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Abstract: Mathematical models of particulate processes usually include a population balance
equation to describe the dynamics of the size distribution. The structure of the population
balance equation is the same in all models of particulate processes and the specific physical and
chemical interaction of the particles is described by individual kernels. Usually first principles
modeling is used to develop the kernels, but in cases in which this is intractable, inverse problem
techniques have been proposed in the literature to extract the kernels from experimental data.
In this work we introduce an approach that can be used for extracting the growth kernel. This
approach is applicable even when the assumption of separable growth rate that has been made
in previous approaches does not hold and when coagulation with known dynamics and growth
are taking place simultaneously.
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1. INTRODUCTION

Due to the dependency of the end-use properties of par-
ticulate products such as crystals and polymers on their
size distribution, modeling and control of the size distri-
bution is of extreme interest. Such modeling tasks are
complicated because of the interaction of several physical
and chemical phenomena that take place simultaneously
in these processes. These phenomena include nucleation,
growth, coagulation and breakage. In the literature, mod-
els ranging from fundamental to black box models for
particulate processes exist. First principles models mainly
use the population balance equation (PBE) to describe
the dynamics of the size distribution. The complete model
of the process comprises the PBE with the other balance
equations for the continuous phase variables in the system
(Alhamad et al., 2005; Immanuel et al., 2002; Rajabi-
Hamane and Engell, 2007). In many cases however, models
for the individual kernels in the PBE are either unavailable
or unreliable and researchers use input output data to
construct data based models (Dokucu and Doyle III, 2008;
Dokucu et al., 2008). Due to the inflexibility of such black
box models and the complexity and the above mentioned
limitations of rigorous models in particulate processes
other intermediate approaches between the two extremes
have been proposed. These approaches maintain the main
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structure of the fundamental model (i.e. the PBE) and aim
at developing models for the individual kernels by applying
inverse problem techniques; i.e., the individual kernels are
extracted from measured data. Such intermediate models
partly sacrifice rigorousness but simultaneously maintain,
to some extent, flexibility and occasionally even improve
versatility.

Inverse problem approaches to the modeling of particulate
processes have been applied for extracting the nucleation
and growth kernel (Mahoney et al., 2000, 2002; Ramkr-
ishna, 2000), the coagulation kernel (Ramkrishna, 2000;
Wright and Ramkrishna, 1992) and the breakage kernel
(Ramkrishna, 2000). This work is a further contribution in
this direction and it presents a novel method that extends
the approach proposed by Mahoney et al. (2000, 2002)
for extracting the growth kernel. The approach is applied
first to two test problems. Thereafter, the application of
the method for extracting the growth kernel in emulsion
polymerization, both with and without co-occurring coag-
ulation with known dynamics, is presented.

The remainder of the paper is structured as follows: In
Section 2, the original approach proposed by Mahoney
et al. (2002) for extracting the growth kernel is briefly
explained, the proposed method is presented and the ex-
tension over the existing method is highlighted. The results
obtained when the method is applied to test problems and
to the emulsion polymerization problem are demonstrated
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in Sections 3 and 4. Finally, Section 5 is devoted to drawing
conclusions and indicating prospects for future research.

2. THEORY

The PBE that describes simultaneous growth and coagu-
lation is given by

∂nv(v, t)

∂t
+

∂(Gv(v, t)nv(v, t))

∂v
= ℜcoag(v, t), (1)

where nv(v, t) is the number density function and nv(v, t)dV
represents the number of particles per unit volume with
sizes between V and V + dV . Gv(v, t) and ℜcoag(v, t) are
the growth and coagulation kernels. Our objective here
is to extract the growth kernel from measured data. As
mentioned previously, this issue has first been addressed
by Mahoney et al. (2000, 2002). We begin by briefly ex-
plaining the original approach and highlighting the main
assumption made in it. The modification that is proposed
to make it possible to handle more general cases in which
these assumptions are not valid is presented in Section 2.2.

2.1 Separable growth rate

Mahoney et al. (2000, 2002) considered the case where
no coagulation takes place. If constant ordering holds (i.e.
the growth rate is deterministic and well mixed conditions
can be assumed) the characteristics of the PBE can be
extracted from the experimental data.

The main assumption in this approach is that the growth
rate is separable; that is:

Gv(v, t) = G1(v)G2(t). (2)

Since the quantity G1(v)nv(v, t) is conserved along the
characteristics (Mahoney et al., 2002), the procedure for
extracting the growth kernel is as follows:

Step 1. Approximate the functions G1(v) and G2(t) by
polynomials.

