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Abstract: The quadrature method of moments (QMOM) has emerged as a promising tool for
the solution of population balance equations in the past few years. The QMOM requires solving
differential algebraic equations (DAEs) consisting of ordinary differential equations related to
the evolution of moments as well as nonlinear algebraic equations resulting from the quadrature
approximation of moments. In this paper, the use of automatic differentiation (AD) technique
is proposed for solution of DAEs arising in QMOM. In the proposed method, the variables
of interest are approximated using high-order Taylor series. Using AD, the high-order Taylor
coefficients can be recursively calculated to obtain high-fidelity solution of the DAE system.
Benchmark examples drawn from literature are used to demonstrate the superior accuracy and
computational advantage of the AD-QMOM over existing state-of-the-art techniques, such as
DAE-QMOM.

Keywords: Automatic differentiation, Dynamic simulation, Particulate processes, Population
balance equations, Quadrature method of moments.

1. INTRODUCTION

Population balance models have been widely used for
modelling particulate, droplet or bubble dynamics in
single or multiphase processes (Ramkrishna, 2000). The
solution of a population balance equation (PBE) usu-
ally requires computationally-expensive, complex numer-
ical techniques. The variety of solution approaches pro-
posed for the PBE include the standard method of mo-
ments (MOM) (Hulburt and Katz, 1964), the quadra-
ture method of moments (QMOM) (McGraw, 1997), the
method of characteristics (Aamir et al., 2009), direct nu-
merical solution techniques, such as finite volume (Gu-
nawan et al., 2004), lattice Boltzmann method (Majumder
et al., 2010) and finite difference schemes (Nicmanis and
Hounslow, 1998), and kinetic Monte Carlo simulation ap-
proaches (Rosner et al., 2003). The numerical robustness
and computational efficiency of the solution methods are
of significant importance especially in the cases of model
based control and optimization, as well as in coupled
computational fluid dynamics and PBE applications.

The QMOM proposed by McGraw (1997) has been re-
cently accepted as one of the most efficient approaches for
solving generic PBEs with growth, nucleation, aggrega-
tion/coalescence and breakage mechanisms. The QMOM
utilizes the quadrature theory to avoid the closure problem
encountered in the case of standard MOM simulations.
The QMOM by McGraw (1997) is based on the product
difference algorithm (PD) of Gordon (1968). Application
of the QMOM has been extended into aggregation, coag-

ulation and breakage systems (Wright et al., 2001; Rosner
and Pyykonen, 2002; Marchisio et al., 2003). However, the
PD algorithm is not always the best approach for comput-
ing the quadrature points from the moments of the particle
size distribution because for a larger number of moments,
the method is sensitive to small errors. Therefore, the ap-
plicability of QMOM is limited to no more than six quadra-
ture points (McGraw, 1997) and generally even fewer
for more complex processes, such as diffusion-controlled
growth with secondary nucleation. Several variants of the
QMOM methods have been developed recently, such as
Jacobian matrix transformation method (McGraw and
Wright, 2003), direct QMOM (Fan et al., 2004) and fixed
QMOM (Alopaeus et al., 2006). However, these QMOM
solutions also suffer from numerical robustness deficien-
cies for more complex processes. Recently, an alternate
solution technique for the QMOM was introduced based
on the simultaneous solution of the moment equations and
quadrature approximation as a semi-explicit differential-
algebraic equation (DAE) system (Grosch et al., 2006;
Gimbun et al., 2009). The DAE-QMOM method (Gim-
bun et al., 2009) showed increased robustness and sig-
nificantly better computational efficiency than the PD-
QMOM method. These advantages, however, can only be
achieved with the analytical computation of the Jacobian
matrix of the DAE system, which is not readily possible
for complex mechanisms.

