at the genome-
scale as a linear program (LP). FBA has been used to
accurately predict cell physiology by integrating multiple
types of high-throughput data, especially for industrially
important microorganisms (Mahadevan et al., 2005).
Consequently, a number of computational algorithms have
been developed to identify network manipulation strate-
gies while predicting their system-wide effects. Burgard
et al. (2003) developed OptKnock to identify a set of
gene deletions that couples biochemical formation with
the maximization of growth rate. Hence, by culturing the
mutant strains under environments that impose a selective
pressure for maximal growth rate, product formation is
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also maximized–this strategy was confirmed experimen-
tally by Fong et al. (2005). Similarly, OptReg (Pharkya
and Maranas, 2006) identifies target reactions for activa-
tion or inhibition, in addition to removal, to maximize
biochemical production. These additional modifications
are implemented using binary variables that enforce flux
above or below a pre-defined deviation from a defined
reference flux.
Globally optimal solutions to OptKnock and OptReg can
be found using deterministic mixed integer linear program
(MILP) solvers; however, due to the large size of genome-
scale models and a combinatorial space involving hundreds
of binary variables, prohibitively long computational times
can be required to obtain global solutions. Hence, in prac-
tice, the maximum number of network modifications is
restricted to a small number (e.g., three or four).
Recently, Lun et al. (2009) developed Genetic Design
through Local Search (GDLS) to overcome the compu-
tational limitations of obtaining a global optimum to Opt-
Knock. GDLS finds a local optimum by iteratively solving
the MILP with a cap on the maximum number of changes
to the binary variable set, relative to the solution from
the previous iteration. This cap, termed the neighborhood
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size, reduces the combinatorial space of each MILP. The
deterministic solution of MILPs at every iteration ensures
monotonic convergence to a local optimum. GDLS is capa-
ble of finding complex microbial strain designs with dozens
of network modifications in a fraction of the time required
to obtain designs of similar scope using OptKnock. GDLS
has been shown to predict complex designs with higher in
silico production rates than similar algorithms based on
evolutionary algorithms (Lun et al., 2009).
Despite these improvements, GDLS can still require sig-
nificant computational effort due to iterative solutions of
MILPs. For example, in (Lun et al., 2009), the authors re-
port a strain design for succinate production that required
over 4.5 hours (k = 3,M = 1 in Supplementary Table 2).
Surprisingly, this design predicted less in silico succinate
production than another run of GDLS using a smaller
neighborhood size (k = 1,M = 1 in Supplementary Table
2). Hence, additional effort might be required to optimally
tune the parameters of GDLS. In addition, GDLS has not
been applied to the more difficult OptReg problem, where
activation or inhibition of fluxes is included in the design.
In this paper, we develop a novel computational algorithm,
termed Enhancing Metabolism with Iterative Linear
Optimization (EMILiO), to identify strain design strate-
gies that include reaction removal, activation, inhibition,
as well as optimal flux direction of reversible reactions.
Unlike OptReg, the algorithm does not require prior de-
termination of a reference flux. Despite the comprehensive
scope of the strain design, our algorithm requires minimal
computational effort. This is because, unlike all of the
aforementioned algorithms, we have formulated the opti-
mal strain design problem as a mathematical program with
complementarity constraints (MPCC) (similar to Yang
et al. (2008)). In this work, we have efficiently solved the
MPCC using iterative linear programming (ILP) (Bullard
and Biegler, 1991).
The rest of the paper is organized as follows: we present the
necessary frameworks for modeling metabolism in Section
2, describe our algorithm in Section 3, describe the compu-
tational experiments in Section 4, report and discuss our
results in Section 5, and provide conclusions of the paper
in Section 6.

2. PRELIMINARIES

Cell metabolism is modeled as a network consisting of
hundreds of biochemical species, or metabolites, that are
interconverted via enzyme-catalyzed reactions. The distri-
bution of reaction fluxes throughout the network can be
simulated using FBA. In FBA, the reaction network stoi-
chiometry is defined in a matrix, S. Because the response
times of metabolic flux distributions are often orders of
magnitude faster than external perturbations to the cell,
we assume pseudo-steady state of metabolite concentra-
tions and reaction fluxes as follows:

Sv =
dx

dt
= 0, (1)

vL ≤ v ≤ vU , (2)
where v ∈ RN is the vector of fluxes, x ∈ RM is the vector
of metabolite concentrations, vL ∈ RN and vU ∈ RN are
the vectors of minimum and maximum fluxes, respectively.
S ∈ RM×N is the matrix defining network stoichiometry

with M rows corresponding to metabolites and N columns
corresponding to fluxes.
Under environments with selective pressure for maximal
growth rate, we can simulate the flux distribution by
solving the following linear program (LP):

max
v

cT v = vbio (FBA)

s.t. Sv = 0
vL ≤ v ≤ vU ,

where c ∈ RN is the objective vector to maximize the
growth rate, vbio.
The rank, r, of S is less than M; hence, we can separate the
free and pivot variables in the reduced row echelon form
of S and formulate a reduced FBA problem as below:

max
v

cT · Tvf = vbio (3a)

s.t. vL ≤ Tvf ≤ vU , (3b)
where vf ∈ RN−r are the free variables and T ∈

RN×(N−r) is defined such that v = Tvf .

3. METHODS

Here, we develop a computational algorithm to maximize
biochemical production via reaction removal, activation,
inhibition, and restriction of flux direction for reversible
reactions. The algorithm is formulated as the following
bilevel optimization problem with the continuous flux
bounds as decision variables:

max
vL,vU

cTp · Tvf

s.t. max
vf

cT · Tvf − ε · cTp · Tvf

s.t. vL ≤ Tvf ≤ vU

vbio ≥ vmin
bio ,

(4)

where vmin
bio is the minimum required growth rate, and

the inner optimization is the reduced FBA formulation
(3) with the additional objective of minimizing produc-
tion rate. Hence, our algorithm identifies manipulation
strategies having a high minimal production rate, when
growth rate is optimal. Here, ε = 0.001 is chosen so that
the maximum growth rate is not affected by minimization
of production. Using the KKT conditions, this bilevel
optimization problem can be reformulated as a single-level
mathematical program with complementarity constraints
(MPCC) (Yang et al., 2008) as follows:

max
x

cTp · Tvf (5a)

wL
i µ

L
i + wU

i µ
U
i = 0, i = 1, . . . , N (5b)

Tvf + µU = vU (5c)

Tvf − µL = vL (5d)
wUT − wLT = cT · T − ε · cTp · T (5e)

vbio ≥ vmin
bio (5f)

wL, wU , µL, µU ≥ 0 (5g)
where µL ∈ RN and µU ∈ RN are slack variables
for the lower and upper bounds, respectively, and x =
[vf , vU , vL, µU , µL, wU , wL]T . The reduced FBA formula-
tion has removed the need to include dual variables for
Sv = 0, resulting in a smaller problem size.
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3.1 Iterative Linear Programming for Strain Design

In Yang et al. (2008), the authors solved a similar MPCC
by expressing the bilinear constraints (5b) as a penalty
function and solving the resulting NLP using off-the-
shelf NLP solvers. Here, we solve the above MPCC by
formulating an iterative linear program (ILP).
Iterative linear programming was developed to solve a
general nonlinear system of equations subject to nonlinear
inequality constraints and variable bounds (Bullard and
Biegler, 1991). The ILP converges to a feasible solution
by iteratively generating search directions based on local
linearization of the nonlinear equations and inequalities.
In our algorithm, an ILP is formulated to satisfy the
bilinear constraints (5b), while also maximizing product
formation. Thus, at each iteration, k, we move the current
solution, xk, which violates the bilinear constraints but
satisfies (5c)–(5g), by computing an optimal direction, u,
and updating the solution, xk+1 = xk + u.
For simplicity of notation, we define e ∈ R2N and f ∈
R2N such that eTx = [wU , wL]T and fTx = [µU , µL]T .
We, furthermore, define gi(xk) = eT

i x
kfT

i x
k. The bilinear

constraints (5b) at iteration k+1 are expressed as gi(xk +
u) = 0. We now construct a merit function, Z(xk), as in
Bullard and Biegler (1991) but with the added objective
of maximizing production rate:

Z(xk) =
2N∑
i=1

gi(xk)−Kp · cTp · Tvf , (6)

where Kp is a constant that controls the emphasis placed
on maximizing production rate, relative to minimizing vio-
lation of the bilinear constraints. All results were obtained
with Kp = 1000, but a dynamic Kk

p is also possible.
We can linearize gi(xk +u) about xk as gi(xk) +∇g(xk)u,
where ∇g(xk)u = eT

i x
kfT

i u + fT
i x

keT
i u is the directional

derivative of g(xk) about xk, in the direction u. We thus
formulate the following LP to compute the optimal direc-
tion to minimize Z(xk+1) = Z(xk + u):

min
u,s

N∑
i=1

si −Kp · cTp · T∆vf (7a)

s.t. gi(xk) +∇gi(xk)u ≤ si (7b)