Step 2. Making use of the conservation of the quan-
tity G1(v)nv(v, t), determine the unknown coef-
ficients of the polynomial G1(v) by performing a
linear least squares optimization of the following
set of equations:

nv,1,kG1(v1,k) = nv,2,kG1(v2,k)

= .... = nv,τ,kG1(vτ,k),

where k ∈ [1, M ], M is the total number of
tracked characteristics and τ is the number of
time instances at which the measurements are
available.

Step 3. Determine the coefficients of the polynomial
G2(t) by solving the following set of equations:

∫ v(t|v0,t0)

v0

dv

G1(v)
=

∫ t

t0

G2(t)dt, (3)

where v(t|v0, t0) represents the location of the character-
istic at time t that initially was located at v0.

Mahoney et al. (2002) used local cubic basis functions
to approximate both G1(v) and G2(t). The approach was
tested on a test problem, a simulated precipitation system,
and an emulsion polymerization example (Mahoney et al.,
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Fig. 1. Flowchart of the proposed algorithm. i is the index
of the time instances at which the measurements are
available.

2000, 2002). The results in the former two cases were good.
In the latter case, however, the time span of the experiment
had to be split into two intervals and a separate growth
kernel had to be generated for each interval to obtain good
results.

2.2 General growth rate

The algorithm proposed in this paper is illustrated in Fig.
1 and is more general since it can be applied without
having to impose any preconditions on the structure of
the growth kernel. The core concept of both techniques,
however, is the same; i.e. the characteristics are extracted
from experimental data and a growth kernel is computed
from this information.

The approach suggested here is based on the fixed pivot on
a moving grid method (FPMG) of Kumar and Ramkrishna
(1997). The main idea in FPMG is to define a number
of bins and discretize the original PBE (Eq. 1) in terms
of these. The evolution of the boundaries of the bins is
determined by the growth kernel. Hence, the discretized
PBE is given by:

dNi(t)

dt
= ℜcoag(vi, t), (4)

dvi

dt
= Gv(vi, t), (5)

where Eq. 5 describes the evolution of the characteristics of
the PBE and Ni(t) represents the total number of particles
in the bin i at time t:

Ni(t) =

∫ vi+1

vi

nv(v, t)dv. (6)

The coagulation term in Eq. 4 is given by:
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ℜcoag(vi, t) = −

∫ vi+1

vi

n(v, t)dv

∫ ∞

0

n(v́, t)β(v, v́)dv́

+
1

2

∫ vi+1

vi

dv

∫ v

0

n(v − v́, t)n(v́, t)β(v − v́, v́)dv́. (7)

For a pure growth problem, the total number of parti-
cles contained in the moving bin remains constant since
ℜcoag(vi, t) is equal to zero. In contrast, for particles un-
dergoing simultaneous growth and coagulation the total
number of particles within each bin varies based on the
coagulation rate. Making use of these facts, the proposed
approach for extracting the growth kernel for a pure
growth problem proceeds as follows:

Step 1. Discretize the known distribution at t = t0 into
M bins.

Step 2. Calculate Ni for each bin using Eq. 6.
Step 3. At every instant of time tk, at which the mea-

surement of the number density function nv(v, t)
is available, move the boundaries of the bins such
that Eq. 4 holds for each bin.

Step 4. Train a neural network or use any other nonlinear
black-box modeling technique to approximate
the function f1 which is defined as follows:

v = f1(v0, t), (8)

Gv(v0, t) =
dv

dt
=

df1(v0, t)

dt
. (9)

The function f1 in Eq. 8 maps the initial location of the
bin boundaries obtained in Step 1 and the time instances
at which the measurements are available tk to the location
of the boundaries obtained in Step 3. That is, starting
from an initial grid v0, Eq. 8 describes the evolution of
the characteristics of the PBE. Eq. 9 consequently gives
the extracted growth kernel. Since it is desired to have
Gv(v, t) instead of Gv(v0, t) an additional step is added to
the above procedure:

Step 5. Train a neural network or use any other nonlinear
black-box modeling technique to approximate
the function f2 which is defined as follows:

v0 = f2(v, t). (10)

By substituting v0 from Eq. 10 in Eq. 9 the growth kernel
is obtained.

For the case of simultaneous growth and coagulation, as-
suming that the coagulation frequency β(v, v́) is known,
since ℜcoag(vi, t) = f(N1(t), N2(t), ..., NM (t)), as can be
deduced from Eq. 7, Step 3 of the procedure described
above can be replaced by the following two steps:

Step 3.1. Discretize the time derivative on the LHS of
Eq. 4 using the Crank-Nicolson method:

Nk+1
i − Nk

i

∆t(k)
=

1

2
(ℜcoag(vi, tk+1) + ℜcoag(vi, tk)) i = 1, 2, ..M.

Step 3.2. Solve the resulting set of M coupled nonlinear
equations simultaneously.

For calculating ℜcoag(vi, t) the expressions described by
Kumar and Ramkrishna (1997) that guarantee preserva-
tion of number and mass are applied.