In this paper, a novel methodology is proposed for the
solution of PBEs based on the automatic differentiation
(AD) algorithm (Griewank, 2000). AD belongs to the class
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of computational techniques used to evaluate derivatives
of functions defined in computer programs. Such programs
consist of a sequence of elementary operations whose
derivatives are well known. By numerically applying the
chain rule to these arithmetic sequences, not only can AD
deliver truncation error free derivatives, hence superior
to finite deference approximation, but also avoids code
growth, which is a common issue associated with sym-
bolic differentiation approaches. In AD, high-order Taylor
coefficients of continuous functions can be recursively ob-
tained. Recently, the superior computational efficiency and
numerical accuracy of this method for solving various dif-
ferential equation problems has been demonstrated (Cao,
2005; Al-Seyab and Cao, 2008a,b; Pryce, 1998; Barrio,
2005). In this work, the AD approach is extended to solve
the DAEs arising in the QMOM. The AD-QMOM ap-
proach is evaluated for various mechanisms like growth and
breakage. It is shown that the approach provides increased
robustness and computational efficiency compared to the
DAE-QMOM method (Gimbun et al., 2009).

2. QUADRATURE METHOD OF MOMENTS

The dynamic PBE for a closed homogeneous system can
be written with diameter as the internal coordinate as:

∂n(L)

∂t
=

∫
∞

L

b(L, λ)a(λ)n(λ)dλ

︸ ︷︷ ︸

birth due to breakage

+
L2

2

∫ L

0

β((L3 − λ3)1/3, λ)n((L3 + λ3)1/3, λ)n(λ)

(L3 − λ3)2/3
dλ

︸ ︷︷ ︸

birth due to coalescence or aggregation

− a(L)n(L)
︸ ︷︷ ︸

death due to breakage

− n(L)

∫
∞

0

β(L, λ)n(λ)dλ

︸ ︷︷ ︸

death due to coalescence or aggregation

−
∂(G(L)n(L))

∂L
︸ ︷︷ ︸

growth

+ δ(0, L)B
︸ ︷︷ ︸

nucleation

(1)

where β, a, G, B, b, and δ are the aggregation kernel,
breakage kernel, growth rate, nucleation rate, the daughter
particle size distribution and the Dirac delta function,
respectively, whereas both L and λ are the particle char-
acteristic length. The PBE in (1) can be simplified using
a moment transformation, where the rth moment of the
distribution, µr, is given by:

µr =

∫
∞

0

n(L)LrdL (2)

After the moment transformation, the PBE in (1) is
represented by a set of ordinary differential equations
(ODEs) in terms of the moments:

dµr

dt
=

∫
∞

0

Lr

∫
∞

0

a(λ)b(L, λ)n(λ)dλdL

+
1

2

∫
∞

0

n(λ)

∫
∞

0

β(L, λ)(L3 + λ3)r/3n(L)dLdλ

−

∫
∞

0

Lra(L)n(L)dL−

∫
∞

0

Lrn(L)

∫
∞

0

β(L, λ)n(λ)dλdL

−

∫
∞

0

rLr−1G(L)n(L)dL+ δ(0, L)B (3)

The moment equations in (3) are solvable for growth and
nucleation problems using the standard MOM technique,
however, it is not possible to solve the breakage and coales-
cence terms due to the closure problem, since the integra-
tions cannot be written in term of the moments. Therefore,
(3) needs to be transformed again into a quadrature MOM
formulation to eliminate the closure problem. The essence
of the quadrature closure is to consider the number density
n(L) as a general weight function and to approximate
the integrals that appear during the transformation of the
PBE to moment equations in terms of a set of abscissas
and weights. The QMOM employs a quadrature approxi-
mation (McGraw, 1997):

µr ≈

N∑

ℓ=1

wℓL
r
ℓ (4)

where wℓ are the weights, Lℓ are the abscissas and N is
the number of quadrature points. This quadrature approx-
imation is exact if the function in (4) are polynomials up
to the order 2N − 1. After applying the quadrature rule,
the moment transformed PBE can be written as:

dµr

dt
= fr(w,L, γ) (5)

where γ = [β, a,G,B, b] and

fr =

N∑

ℓ=1

wℓa(Lℓ)b(r, Lℓ)