T (vf + ∆vf ) + (µU + ∆µU ) = (vU + ∆vU ) (7c)

T (vf + ∆vf )− (µL + ∆µL) = (vL + ∆vL) (7d)
(wU + ∆wU )T − (wL + ∆wL)T = cT · T − ε · cTp · T

(7e)
vbio + ∆vbio ≥ vmin

bio (7f)
wL + ∆wL ≥ 0 (7g)
wU + ∆wU ≥ 0 (7h)
µL + ∆µL ≥ 0 (7i)
µU + ∆µU ≥ 0 (7j)
s ≥ 0, (7k)

where u = [∆vf ,∆vU ,∆vL,∆µU ,∆µL,∆wU ,∆wL]T =
xk+1−xk is the direction vector, and s ∈ RN are auxiliary
variables used to minimize the bilinear constraints to 0.
Upon calculating the optimal direction, u∗, a line search
is performed at each iteration to determine the maximum
step size that ensures monotonic improvement of the
objective value, Z(xk). For general nonlinear constraints,

Bullard and Biegler (1991) propose a monotonic, Armijo-
type line search to determine the maximum step size. Here,
we can compute the maximum step size exactly because
the directional derivative of our bilinear constraints results
in a quadratic equation in terms of the step size. Hence, to
ensure that Z(xk + λu∗) ≤ Z(xk) for λ ≥ 0, we determine
the maximum step size,

λmax =
Kp · cTp · T∆vf −

2N∑
i=1

(eT
i x

kfT
i u

∗ + fT
i x

keT
i u

∗)

2N∑
i=1

eT
i u

∗fT
i u

∗
,

(8)
for

∑
i

eT
i u

∗fT
i u

∗ > 0. The actual step size is set to

λ = min(1,max(0, λmax)). (9)
The solution is then updated as xk+1 = xk +λu∗. The ILP
converges when λ < StepTol = 10−6, indicating that no
further improvement of the objective function is possible.
The line search is critical to ensure convergence of the
ILP to a local optimum from arbitrary starting points, as
shown by Bullard and Biegler (1991).

3.2 Pruning the Design Using LP

The solution of the ILP in Section 3.1 generates modified
lower and upper bounds ṽL and ṽU . We define the design
sets, DesignL and DesignU as the NL lower and NU up-
per bounds that are different from the original bounds and
whose corresponding dual variables are strictly positive.
Due to network redundancy, many of these constraints
may not be active, simultaneously. Hence, smaller subsets
of active constraints may exist. We extract such subsets
by recursively solving the following LP:

min
v

cTp v (LPR)

s.t. Sv = 0
ṽL

i ≤ vi, ∀i ∈ DesignL
vi ≤ ṽU

i , ∀i ∈ DesignU
vL

i ≤ vi, ∀i ∈ {1, . . . , N} and i /∈ DesignL
vi ≤ vU

i ∀i ∈ {1, . . . , N} and i /∈ DesignU
vbio ≥ vmin

bio .

The solution to (LPR) is the minimum production rate,
v∗prod, subject to the modified bounds and minimal growth
rate. We first determine if this minimum production rate
is acceptable, say v∗prod ≥ 0.5 × vmax

prod. We identify the set
of active bound constraints and define it as a subset strain
design. We remove these active constraints from DesignL
and DesignU and solve (LPR) again, with the remaining
modified bounds. We then define another strain design
if the resulting production rate is still acceptable. We
recursively apply this procedure to all strain designs and
their subset strain designs. We terminate the procedure
when no strain design yields a subset design that is smaller
in size, or if all of these subset designs exhibit lower
production rate than the defined tolerance of 0.5× vmax

prod.