It is clear from the above description that, because of us-
ing neural networks for reconstructing the characteristics,
any general shape of the growth kernel can theoretically
be approximated with reasonable accuracy. Furthermore,
since the characteristics are obtained based on the FPMG,
handling the coagulation term becomes straightforward.
This is demonstrated in the following sections.

3. TEST PROBLEMS

The proposed approach is tested first on two simulated
examples. The growth term in both these examples is
separable:

Gr(r, t) = G1(r)G2(t), (11)

G1(r) =

{

1 + r
6 P1,

r2

α P2,
(12)

G2(t) =

{

3
2 (1 + exp(−t

2 ) P1,

κ exp(−t
γ ) P2,

(13)

where, Gr(r, t) is the growth rate with respect to the
particle radius, and for the results shown here, α = γ = 2
and κ = 1.

The growth kernel for the first problem (P1) is the one
used in the simulation example reported in Mahoney et al.
(2002). The growth kernel in problem P2 is chosen to be
nonlinear both with respect to G1 and G2. The resulting
evolution of the distribution in the first case is mainly dom-
inated by movement towards large particle sizes with slight
broadening, whereas in the second case the broadening of
the distribution is more pronounced. In both problems the
initial condition is a Gaussian distribution. Furthermore, it
is assumed that measurements of the number density func-
tion are available at ten equally distributed time instances.

As described in Section 2.2 the initial distribution is di-
vided into bins; here 100 bins are used. The evolution of
the characteristics is extracted by applying the algorithm
explained previously and perceptron neural networks are
trained using this data. It was found that one hidden layer
is sufficient for approximating the kernel. The number
of neurons in all cases presented here is five. This is
determined by an approach that is based on singular value
decomposition (Sentoni et al., 1996).

The comparison between the original and the extracted
growth kernels for problems P1 and P2 is depicted in Fig.
2. In both cases the extracted growth kernel compares well
with the original one. The good agreement is also reflected
in the comparison of the number density functions shown
in Fig. 3 for P1 and in Fig. 4 for P2.

It can be concluded from these results that separable
growth rates can be reconstructed efficiently by the pro-
posed algorithm. This was also the case with the approach
of Mahoney et al. (2002). In what follows more general
cases with a nonseparable growth kernel are considered.
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4. THE EMULSION POLYMERIZATION (EP)
PROBLEM

One of the fields in which the PBE is used to describe the
dynamics of a particulate system is emulsion polymeriza-
tion. In this section the EP process is briefly introduced
and the main aspects of the model are presented.

4.1 The EP process

The main ingredients in EP are monomer, emulsifier,
initiator and water. The monomer is only slightly sol-
uble in water and it forms a separate oily phase when
added to it. Upon stirring, this oily phase breaks down
into monomer droplets that are unstable, and to stabilize
them the emulsifier (surfactant) is added. In addition, the
emulsifier is responsible for the formation of micelles which
are colloidal aggregates of surfactant molecules that occur
at concentrations above the critical micelle concentration.
These micelles are the loci of the polymerization reaction.
To ignite the reaction, a water soluble initiator is added.
It forms radicals in the water phase that subsequently
enter the monomer swollen micelles as oligoradicals, form
polymer particles and grow by propagation. It might also
occur that the monomer units add to the radicals that
are generated in the aqueous phase and the propagation
continues there until the solubility limit of the oligomer
in water is reached. At that point, the particles precip-
itate and adsorb surfactant molecules to achieve their
stabilization. The monomer continuously diffuses from the
monomer droplets to the polymer particles during the
reaction and once all the monomer present in the water,
in the droplets, and in the polymer particles is consumed,
the reaction terminates.

4.2 The EP model

The polymer particles are of different sizes r and are
located at different positions in the reactor. Assuming
a well-mixed reactor, the spatial variation is neglected.
The PBE that describes the evolution of the particle size
distribution (PSD) then reads:

∂nr(r, t)

∂t
= −

∂

∂r
(ṙ(r, t)nr(r, t)) + ℜcoag(r, t), (14)

where nr(r, t) is the population density function with the
particle radius as the internal coordinate and ṙ(r, t) is the
growth rate of the particles and is given by Eq. 15:

ṙ(r, t) =Gr(r, t) =
kpMWM

4πr2ρpNA
[M ]pn(r, t). (15)

In Eq. 15, kp is the propagation rate coefficient, MWM is
the molecular weight of the monomer, NA is Avogadro’s
number, ρp is the density of the polymer, [M ]p is the
monomer concentration in the particle phase and n is the
average number of radicals per particle.

n(r, t) depends on the rate of radical generation, the con-
centration of the polymer particles, the rate of radical
entry into the particles, the exit rate of radicals from the
particles and the termination rate of the radicals. In this
model, the explicit expression for n(r, t) developed by Li
and Brooks (1993) is used. Due to the nonlinear depen-
dency of n on both particle radius and time, the growth
kernel Gr(r, t) in emulsion polymerization is nonseparable.