+
1

2

N∑

ℓ=1

wℓ

N∑

m=1

wmβ(Lℓ, Lm)(L3
ℓ + L3

m)r/3

−

N∑

ℓ=1

wℓa(Lℓ)L
r
ℓ −

N∑

ℓ=1

wℓL
r
ℓ

N∑

m=1

wmβ(Lℓ, Lm)

+ r
N∑

ℓ=1

wℓL
r−1
ℓ G(Lℓ) + δ(0, r)B (6)

Now the closure problem has been eliminated, and hence
the PBE in (5) is solvable using QMOM by following the
evolution of wℓ and Lℓ, as well as µr. The moments are
non-linearly related to the weights and abscissas by (4).

The QMOM calculations require integration of the ODEs
in (5) generated from the moment equations for r =
0, 1, · · · , 2N − 1, alongside the solution of non-linear al-
gebraic equations in (4) obtained from the quadrature
rule. These equations may be numerically solved simul-
taneously as a set of coupled DAEs. The DAE method
is an attractive method for solving the QMOM since it
arises from the natural mathematical formulation of the
QMOM approximation problem. Equations (4) and (5)
together represent a semi-explicit DAE system which can
be solved using standard DAE solution techniques and
software. For increased robustness, the Jacobian of the
DAE system should be computed analytically and used in
the numerical integration of the system (Gimbun et al.,
2009). Although previous studies have shown that the
DAE-QMOM method provides a computationally more
efficient and robust approach for solving PBEs than other
QMOM-based approaches, the technique is still limited to
a small number of quadrature points (typically not more
than 5-6), and relies on the computation of the analytical
Jacobian of the DAE system, which is not always possible.
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Table 1. Useful identities for propagation of
Taylor series coefficients (Griewank, 2000)

z z[k]

1 cx cx[k]

2 x+ y x[k] + y[k]

3 xy
∑k

j=0
x[k−j]y[k]

4 xr 1

k x[0]

(

r
∑k

j=1
jz[k−j]x[j]

−

∑k−1

j=1
jx[k−j]z[j]

)

3. AUTOMATIC DIFFERENTIATION BASED QMOM

Let f : Rn → R
m be a d-time continuously differentiable

function and x(t) ∈ R
n be given as a truncated Taylor

series: x(t) =
∑d

k=0 x
[k]tk. Then, the Taylor coefficients

of z(t) = f(x(t)) =
∑d

k=0 z
[k]tk ∈ R

m can be recursively

calculated through AD based on the chain rule, z[k] ≡
f [k](x[0], . . . , x[k]); see Table 1 for examples. Furthermore,
for a differential equation, ẋ = f(x), since ẋ[k] = (k +
1)x[k], all Taylor coefficients, x[k] of the solution can be
recursively calculated from x[0] = x(t0), as x[k+1] =
1

k+1f
[k](x[0], . . . , x[k]). Therefore, the solution at t1 = t0+h

can be explicitly obtained as x(t1) =
∑d

k=0 x
[k]hk. The

integration step, h is determined according to the specified
tolerance (Cao, 2005).

To solve the DAE system in (4)-(5) using the AD method,
the variables of interest, namely µ, w and L, are approxi-
mated using d-order Taylor series,

µr =

d∑

k=0

µ[k]
r tk, wℓ =

d∑

k=0

w
[k]
ℓ tk, Lℓ =

d∑

k=0

L
[k]
ℓ tk (7)

where µ
[k]
r , w

[k]
ℓ and L

[k]
ℓ are the Taylor coefficients of

µr, wℓ and Lℓ, respectively. These coefficients can be
recursively obtained through AD. For tutorial purpose,
these recursive expressions are explicitly derived in the

following discussion. Firstly, the coefficients of µ
[k]
r are

derived according to (5) through the Taylor expansion of

fr =
∑d

k=0 f
[k]
r tk as

µ[k+1]
r =

τ

k + 1
f [k]
r ; k = 1, 2, · · · , d− 1 (8)

where τ is a time scaling factor so that µr(t0 + h) =
∑d

k=0 µ
[k]
r (h/τ)k. Usually τ can be chosen to be unity,

but the numerical stability can be improved by properly
selecting τ . This is because the truncation error is mainly
determined by the norm of the high-order term of the

Taylor series, ‖µ
[d]
r hd‖. If h is too small, for the same error

tolerance, ‖µ
[d]
r ‖ will be too large for numerical stability.