3.3 Minimal and Alternate Optimal Designs Using MILP

The recursive pruning phase in Section 3.2 may produce
alternate strain designs that are more parsimonious than
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the single initial set generated in Section 3.1. The LP in
this pruning stage, however, has not been formulated to
generate the strain design with the minimal number of
modifications. We thus formulate a final processing phase
as an MILP, with binary variables, yL ∈ ZNL and yU ∈
ZNU , to identify the minimal set of reaction modifications
to achieve a desired production rate of vmin

p as follows:

min
yL,yU

NL∑
i=1

yL
i +

NU∑
i=1

yU
i

s.t. max
v

cTbiov − ε · cTp v
s.t. Sv = 0

vL ≤ v ≤ vU

ṽL
i y

L
i + vL

DL,i(1− yL
i ) ≤ vDL,i, i = 1, . . . , NL

vDU,i ≤ ṽU
i y

U
i + vU

DU,i(1− yU
i ), i = 1, . . . , NU

cTp v ≥ vmin
p

yL
i ∈ {0, 1}, i = 1, . . . , NL

yU
i ∈ {0, 1}, i = 1, . . . , NU ,

(10)
where vDL = {vi : ∀i ∈ DesignL}, vDU = {vi : ∀i ∈
DesignU}, vL

DL = {vL
i : ∀i ∈ DesignL}, and vU

DU =
{vU

i : ∀i ∈ DesignU}. This bilevel optimization problem
is reformulated to a single level MILP as follows:

min
v, wS ,
wL, wU ,
ηL, ηU ,

yL, yU

NL∑
i=1

yL
i +

NU∑
i=1

yU
i

s.t. Sv = 0
vL ≤ v ≤ vU

ṽL
i y

L
i + vL

DL,i(1− yL
i ) ≤ vDL,i, i = 1, . . . , NL

vDU,i ≤ ṽU
i y

U
i + vU

DU,i(1− yU
i ), i = 1, . . . , NU

(wS)TS + wL − wU + ηL − ηU = cTbio − ε · cTp
NL∑
i=1

ηL
i ṽ

L
i +

N∑
i=1

wL
i v

L
i −

NU∑
i=1

ηU
i ṽ

U
i −

N∑
i=1

wU
i v

U
i − cTbiov + ε · cTp v = 0

0 ≤ ηL
i ≤ KyL

i , i = 1, . . . , NL

0 ≤ ηU
i ≤ KyU

i , i = 1, . . . , NU

0 ≤ wL
DL,i ≤ K(1− yL

i ), i = 1, . . . , NL

0 ≤ wU
DU,i ≤ K(1− yU

i ), i = 1, . . . , NU

cTp v ≥ vmin
p

wL, wU , wL
DL, w

U
DU ≥ 0

yL
i ∈ {0, 1}, i = 1, . . . , NL

yU
i ∈ {0, 1}, i = 1, . . . , NU ,

(11)
where wL ∈ RN and wU ∈ RN are dual variables for
lower and upper bounds, respectively, wL

DL = {wL
i :

∀i ∈ DesignL}, wU
DU = {wU

i : ∀i ∈ DesignU}, ηL ∈
RNL and ηU ∈ RNU are dual variables for the modified
lower and upper bounds, respectively, and K = 100.
The combinatorial space of this MILP is much smaller
than attempting to solve OptKnock because we limit
modifications to only those included in each strain design
generated in Section 3.2. With this MILP formulation,

we can also identify alternate optimal strain designs via
integer cuts.

4. IN SILICO EXPERIMENTS

We implemented our algorithm to design succinate–
producing strains using the iAF1260 (Feist et al., 2007)
genome-scale model of E. coli metabolism. We performed
two separate runs of our algorithm, as described in Table 1:
Search II includes all possible modifications, while Search
I excludes the modification of flux directions for reversible
reactions as this requires system-wide control of metabo-
lite concentrations to alter the thermodynamic feasibility
of reaction directions.
At each iteration of the ILP, an LP with 13,089 variables
and 6,813 equality or inequality constraints was solved.
The MILPs in the final pruning stage involved 5,964
variables, 2,930 equality or inequality constraints, and 18
(Search II) to 102 (Search I) binary variables. For compar-
ison, the MILP corresponding to OptKnock would involve
>1,500 binary variables. At each stage of the algorithm,
we verified the strain designs by solving (FBA) with the
addition of the designed bounds.
The “biomass iAF1260 core” reaction in the iAF1260
model was used to simulate cell growth. All simulations
were run with maximum glucose and oxygen uptake rates
of 10 and 18.5 mmol/gDW/hr, respectively, and a mini-
mum growth rate of 0.05 h−1. We computed the maximum
succinate production rate, vmax

prod = 15.83 mmol/gDW/hr
by solving (FBA), except with the objective function,
max cTp v, subject to the minimal growth rate constraint.
During the LP- and MILP-based design pruning, the min-
imum acceptable succinate production rate was set to 50%
of vmax

prod. All code was implemented in MATLAB (The
Mathworks, Inc., Natick, MA). CPLEX 12.1 was used to
solve the LPs and MILPs using the MATLAB connector
from IBM ILOG. All simulations were run on Intel Xeon
3.2 GHz processors with up to eight available CPUs.