The PBE (Eq.14) is coupled to ordinary differential equa-
tions describing the change in the concentration of the
other substances that are present in the reactor (i.e. the
initiator, monomer and radicals in the water phase). This
set of equations, the recipe and the experimental condi-
tions used in this example can be found in Bouaswaig and
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Fig. 5. Comparison of the original and the extracted
growth kernels for the EP problem (growth only case).
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Engell (2009).

The virtual experimental data in what follows is gener-
ated by discretizing the PBE using the improved weighted
essentially non-oscillatory scheme (WENO35-Z) (Borges
et al., 2008). The resulting set of equations is simulated
using the DAE solver DASSL. For the inverse problems 100
bins are used; the virtual experimental data is available at
ten time instances in the pure growth case and at eighty
time instances in the growth and coagulation case.

4.3 The EP pure growth case

For this case the coagulation term ℜcoag(r, t) in Eq. 14 is
equal to zero. The calculation proceeds in the same fashion
as described earlier in Section 2.2. The comparison of the
extracted and the original growth kernels is shown in Fig.
5. It is clear that the growth kernel for this case is extracted
with reasonable accuracy.

In Fig. 6 a comparison between the particle size density
obtained from using the original and the extracted growth
kernels is shown. In Fig. 7 the conversions in both cases are
compared. The results in both figures reveal the suitability
of the proposed algorithm for extracting this nonseparable
growth kernel.
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Fig. 7. Comparison of conversion and particle concentra-
tion for the pure growth EP problem and the growth
and coagulation EP problem.

4.4 The EP growth and coagulation case

Model mismatch in EP processes has been reported in
literature (see, e.g. Immanuel et al. (2002)). Due to the
complexity of the process and the strong interaction of the
nucleation, growth and coagulation phenomena, validation
of the complete model is impractical. Fortuny et al. (2004)
proposed using pure coagulation experiments to validate
the coagulation kernel separately. For a known coagulation
kernel, the approach presented here can be used either to
extract the growth kernel or to improve the quality of the
existing rigorous model.
The coagulation coefficient β in this case is given by:

β(v1, v2) =
2kBT

3µW (v1, v2)

(

2 +
v
1/3
1

v
1/3
2

+
v
1/3
2

v
1/3
1

)

, (16)

where kB is the Boltzmann constant, T is the reactor tem-
perature, µ is the viscosity of the medium and W (v1, v2)
is the stability ratio. For W an expression similar to that
used by Alexopoulos et al. (2004) is used here:

W (v1, v2) =

(

v1v2

v2
min

)s

, (17)

where vmin is the volume corresponding to the lower limit
of the particle size domain and s is chosen to be equal to
1.25. Hence, it is assumed that the coagulation dynamics
are known and the goal is to extract the nonseparable
growth kernel.

As mentioned in Section 2.2, the set of nonlinear equations
that result from applying FPMG to extract the growth
kernel in this case are solved simultaneously. The accuracy
of the extracted kernel is acceptable, as can be seen in
Fig. 8. Furthermore, as illustrated in Fig. 7, due to the
presence of coagulation, the particle concentration (i.e.
amount of particles per unit volume of the reactor content)
decreases over time. This is captured reasonably well by
the model that uses the extracted growth kernel. The same
applies to the conversion as can be concluded from the
same figure. For this case however, there exists a certain
discrepancy between the cumulative densities predicted by
using the different kernels as can be seen in Fig. 9. When
t approaches 1, the error in the location of the front is
around 4% and the distribution predicted by the extracted
kernel is slightly broader. This difference is attributed
to the numerical error associated with the application of
Steps 3.1. and 3.2. in the proposed algorithm.
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5. CONCLUSION

When measurements of the number density function at dif-
ferent time instances are available, the growth kernel can
be extracted by constructing the characteristics that de-
scribe the evolution of the PSD. The technique presented
in this paper is based on this concept and is applicable
even when the assumption of separable growth kernel is
not valid. When the growth is accompanied by coagulation
the growth kernel can still be extracted with reasonable
accuracy using the proposed algorithm, assuming the co-
agulation kernel to be known.

In the approach shown here the dependence of the growth
kernel on the continuous phase variables is only implicitly
defined via the dependence on time and this confines its
value. This limitation will be addressed in future work, i.e.
the growth kernel will be estimated as a function of the
state variables. An additional potential direction for future
research is the use of dynamic neural networks instead of a
static mapping to combine Steps 4 and 5 in the algorithm
presented in Section 2.2 for extracting the growth kernel.
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