On the other hand, if h is too large, then ‖µ
[d]
r ‖ will be

too small to maintain sufficient accuracy. Ideally, it is best
to let τ = h. However, h is determined after all x[k] are
calculated. To avoid recalculation of x[k], we select τ to be
the previous time step h.

Clearly, f
[k]
r depends on the Taylor coefficients of w, L

and µ, which are problem specific and are discussed for
specific problems in the next section. The focus of rest of
this section is on solving the algebraic equations in (4).
Note that the zeroth order Taylor coefficients of wℓ and

Lℓ are inherited from the previous step. The higher order
Taylor coefficients of wℓ and Lℓ can be found by solving a
set of linear equations, as shown next.

When r = 0,

µ
[k]
0 =

N∑

ℓ=1

w
[k]
ℓ ; k = 1, · · · , d (9)

For r > 0, using Identity 3 in Table 1, we have

µ[k]
r =

N∑

ℓ=1

k∑

i=0

w
[k−i]
ℓ (Lr

ℓ)
[i]

(10)

The right-hand side of (10) can be arranged as:
N∑

ℓ=1

(

w
[k]
ℓ

(

L
[0]
ℓ

)r

+ w
[0]
ℓ (Lr

ℓ)
[k]

+

k−1∑

i=1

w
[k−i]
ℓ (Lr

ℓ)
[i]

)

Using Identity 4 in Table 1 to express (Lr
ℓ)

[k]
in terms of

L
[k]
ℓ and noting that (Lr

ℓ)
[0]

= (L
[0]
ℓ )r,

µ̃[k]
r =

N∑

ℓ=1

w
[k]
ℓ

(

L
[0]
ℓ

)r

+

N∑

ℓ=1

rw
[0]
ℓ

(

L
[0]
ℓ

)r−1

L
[k]
ℓ (11)

where

µ̃[k]
r = µ[k]

r −

N∑

ℓ=1




w

[0]
ℓ

k L
[0]
ℓ

k−1∑

j=1

((r + 1)j − k) (Lr
ℓ)

[k−j]
L
[j]
ℓ

+
k−1∑

i=1

w
[k−i]
ℓ (Lr

ℓ)
[i]

)

(12)

Equations (9) and (11) can be put in matrix format as

Ax = b (13)

where

Aij =







(

L
[0]
j

)i−1

for 1 ≤ j ≤ N

(i− 1)w
[0]
j

(

L
[0]
j

)i−2

forN + 1 ≤ j ≤ 2N
(14)

x=
[

w
[k]
1 · · · w

[k]
N L

[k]
1 · · · L

[k]
N

]T

(15)

b=
[

µ
[k]
0 µ̃

[k]
1 µ̃

[k]
2 · · · · · · µ̃

[k]
2N−1

]T

(16)

Thus, the unknowns (w
[k]
ℓ and L

[k]
ℓ ) can be found by

solving the linear equations in (13). Note that the matrix
A depends on the zeroth order Taylor coefficients only and
thus needs to be inverted only once for all k.

Error control. The efficiency of the AD method greatly
relies on error control to adopt the integration step as large

as possible. Assume that x(t) =
[

µT (t) wT (t) LT (t)
]T

at the next integration time t = t0 + h be x(t0 + h) =
∑d

k=0 x
[k](t0)h

k + ǫ(h, d), where ǫ(h, d) is the truncation
error. Then,

ǫ(h, d) ≈ C(h/r)d+1 (17)
where r is the radius of convergence and C is a constant.
For sufficiently large d,

r ≈ rd :=
‖x[d−1]‖∞
‖x[d]‖∞

(18)
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Since, ǫ(h, d− 1) ≈ ǫ(h, d)(rd/h) ≈ ǫ(h, d) + ‖x[d]‖∞hd, it
leads to the following estimation of the truncation error:

ǫ(h, d) ≈
hd+1‖x[d]‖2

∞

‖x[d−1]‖∞ − h‖x[d]‖∞
(19)

Therefore, for specified d and error tolerance δ, the inte-
gration step can be estimated to satisfy ǫ(h, d) ≤ δ. For
h > 1, it leads to

h ≤

(
δ‖x[d−1]‖∞
‖x[d]‖2

∞

)1/(d+1)

(20)

The procedure for AD-QMOM is given in Algorithm 1.

Algorithm 1. Initially, compute µr(0), r = 0, 1, · · · , 2N −
1, based on the given initial distribution. Solve the non-
linear equations in (4) to obtain wℓ(0) and Lℓ(0), ℓ =
1, 2, · · · , N . Choose d and initial τ . While t < tf :

a. Set µ
[0]
r = µr(t), w

[0]
ℓ = wℓ(t) and L

[0]
ℓ = Lℓ(t).

b. for k = 0 to d
i. if k = 0, compute A in (16) and its inverse. Set

(Lr
ℓ)

[0]
= (L

[0]
ℓ )r.

ii. if k > 0, compute µ̃
[k]
r and solve linear equations

in (13) to get w
[k]
ℓ and L

[k]
ℓ . Compute (Lr

ℓ)
[k]

=
∑k

i=0 L
k−i
ℓ (Lr

ℓ)
[i]
.

iii. Compute f
[k]
r and set µ

[k+1]
r = τ

k+1f
[k]
r .

c. Select h to satisfy (20).
d. Update µr, wℓ and Lℓ using (7).
e. Set t = t+ τh and update τ = τh. Go to step a.

4. NUMERICAL EXAMPLES

In this section, we compare the efficiencies and accura-
cies of AD-QMOM and DAE-QMOM using benchmark
examples, namely diffusion-controlled growth and volume
breakage kernel. For both these examples, the initial dis-
tribution is given as

n(0, L) = 3L2N0

ν0
e−L3/ν0 (21)

with N0 = 1 m−3 and ν0 = 1 m3. The moments at
t = 0 are obtained by analytically calculating µr(0) for
r = 0, 1, · · · , 2N − 1, where N = 6. The weights w and
abscissas L at t = 0 are obtained by solving the nonlinear
algebraic equations numerically. For DAE-QMOM, the
DAE system is solved using Matlab routine ode15s with
relative and absolute tolerances set to 10−12 and 10−10,
respectively. For AD-QMOM, we set d = 20 and initially,
τ = 0.15, while the tolerance level δ is reduced until both
the methods have similar percentage errors in µ, which is
defined as

% error =
µanalytical − µcalculated

µanalytical
× 100 (22)

All computations are carried out on a Windows XP
SP2 notebook with an IntelrCoreTM Duo Processor
T2500 (2.0 GHz, 2MB L2 Cache, 667 MHz FSB) using
MATLABr R2007b.

4.1 Example 1: Diffusion-controlled growth

We first consider a particulate process with growth only,
where the growth rate is given as

G = G0/L (23)

with G0 = 0.01 m2/s. For this process, the moment
equations can be derived to be:

dµr

dt
= fr(wℓ, Lℓ, G0) = rG0

N∑

ℓ=1

wℓL
r−2
ℓ (24)

The analytical solution is available only for the even
moments and is given as (McGraw, 1997)

µ0(t) =N0 (25)

µ2(t) = 2G0µ0(t)t+ µ2(0) (26)

µ4(t) = 4G2
0µ0(t)t

2 + 4G0µ2(0)t+ µ4(0) (27)

Based on (24) and Table 1, the Taylor coefficients of fr
are derived as follows:

f [k]
r = rG0

N∑

ℓ=1

k∑

j=0

w
[k−j]
ℓ

(
Lr−2
ℓ

)[j]
(28)

where
(
Lr−2
ℓ

)[j]
can be found using Identity 4 in Table 1.
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Fig. 1. Evolution of Moments for Example 1