5. RESULTS AND DISCUSSION

Our algorithm identified comprehensive strain designs,
including a global optimum (100% vmax

prod) within minutes.
The resulting strain designs included modifications con-
sistent with previous work in the literature. Both Search
I and II yielded a single strain design each. These strains
exhibited aerobic succinate production, which has been
shown to be important for overcoming bottlenecks associ-
ated with anaerobic fermentation strains (Lin et al., 2005).
Both strains exhibited increased glyoxylate shunt activity
via ICL (Search I) and MALS (Search II) activation (Fig-
ure 1). This strategy agrees with the previously observed
increase in glyoxylate shunt activity in efficient succinate-
producing strains (Lin et al., 2005). Total CPU time for
all phases of the algorithm was ∼4 minutes (Table 2). The
final MILP phase accounted for ∼50% of the total CPU
time. This phase reduced the strain designs by 93 and 9
modifications for Search I and II, respectively. Alternate
optima may exist further within the subsets generated by
the LP-based pruning, especially for Search I.
An intriguing strategy involves limiting the maximum

oxygen uptake rate, which is suggested in Search I via
O2tpp limitation (Figure 1). To investigate the basis for
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Table 1. Flux modifications and their physical implementation strategies

Strategy Description Implementation Strategy Available?
Search I Search II

vL = 0 = ṽU < vU Knockout irreversible (forward) reaction Gene deletion Yes Yes
vL ≤ ṽL = 0 = vU Knockout irreversible (reverse) reaction Gene deletion Yes Yes
0 ≤ v ≤ ṽU < vU Reduce forward flux Down-regulation Yes Yes
vL < ṽL ≤ v ≤ 0 Reduce reverse flux Down-regulation Yes Yes

vL ≤ v ≤ ṽU < vU ≤ 0 Increased reverse flux Up-regulation Yes Yes
0 ≤ vL < ṽL ≤ v ≤ vU Increased forward flux Up-regulation Yes Yes
vL ≤ v ≤ ṽU < 0 ≤ vU Forced reverse flux Concentration ratios∗ No Yes
vL ≤ 0 < ṽL ≤ v ≤ vU Forced forward flux Concentration ratios∗ No Yes
∗ Requires system-wide control of metabolite concentration ratios to affect thermodynamic feasibility of reaction directions.
v denotes flux.
vL and vU denote wild-type lower and upper bounds, respectively.
ṽL and ṽU denote modified lower and upper bounds, respectively.

Fig. 1. Succinate production rates and the modifications proposed by our algorithm via Search I and II. The dark
area corresponding to each reaction indicates the range of feasible flux, due to modification of that reaction.
A cross indicates removal of the corresponding reaction. The thin-lined boxes indicate the range of feasible
flux, prior to any reaction modifications, calculated using FVA (Mahadevan and Schilling, 2003). (AKGDH: 2
Oxogluterate dehydrogenase, ICL: Isocitrate lyase, GLXCL: Glyoxalate carboligase, GART: GAR transformylase
T, LALDO2x: D-lactaldehyde-NAD-1 oxidoreductase, MALS: Malate synthase, ME1: Malic enzyme (NAD),
ME2: Malic enzyme (NADP), MDH: Malate dehydrogenase, MDH2: Malate dehydrogenase (ubiquinone 8),
MDH3: Malate dehydrogenase (menaquinone 8), PDH: Pyruvate dehydrogenase, EX fum e: Fumarate exchange,
EX glyclt e: Glycolate exchange, EX etoh e: Ethanol exchange, O2tpp: Oxygen transport via diffusion (periplasm)).

Table 2. Process of generating and pruning
designs using the iAF1260 genome-scale model
of E. coli metabolism via Search I and II.
Combined CPU times of both search strategies

are shown.