AD-QMOM is applied with δ = 10−12 and the evolution of
the moments is shown in Figure 1. The percentage errors
for the even moments (for which analytical solution is
available) are shown in Figure 2. It can be noted that
AD-QMOM provides better accuracy than DAE-QMOM.
To solve this problem, the AD-QMOM requires 0.043 sec.,
while the DAE-QMOM requires 0.477 sec. Thus, the AD-
QMOM is able to provide the same level of accuracy as the
DAE-QMOM with an order of magnitude smaller solution
time. Note that the solution time for AD-QMOM is not
very sensitive to the choice of d. For 15 ≤ d ≤ 25, the
solution time for AD-QMOM differ by only 10%.

4.2 Example 2: Volume Breakage Kernel

Next, we consider a breakage example, where the breakage
kernel and probability of breakage are given as

a(L) = L3; b(L, λ) = 6L2/λ3 (29)
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Fig. 2. Comparison of errors for Example 1 using AD-QMOM (continuous lines) and DAE-QMOM (dashed lines)

For b(L, λ) in (29), b(r, Lℓ) =
6Lr

ℓ

r+3 . Thus, the moment
equations can be simplified as

dµr

dt
= fr(wℓ, Lℓ, G0) =

3− r

3 + r

N∑

ℓ=1

wℓL
r+3
ℓ (30)

The analytical solution at any time t is given as (Hounslow
et al., 2001)

n(L, t) = 3L2(1 + t)2 exp
(
−L3(1 + t)

)
(31)

which can be integrated to find the moments analytically.
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Fig. 3. Evolution of moments for Example 2

For application of the AD-QMOM, the Taylor coefficients
of fr can be found using Table 1 as follows:

f [k]
r =

3− r

3 + r

N∑

ℓ=1

k∑

j=0

w
[k−j]
ℓ

(
Lr+3
ℓ

)[j]
(32)

where
(
Lr+3
ℓ

)[j]
can be found using Identity 4 in Table 1.

AD-QMOM is applied with δ = 10−18 and the evolution
of the first 6 moments and their percentage errors are
shown in Figures 3 and 4, respectively. It can be noted
that both the methods conserve µ3 precisely. The accuracy
of the two methods for other moments is nearly identical.
To solve this problem, the AD-QMOM requires 0.2 sec.,
whereas the DAE-QMOM requires 0.936 sec. Thus, the
AD-QMOM is able to provide the same level of accuracy
as the DAE-QMOM with approximately 5 times smaller
solution time.

Interestingly, the errors for both methods are higher than
seen for Example 1. The maximum absolute error for the
first six moments is 3.675 × 10−3. When N is increased
to 12 with the AD-QMOM (the DAE-QMOM is not able
to solve this problem), however, the maximum absolute
error for the first 6 moments reduces to 2.754×10−6. This
observation highlights that the quadrature approximation
is not very good for this example for low values of N . Both
methods are still able to keep the numerical error small,
however, as expected, have no control over the error arising
due to the quadrature approximation.

5. CONCLUSIONS

An automatic differentiation (AD) based approach is pro-
posed to solve population balance equations (PBE) us-
ing quadrature method of moments (QMOM). The AD-
QMOM uses high-order Taylor expansions to obtain accu-
rate solution of the differential-algebraic equations (DAEs)
arising from the quadrature approximation. Examples in-
volving diffusion-controlled growth and volume breakage
kernel show that for the same accuracy level, AD-QMOM
is 5 – 10 times faster than conventional DAE solvers.
Similar results are seen for other phenomena like nucle-
ation and aggregation (not discussed in this paper). The
AD-QMOM is also more robust and is able to handle a
much higher number of moments than conventional DAE
solvers. In summary, this paper establishes AD-QMOM as
a promising approach for solving PBEs. The superior effi-
ciency and robustness of AD-QMOM make the approach
useful for parameter estimation, process optimization and
online model-based control.
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