Procedure Number of reaction modifications CPU time
[Lower bounds, Upper bounds] (sec)

ILP [487, 1193] [391, 1122] 96.48
↓ ↓

LP-pruning [17, 85] [4, 14] 18.75
↓ ↓

MILP-pruning [3, 6] [1, 8] 116.58

Total Search I Search II 231.81

this strategy, we generated an additional strain by remov-
ing only the oxygen limitation strategy. We then simulated
the maximum and minimum possible succinate production

of the original and new strain with the minimum growth
rate constraint via flux variability analysis (FVA) (Ma-
hadevan and Schilling, 2003). We found that removing the
oxygen limitation strategy did not change the maximum
possible succinate production; however, the minimum suc-
cinate production decreased from 15.83 mmol/gDW/hr−1

(100% vmax
prod) to zero. Hence, for the strain design identi-

fied in Search I, oxygen uptake limitation is necessary to
prevent low succinate production when the cellular objec-
tive is maximization of growth rate. Therefore, industrial
succinate producing strains with modification strategies
similar to those identified by our algorithm via Search I
might achieve the greatest production rates when oxygen
levels are optimally controlled in the bioreactors.
Search II allowed more degrees of freedom than Search I
as we allowed the algorithm to determine the direction of
reversible reactions (Table 1). Initially, our algorithm did
identify a strain producing succinate at the globally opti-
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mal rate. This strategy involved one lower and eight upper
flux bound modifications. However, upon inspection of
these strategies, we found that two of these reactions were
forming a thermodynamically infeasible cycle to generate
ATP. Once we removed these two modifications from the
identified strain design, succinate production decreased
slightly from 15.83 (100%) to 15.13 (96%) mmol/gDW/hr
when growth rate was maximized (Figure 1). Hence, al-
though Search II explored additional reaction modifica-
tions unavailable in Search I, not all modification strategies
were physically implmentable. If such infeasibilities were
removed a priori, Search II may have also yielded strain
designs having the maximum succinate production rate.
We note that some of these cycles and infeasible reaction
directions can be eliminated by incorporating thermody-
namic constraints in the model (Henry et al., 2007).
For Search II, we performed several iterations of our algo-
rithm, each time assessing the physiological feasibility of
each strain design. Because both pruning stages (recursive
LP- and MILP-based) significantly reduced the number of
modification strategies, the effort for such manual cura-
tion was minimal. As each complete run of our algorihm
requires little computational effort, recursive strain design
and curation of design strategies becomes feasible even for
less characterized organisms, as well as for larger models
such as the metabolism of microbial communities.

6. CONCLUSIONS

We have developed a computational algorithm to design
strains for biochemical overproduction through reaction
removal, activation, inhibition, and modification of flux
direction. The bilevel optimization problem was reformu-
lated into a single-level MPCC as in Yang et al. (2008),
and was solved by iterative linear programming (Bullard
and Biegler, 1991). A large lumped set of reaction modi-
fications producing 100% of the maximum succinate pro-
duction rate was identified using the ILP in ∼ 1.5 minutes
for the latest genome-scale model of E. coli metabolism.
Parsimonious strain designs were identified using recursive
LP-based and MILP-based pruning stages. The algorithm
identified a strain design having 100% of the maximum
succinate production, even when the modification of flux
directions was omitted from the available design strategies
(Figure 1: Search I).
Of the three stages of the algorithm, the MILP-based
pruning stage accounted for half of the total computa-
tional effort (Table 2). The computational effort of the
MILP increases when strain designs with larger numbers
of reaction modifications are identified by the recursive
LP-based pruning stage. In the future, we hope to improve
the efficiency of the pruning stages. For example, we can
formulate an ILP for each solution of the LP-based pruning
step, with the objective of minimizing the number of active
constraints while maintaining the desired production rate.
The ability of our algorithm to identify maximal produc-
tion strains owes largely to its ability to fine-tune reac-
tion rates by directly modifying flux bounds. In practice,
such fine-tuning of reactions might not be possible. In
the future, we can modify the algorithm to reflect this
physical limitation by imposing constraints on the max-
imum modification of the flux bounds. Additionally, we
can more closely model genetic manipulations by using the
gene-protein-reaction mappings, as in Lun et al. (2009).

In the future, the three stages of the algorithm may be
reformulated into one MINLP, which may facilitate ex-
tensions such as thermodynamic constraints (Henry et al.,
2007). The remarkable computational efficiency of the ILP
method for solving bilevel optimization problems with
genome-scale models will undoubtedly open new doors for
computationally-aided metabolic engineering.
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